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Abstract: A review of the existing optoelectron monitoring devices revealed that the design of
optoelectron detectors of the mine atmosphere does not sufficiently take into account the factor of
external optical interference. This includes any extraneous source of thermal emission: a source of
artificial lighting or enterprises. As a consequence, the optoelectron detectors -based safety systems
currently installed at mining sites are not able to ensure properly the detection of the ignition source
in the presence of optical interference. Thus, it is necessary to determine the working spectral
wavelength ranges from methane and coal dust explosions. The article presents the results of
experimental research devoted to the methane-air mixture and coal dust explosion spectral analysis
by means of the photoelectric method. The ignition of a methane-air mixture of stoichiometric
concentration (9.5%) and coal dust of size characterized by the dispersion of 63–94 microns and
concentration of 200 g/m3 was carried out in a 20 L spherical chamber with an initial temperature
in the setup of 18–22 ◦C at atmospheric pressure. Then, photometry of the explosion light flux was
conducted on a photoelectric unit. Operating spectral wavelength ranges from methane and coal
dust explosions were determined. For the methane-air mixture, it is advisable to use the spectral
regions at the maximum emission of 390 and 900 nm. The spectrum section at the maximum emission
of 620 nm was sufficient for dust-air mixture. It enabled us to select the wavelength ranges for
automatic explosion suppression systems’ launching references. This will exclude false triggering
of the explosion suppression system from other radiation sources. The research results will help to
improve the decision-making credibility of the device in its direct design. The results will be used in
further research to design noise-resistant optical flame detection sensors with a high response rate.

Keywords: explosion; coal dust; methane; explosion suppression; spectral characteristics; explosion
pressure; radiation intensity; free radicals

1. Introduction

Dust and gas explosions are among the greatest disasters in the coal industry and
are related with mass fatalities. This is a danger for the entire mining industry, not just
coal mining [1]. In this regard, safety improvement during blasting operations in gaseous
and dusty mines is of utmost importance [2]. Dust-methane explosion safety upgrades are
possible only by a comprehensive approach, including risk management [3–5], development
of tools and methods of mine explosion protection, methane emission control [6], coal
deposits underground mining technological processes monitoring [7–10].

Among the effective ways to control possible explosions are the automatic ignition
prevention systems. The sensors applied in automatic explosion barriers respond to high
pressure (outside rods) and temperature, abnormal concentrations of explosive gases,
optical parameters and flames [11]. The disadvantage of the sensors, responding to the
explosion wave pressure, is their possible actuation because of extraneous acoustic signals.
The authors of [12] provide an explanation of the outside rods’ inefficiency due to their
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spatiotemporal parameters that are insufficient for successful explosion containment. The
disadvantage of sensors, responding to the temperature changes, is their sensibility to
the dusty mine environment, dust deposits, etc. [13]. Since the ignition process includes
lighting, the perfect solution is optical sensors detecting dynamics in infrared and ultraviolet
radiation and able to start the automatic prevention system to avoid combustion and
explosions of methane-dust-air mixture.

The first thing we consider when estimating occupational injury risks is the air shock
wave produced by methane-dust-air mixture’s explosion [9]. Therefore, it’s clear that an
effective suppression system should be started at the very early ignition stages [14–16].
For this reason, the optical sensor’s spectral response should be sufficient to start the
suppression system.

There is one method [17,18] to measure object temperature without known emittance
involvement. However, this method is not effective because of its slow response, due to
the need to analyze and process a wide range of the optical spectrum [19]. In this regard,
the correct choice of optical sensor is impossible without considering a specific flame and
methane-dust-air explosion radiation spectrum.

A number of optoelectron devices (OEDs) have been proposed for use in fire detection
and localization systems, including two spectral ratio optoelectron devices. The device uses
radiation in three spectral ranges (750 ± 40 nm, 950 ± 50 nm, 1550 ± 12 nm). However, the
study does not give a criterion for the choice of these ranges [20].

Moreover, for proper extinguishment within the development ratio with a cross-
sectional area up to 10 m2, it is necessary to create the explosion-suppressing environment
by throwing out at least 30 kg of inhibitor within 15 ms. This throwing rate in case of false
alarms can be dangerous for people located in the immediate vicinity to the explosion
suppression devices [21].

