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Abstract: In mountainous areas, the installation of steel towers was the major obstacle to the con-
struction of transmission lines. In long-span cross-rope suspension (CRS) structures, the conductors
are supported by hundreds-meters-long suspension cables crossing valleys instead of steel towers.
Though long-span CRS is an innovative structural system, its structural performance needs to be
clarified. Firstly, an assembled FE model was established based on initial deformed components
for long-span cross-rope suspension structure. The wind load response of long-span cross-rope
suspension structure with different lengths or number of spans was established and analyzed. Vortex-
induced vibration (VIV), which was the major factor regarding fatigue and service life, and its
controlling by Stockbridge damper for a long-span CRS were discussed. The numerical simulation
results showed that the tensile force of the suspension cable increased with the length and number of
spans of the conductor. In addition, considering the ice covering the transmission line, the interaction
between the wind load and ice load induced the nonlinear lateral deformation characteristics of
the conductor. Moreover, the vibration characteristics of the conductor in the long-span CRS were
studied and compared with the traditional tower-line system. An analysis of the long-span CRS with
a Stockbridge damper showed that additional dampers were essential for controlling the maximum
dynamic bending stress of conductors at both ends.

Keywords: cross-rope suspension; power transmission line; wind load; iced conductor;
Stockbridge damper; vortex-induced vibration

1. Introduction

A cross-rope suspension (CRS) system is a widely used type of transmission line
structure that was developed from a guyed V-tower system. CRS was firstly proposed in
1974 [1]. In the CRS system, the transmission line is supported by transversally crossing
suspension cables connected to the towers on both ends. Thus, the conventional steel tow-
ers were removed, and the CRS system was always considered to be optimized compared
with the line-tower system. Moreover, the CRS system was more suitable in mountainous
areas, which largely improved the construction difficulty and efficiency. The CRS struc-
tural system built in Cape Town, South Africa, was called the “invisible tower line” [2].
Its engineering experience indicated that CRS could significantly reduce the visual impact
on the surrounding environment and protect the original natural landscape. Generally, the
span of the suspension cable is limited to 200 m. For the application in a complex envi-
ronment, the span of CRS was expanded beyond 1000 m while insulators were installed
between each pair of conductors, which became a novel long-span cross-rope suspension
structural system, as shown in Figure 1 [3].
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The finite element method (FEM) was widely adopted for analyzing complex flexible 
structures with large geometric deformation so far, as well as CRS [4]. The analysis of the 
initial shape (mechanical sag) of suspension cable and conductors was the basis of further 
dynamic analysis of long-span CRS. Jia and Liu [5] established the initial form-finding 
method of overhead transmission lines, which is based on the form-finding of cable struc-
tures. Based on the FE model of CRS, dynamic properties and structural responses in-
duced by wind load were studied. CRS transmission line structures were designed to 
withstand several different load cases. For mountainous environments, extreme wind and 
combined wind and ice in cold climates governed the design load for CRS. Keyhan pre-
sented a new method to determine wind loading on transmission line conductors based 
on fluid–structure interaction analysis [6]. Based on the historical weather data in Ontario, 
Krishnasamy analyzed the wind load on bare and ice-covered conductors [7]. Lalonde 
used the finite element strategy and developed the study of aluminum conductor steel 
reinforced (ACSR) by wind-induced load and compared it with experimental data [8]. 

Wind-induced vibration and its vibration controlling measurement were the major 
consideration of the structural design of long-span CRS. Flexible structures, such as long 
cable and cable-supported structures, were susceptible to wind-induced vibration due to 
their strong geometric nonlinear [9,10]. Long-span CRS was considered to be a typical 
wind-sensitive structure, and its wind-induced vibration was always focused on by re-
searchers. Vortex-induced vibration (VIV) was recognized as one of the most common 
types of wind-include vibration that occurred in overhead lines, which was attributed to 
the process of vortex shedding [11]. VIV significantly induced dynamic bending stress on 
the ends of conductors and enhanced the risk of structural failure. Models of CRS with 
different element types based on finite element analysis were established, and the influ-
ence of various models on the overall response of structure was compared [12]. Dampers, 
such as tuned mass damper, magnetorheological damper and Stockbridge damper, were 
adopted to provide additional energy dissipation for reducing wind-induced structural 
vibration, also applicable for VIV of transmission line [13]. Vaja presented an analytical 
model of a novel VIV damper with an increased number of resonant frequencies [14]. 
Generally, the maximum steady-state amplitude of the conductor during the VIV process 
was solved by energy balance mothed [15,16]. Therefore, the conductors’ dynamic bend-
ing stress cycle results in independent elongated deformation of each rope of conductors 
and further surface erosion and fatigue [17]. For flexible, long-span structures, structural 
and economic considerations were involved for the configuration of dampers. The opti-
mization of dampers parameters was essential to ensure the limited vibration amplitude 
below the specified threshold [18,19]. Besides, though galloping was always observed in 
cable structures, due to its complexity, galloping in a long-span CRS will be discussed in 
a further study. 

The CRS transmission line system was composed mainly of conductors, suspension 
cables and insulators. The suspension cable of CRS, which was fixed in a rigid foundation, 
was the main bearing structure of CRS. In order to cross the valley, the suspension cable 
was made of high-strength-stranded steel wire, and it spanned beyond thousands of me-
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The finite element method (FEM) was widely adopted for analyzing complex flexible
structures with large geometric deformation so far, as well as CRS [4]. The analysis of
the initial shape (mechanical sag) of suspension cable and conductors was the basis of
further dynamic analysis of long-span CRS. Jia and Liu [5] established the initial form-
finding method of overhead transmission lines, which is based on the form-finding of cable
structures. Based on the FE model of CRS, dynamic properties and structural responses
induced by wind load were studied. CRS transmission line structures were designed to
withstand several different load cases. For mountainous environments, extreme wind
and combined wind and ice in cold climates governed the design load for CRS. Keyhan
presented a new method to determine wind loading on transmission line conductors based
on fluid–structure interaction analysis [6]. Based on the historical weather data in Ontario,
Krishnasamy analyzed the wind load on bare and ice-covered conductors [7]. Lalonde
used the finite element strategy and developed the study of aluminum conductor steel
reinforced (ACSR) by wind-induced load and compared it with experimental data [8].

Wind-induced vibration and its vibration controlling measurement were the major
consideration of the structural design of long-span CRS. Flexible structures, such as long
cable and cable-supported structures, were susceptible to wind-induced vibration due to
their strong geometric nonlinear [9,10]. Long-span CRS was considered to be a typical
wind-sensitive structure, and its wind-induced vibration was always focused on by re-
searchers. Vortex-induced vibration (VIV) was recognized as one of the most common
types of wind-include vibration that occurred in overhead lines, which was attributed to
the process of vortex shedding [11]. VIV significantly induced dynamic bending stress on
the ends of conductors and enhanced the risk of structural failure. Models of CRS with
different element types based on finite element analysis were established, and the influence
of various models on the overall response of structure was compared [12]. Dampers, such
as tuned mass damper, magnetorheological damper and Stockbridge damper, were adopted
to provide additional energy dissipation for reducing wind-induced structural vibration,
also applicable for VIV of transmission line [13]. Vaja presented an analytical model of a
novel VIV damper with an increased number of resonant frequencies [14]. Generally, the
maximum steady-state amplitude of the conductor during the VIV process was solved by
energy balance mothed [15,16]. Therefore, the conductors’ dynamic bending stress cycle re-
sults in independent elongated deformation of each rope of conductors and further surface
erosion and fatigue [17]. For flexible, long-span structures, structural and economic con-
siderations were involved for the configuration of dampers. The optimization of dampers
parameters was essential to ensure the limited vibration amplitude below the specified
threshold [18,19]. Besides, though galloping was always observed in cable structures, due
to its complexity, galloping in a long-span CRS will be discussed in a further study.
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The CRS transmission line system was composed mainly of conductors, suspension
cables and insulators. The suspension cable of CRS, which was fixed in a rigid foundation,
was the main bearing structure of CRS. In order to cross the valley, the suspension cable
was made of high-strength-stranded steel wire, and it spanned beyond thousands of meters.
The conductors were connected to the cable by wire fittings. For the multiphase conductor,
tension insulators were adopted to separate conductors from each other. A Diagram of the
CRS transmission line system is shown in Figure 2.
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In this paper, the recommended design parameters of long-span CRS are shown in
Table 1.

Table 1. Recommended design parameters of long-span CRS.