Therefore, the development of construction and creation of a fast-operating OED
control of explosive dust and gas atmosphere, insensitive to dustiness of the intermediate
atmosphere and having a high probability of detecting the ignition source at an early stage
in the presence of external optical interference, is an urgent scientific and technological task.
It has an essential economic importance.

Thus, this research aims to obtain the spectral characteristics of combustion and
methane-air mixtures’ explosion radiation for the correct choice of input sensors applicable
for explosion suppression systems.

2. Materials and Methods

The research into the flame radiation spectrum and methane, air and dust mixtures’
explosion radiation spectrum was carried out by photoelectric method and aimed to obtain
data on the nature of radiation energy wavelength distribution. This method enables
spectrum recording with automatic dark signal subtraction and spectrograph wavelength
calibration [22,23].

Currently it has been established [24,25] that gas radiation, heated by a shock wave,
corresponds to “gray body” radiation, provided that the relative spectral energy distribution
can be almost identified with any “black body” energy distribution at the temperature T.

The spectral-energy distribution of radiation emitted by a “black body” is described
by the Planck formula:

Bλ =
C1 · λ−5

eC2/λ·T − 1
, (1)

where Bλ is emitting surface spectral brightness, λ is emission wavelength, C1 and C2 are
constants, and T is emitting surface temperature.
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Provided that C2/λ · T >> 1, Formula (1) is reduced to the classic Wien formula, which
gives quite an accurate description of shock wave spectral energy distribution for the
visible area:

Bλ = c1λ−5e−
c2
λT . (2)

Formula (2) shows that for the curve reflecting spectral energy distribution of the
luminous gases, which are gray emitters, it is necessary to provide its color temperature
measurements.

The method of color temperature measurement is based on light intensity comparison
from two spectrum areas.

Using Equation (2) we can have the following formula for energy ∆E, emitting by the
body at the temperature T, wavelength λ and in the bandwidth ∆λ:

∆Eλ,T = c1λ−5
(

e−
c2
λT

)
∆λ. (3)

If we know ∆Eλ,T for different wavelengths λ1 and λ2, it is easy to calculate the emitter
temperature, when the reference source and temperature Tx are available.

We have:

∆E1x = ∆Eλ1,Tx = C2λ1
−5e−

C2
λ1Tx ∆λ1, (4)

∆E2x = ∆Eλ2,Tx = C2λ2
−5e−

C2
λ2Tx ∆λ2. (5)

Dividing Equation (3) by Equation (4) and taking logarithms, we have the following
expression for the emitter under study:

ln
(

∆E1x
∆E2x

)
= −5 ln

(
λ1

λ2

)
+ ln

(
∆λ1

∆λ2

)
− C2

Tx

(
1

λ1
− 1

λ2

)
(6)

and for the reference source:

ln
(

∆E10

∆E20

)
= −5 ln

(
λ1

λ2

)
+ ln

(
∆λ1

∆λ2

)
− C2

T0

(
1

λ1
− 1

λ2

)
. (7)

From Equations (6) and (7) we have the equation for the source color temperature Tx
calculation using the available temperature value of the reference emitter T0:

ln
(

∆E10/∆E20

∆E1x/∆E2x

)
= C2

(
1

λ1
− 1

λ2

)
·
(

1
Tx
− 1

T0

)
. (8)

A general algorithm of the laboratory experiment is the following: in a closed combus-
tion chamber of a 20-L spherical explosion chamber [26–29] shown in Figure 1, we have
a mixture of stoichiometric concentration, supplied by a single step by compression with
2 MPa pressure [30,31]. The accidents in coal mines mainly occur because of methane and
coal dust explosions [1,32]. It is these two components that were the object of the study.
Further, it is flamed with 60 ms delay. The initial temperature in the unit is about 18–22 ◦C
at the atmospheric pressure. The tested samples were prepared using the partial pressure
method. Then, before ignition, the mixture was stirred by circulation pump, to ensure its
homogeneity [33]. A luminous flow produced by the combustible mixture ignition was
observed through the explosion chamber watch window.
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Figure 1. Twenty-liter spherical explosion chamber. The unit layout. 1—Water output, 2—pressure 
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igniters, 7—rebound sprayer, 8—fast-acting valve, 9—water intake, 10—air and resultant outlet. 