Design Parameters Rope for Conductor Quad-Bundle Conductor Tension Insulator

Span (m) 1000 800 10 in total
Total cross section area (mm2) 766.50 425.24 125,600

External diameter (mm) 36 26.82 400
Weight per length (kg/m) 59.52 1.35 100
Elastic modulus (N/mm2) 180,000 65,000 190,000

For the aim of structural assessment of applying a CRS transmission line system in
a mountainous area, structural responses induced by wind load were discussed in this
paper. Based on the assembly modeling approach, all components of CRS were separately
modeled, analyzed and finally assembled with their deformed shape and loading states.
With static wind load, lateral displacement of conductor and tension of suspension cable
was calculated. Considering ice-covered conductors in cold climates, by the same method,
the results of bare and ice-covered cases were compared. Moreover, based on the dynamic
properties of CRS, wind-induced vibration and its controlling of CRS were simulated. The
effect of a Stockbridge damper on the overall vibration of CRS was studied by theoretical
approach and FEM. For the needs of practical application, the factors, including config-
uration and mass of the Stockbridge damper, span length of the suspension cable and
conductor and the number of spans of the conductor, were assessed for further discussion
on vortex-induced vibration controlling of CRS.

2. Modeling of Long-Span CRS

As described above, the CRS was composed of suspension cable, conductor, insulator
and anchorage while guyed masts towers were removed. The suspension cable supported
the conductors and was anchored on both ends. The suspension cable and conductor, the
main components of CRS, made a complex flexible structural system. It was always an issue



Appl. Sci. 2022, 12, 1488 4 of 19

modeling complex flexible structural systems with large deformation due to convergence
problems when considering geometrical nonlinearity. This paper presents an assembly
modeling approach where the components of the CRS and their deformed shape and
loading states were separately analyzed and finally assembled. Commercial finite element
software, ANSYS, was adopted for the mentioned modeling process. All members were
modeled by a two-node link element type in three-dimensional space, which means only
tensile force and strain were considered for each element, and the bending and torsion
stiffness were ignored. Regarding the frequency of principal vibration mode, a minimum
of 100 divisions for a whole segment of cable or conductor was essential [20].

In order to obtain stable and accurate computation, the whole structure was divided
into several individual parts, including suspension cables and conductors. Those substruc-
tures were computed separately and then assembled into a whole system. Consequently,
displacement and deformation of each node and element were calculated in their sub-
structures and inputted as initial conditions for the whole assembled structural system.
Therefore, stability and accuracy of computation were achieved in this way.

The deformed shape of the suspension cable and conductor under initial static load
were calculated, respectively. The initial shape function of conductor with uniform load
was simplified to a parabola, which was defined by a sag in middle span, and was given
as follows:

y = 4x fm(1− x/l)/l (1)

where x is the distance from starting point (m), l is the span (m) and fm is the sag in the
midspan (m):

fm = γl2/8σ0 cos β (2)

where γ is uniform load in per length and section (N/m mm2), σ0 is horizontal stress of
the conductor (N/mm2), β is the angle of height difference, tan β = h/l, where h is the
height difference between two suspension points (m). It was noticed that horizontal stress
σ0 could be calculated from design tensile force T, which was considered as the control
parameter for calculating the deformed shape of the suspension cable and conductor.
Approximated parabola shapes of each substructure were calculated by taking tensile
force T into Equation (2) and then Equation (1). Coordinates of nodes and tensile stress of
each element were input to finite element software program as initial conditions for static
analysis. Then, the approximate shape of each substructure obtained was exported for
further calculation.

The process of an assembly modeling approach for the CRS transmission line is shown
in Figure 3. Firstly, the finite element models of conductor and suspension cable were
established, respectively, the material properties were input, and the initial shapes of the
conductor and suspension cable were calculated with the design tension or sag as the
control parameters. Secondly, the conductor and suspension cable were combined through
rigid constraints according to the design requirement, and then the overall gravity stability
state was calculated. The gravity stability of the whole suspension structure was obtained.
Finally, the stability of the structure under gravity was the convergence goal, and whether
the tension and sag met the initial design requirements was judged at the same time.
This approach combined essential dimensions for modeling, including spans, the height
difference of both ends and sags of the conductor and suspension cable. The sag in the
middle span determined the tensile force of the cable and conductor. By taking tensile force
as convergence criterion, deformed shapes of each substructure were obtained by iteration
calculation. The whole FE model of a long-span CRS was rebuilt based on displacements
and deformations of all nodes and elements recorded. Each substructure of multi-span
CRS was calculated separately and assembled into every span, as shown in Figure 4.