The results of aerosol ignition of certain concentration, that was produced inside the 
chamber, as well as the explosion pressure and the explosion pressure rise rate are 
automatically recorded by the data processing system. This further data analysis enables 
us to conclude which is the successful ignition mixture (Figure 2). 

 

Figure 1. Twenty-liter spherical explosion chamber. The unit layout. 1—Water output, 2—pressure
sensor, 3—pressure gauge, 4—dust collector 0.6 dm3, 5—air intake, ignition source, 6—chemical
igniters, 7—rebound sprayer, 8—fast-acting valve, 9—water intake, 10—air and resultant outlet.

The results of aerosol ignition of certain concentration, that was produced inside
the chamber, as well as the explosion pressure and the explosion pressure rise rate are
automatically recorded by the data processing system. This further data analysis enables
us to conclude which is the successful ignition mixture (Figure 2).
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Figure 2. Pressure trend (P, MPa) for the period (t, ms) of dust-gas mixture combustion inside the
explosion chamber: Pd—expansion pressure of the combustion chamber; Pex—explosion pressure;
td—exhaust valve delay; t1—combustion time; t2—induction time; tv—ignition delay time; Wp—
breakpoint in the rising part of the pressure curve; dP/dt—pressure rise rate at the explosion.
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A pressure gauge with a response time of 0.2 ms is applicable for pressure measure-
ments up to 2 MPa. Timing of pressure and flame radiation spectrum data recording from
the ignition moment was controlled by ExTest software. To exclude the influence of the
decomposition products of chemical igniters on the test result, the mixture was ignited by
flash over. The energy produced from electrical initiation was 1 kJ.

Photometric measurement of light fluxes involved in the Equation (8) was carried out
by means of photoelectric unit (Figure 3).
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Figure 3. Basic diagram of temperature measurement. 1—Explosion chamber watch window, 2—
band-lamp, 3—diaphragm, 4—splitter, 5—light filter, 6—photo multiplier, 7—cathode amplifier,
8—oscillograph.

The luminous flux was projected onto the inlet diaphragm of the unit using a rotatable
flat mirror and lens. The luminous flux, after passing through the diaphragm, was recorded
by photomultipliers using a beam splitting system, the signals of which were recorded
from the oscilloscope screen. Two spectral intervals were separated by means of 15 nm
bandpass interference filters.

The recording device was calibrated using standard stripe incandescent lamp. Its
luminous flux was projected onto the inlet diaphragm of the unit through a hole in a
rotating disk (chopper) using a rotary flat mirror and lens.

To measure the absolute radiation intensity, we used photomultipliers powered by
high-voltage rectifier with electronic regulation.

For the radiator processes recording, it is necessary to consider not just the receiver’s
absolute sensitivity, but also the wavelength interval where this sensitivity remains effective.

One of the basic parameters of photodetectors is their time constant of the order of
10−8–10−10 s.

The photomultipliers are characterized by significant photocurrent amplification
factor and are well protected from the interferences caused by external electric fields. A
relatively high input current of multistage photomultiplier enables to record output signals
by cathode oscilloscopes without special broadband amplifiers involvement.
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The oscilloscope’s beam deviations are proportional to the radiation energy of the
selected spectral intervals

D = κ∆E1 (9)

where D is oscilloscope beam deviation, and ∆E is defined by Formula (3). Using Equa-
tion (8) we have:

ln
(

D10/D20

D1x/D2x

)
= C2

(
1

λ1
− 1

λ2

)
·
(

1
Tx
− 1

T0

)
(10)

Let us denote the glow signals ratio of the investigated medium for the selected
spectrum ranges by α, and the ratio of the calibration signals from a reference source at
special color temperature T by β:

α = D1x/D2x (11)

β = D10/D20 (12)

If we substitute Equation (11) and Equation (12) into Equation (10) we’ll get a working
formula for source temperature calculation:

ln(β/α) = c2

(
1

λ1
− 1

λ2

)
·
(

1
Tx
− 1

To

)
(13)

If the reference source temperature is well known, then the temperature measurement
error is calculated by the following formula:

∆Tx

Tx
=

λ1 · λ2

c2(λ2 − λ1)
·
(

∆α

α
+

∆β

β

)
(14)

The measurement error is mostly because of the finite thickness of the oscilloscope
beam and photoelectronic multiplier noises. According to the calculations, the relative
error does not exceed 10%.

3. Results

As shown in Figure 4a,b the mixture explosiveness assessment was carried out consid-
ering pressure values Pmax and the explosion pressure rise rate (dP/dt)max [34]. To show
the spectral radiation characteristics, the intensity (I) was recorded and analyzed as it is
shown in Figure 5. Parameter I0 is defined as the value at which the radiation intensity
deviates from the baseline (I0 is 110% of the initial radiation intensity) [35]. The parameter
t0 shows the time necessary to reach the maximum value of radiation intensity.

According to the received experimental data, the ignited methane of stoichiometric
concentration in chamber produced maximal explosion pressure Pmax = 0.83 MPa and the
rate of pressure rise was 42.05 MPa/s. When the explosive combustion of KS (KC) grade
coal dust was registered in the Dzerzhinsky mine site, the maximum explosion pressure in
the chamber was 0.79 MPa and the pressure rise rate was 34.62 MPa/s.

The results were analyzed using the application software. According to the obtained
data, the graphs of changes in the pressure of methane and coal dust explosion were plotted
against the time of explosive combustion of the mixture.
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The results of experimental studies of radiation intensity measurement of methane-air
and dust-air mixture explosion carried out by the electron-optical method are presented in
the form of a dependence diagram, Figure 6.
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The relative intensity dependence on the wavelength shows that wavelength distribu-
tion of radiation energy differs from the Planck’s type of distribution. The graph (Figure 6)
clearly shows two peaks at the wavelengths λ1 = 383.5 nm and λ2 = 620 nm. These peaks
appeared when the banded spectrum of molecules and radicals overlaid the continuous
radiation spectrum of the heated gas.

The peak point in the range of λ = 390 nm can be identified with band system of the
radical CH radiation [36], and the one in the range of λ = 620 nm–with the band system of
the molecule C2 radiation (Swan system). The band system of molecule C2 is also in the
range of λ1 = 380 nm.



Appl. Sci. 2022, 12, 1515 9 of 11

An intense series of bands are observed in the methane combustion spectrum, caused
by the OH radical emission in the ultraviolet range of the spectrum λ1 = 306 nm. The maxi-
mum radiation in the range of 900 nm should be identified with methane-air continuous
combustion spectrum. In this case, the temperature, that was determined by the curve peak
in accordance with Wien’s displacement law, is T = 2610 K, which correlates well with the
data received by spectrometric methods [37].

4. Conclusions

The availability of free radicals, which are considered the active centers of the chain
reaction of methane explosion, is necessary for the entire process of explosive transition.
Some free radicals, such as OH, H, O, CH3, HO2, CHO, are especially important not only
for the explosion process, but also for the explosion suppression (inhibition) [38–40].

The flame spectrum analysis reveals the intermediate compounds formed during
combustion and explosion and lets us study their behavior. Nowadays optical spectroscopy
is the best method for free radical detection, since this method has no impact on the
combustion and explosion process. The comparison of spectrum relative intensity enables
us to get data on chemical reactions and involved radicals.

The resulting dependences of energy spectral distribution of explosions of methane-
dust-air mixtures enable us to determine the central wavelengths of bandpass filters and
select the spectral ranges for input sensors and explosion suppression.

Thus, for methane-air mixtures, it is reasonable to use spectral regions at the radiation
maximums of 390 nm and 900 nm. This helps to avoid false triggering of the explosion
suppression system possibly initiated by other radiation sources. For a dust-air mixture, it
is enough to use one spectral region at the radiation maximum of 620 nm.

Thus, it is proved that for the development of an active explosion suppression sys-
tem in coal mines, particular attention should be paid to the choice of working spectral
wavelength ranges for the recognition of the desired signal.

The most important parameter for optoelectron devices is the credibility of the decision.
It is a complex parameter and is determined by a combination of the following:

- Probability of fire detection in the absence of optical interference;
- False alarm probability;
- Probability of fire detection in the presence of external optical interference. The

research results will help to improve the decision-making credibility of the device in
its direct design.

We believe that further research should be devoted to initial combustion detection
technology development with its further integration into multifunctional safety systems
purposed for successful methane-dust-air combustion and explosion containment in coal
mines and for the mines’ industrial testing safety.
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