The detail of the connection between suspension cable, conductor and insulators is
shown in Figure 5.
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3. Dynamic Properties

In this paper, by comparing the results of frequencies of principal vibration modes of
the two-span CRS with various mesh sizes, meshing with 100 elements for a single span
of conductor and cable was adopted in terms of the balance of accuracy and computing
efficiency [20]. The results of vibration modes and natural frequencies of a single conductor
are shown in Figure 6, and results of multi-span CRS are shown in Figures 7–10. The results
showed the frequencies of similar vibration modes in multi-span CRS. Compared with
one segment of an individual conductor, CRS showed a significant difference in the first
asymmetric vertical bending mode, in which lateral deformation of cable was observed
and the axial rigidity of conductors was released.
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4. Comparison of Wind Loads on Bare and Ice-Covered Overhead Conductors
4.1. Expression of Wind Load

In this chapter, for simplicity, the wind load was considered as static wind load. Based
on wind profile, the average speed of wind in different altitudes was calculated from [21]:

v(z) = vb

(
z
zb

)α

(3)

where v(z) is the average speed of winds in target altitude (m/s), vb is the standard speed
of wind (m/s), z is the target altitude (m) and zb is standard target altitude (m). α is the
ground roughness exponent.

The static wind load on a bare conductor or suspension cable from:

Fg =
1
2

ρv2CD An (4)

where Fg is static wind load in structure in per length (N/m), ρ is the density of the air
(1.25 kg/m3 in this case), v is the average speed of the winds in target altitude calculated
from (3), CD is the drag coefficient of given cross-section and An is the projected area of
structure along wind direction in per length (m2/m). For the long-span CRS, the cross-
section of the suspension cable and conductor are smooth circular, and their length is
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significantly longer than their diameter. Thus their drag coefficient CD was given as
0.6 according to available experimental data.

The most unfavorable condition was considered to be when the wind direction was
perpendicular to the conductor or suspension cable. The calculation condition of wind
speed ranged from 0 m/s to 27 m/s, which is the maximum wind speed in a 50-year-based-
period for this case. A diagram of wind loading is shown in Figure 11.
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4.2. Ice Load on Conductor and Suspension Cable

The ice caused the increase in conductor cross-section area and weight per length,
which caused the increase in self-gravity load and wind load and, accordingly, the larger
tensile force of the conductor. For the long-span CRS, the change in ice thickness and wind
speed bring about significant changes in internal force and deformation of the structure.
Especially under the combined effect of ice and wind, the conductor and suspension
cable were subject to greater internal force, which endangered its structural safety. It is
important to analyze the wind resistance of the long-span CRS with ice on the structure.
For simplification, the conductor, suspension cable and tension insulator were considered
to be uniformly iced, as shown in Figure 12.
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In the FE model, the iced cross-section parameters were redefined, and equivalent
density was calculated from [21]:

ρeq =
ρrπdr

2 + ρiceπ
(
4di

2 + 4didr
)

π(dr + 2di)
2 (5)

where ρr is the density of conductor or suspension cable (kg/m3), ρice is the density of
ice (kg/m3), di is the ice thickness (m), dr is the diameter of conductor or suspension
cable (m).
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4.3. Result

As described above, the major concern in static wind load conditions was the internal
force and deformation of the structure. Typical deformation of the long-span CRS with
static wind load is shown in Figure 13.
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Figure 13. Unscaled deformation of long-span cross-rope suspension line by static wind load. (Dotted:
undeformed. Solid: Deformed.)

Tensile force results of suspension cables in different wind speeds were obtained.
Based on the structure stability status of self-weight, the increment of tensile force of the
suspension cable is shown in Figure 14. The results showed that the tension force of the
suspension cable increased with wind speed. While ice thickness increased to 10 mm, the
increment was more remarkable than no ice. It is mainly because of a larger windward area
of the iced conductor, which leads to a larger wind load. Wind load increased with the span
length of the conductor. In order to study the influence of the span length of the conductor
on the tensile force of suspension cables, the FE models of long CRS with a different span
length of the conductor were analyzed. The results in Figure 15 show that the tensile force
of the suspension cable increased with a span length of the conductor, and the increment
was marked more while the conductor was iced.
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The transmission line structure was considered dangerous once the distance between
conductors was less than the safety requirement by design. Especially in long-span CRS,
the horizontal displacement of the conductor induced by the wind was greater than the
traditional transmission line. A diagram of the horizontal displacement of conductors
with different wind speeds is shown in Figure 16. According to the obtained results, the
horizontal displacement of the conductor was significantly increased with wind speed.
When the conductor was iced, the increment was insignificant compared with no ice. In
order to figure out the causes of the phenomenon, the FE models of long CRS with different
wind speeds and a given ice thickness, 10 mm, were analyzed. As shown in Figure 17, the
horizontal displacement of the conductor increased with ice thickness in a small value of ice
thickness (0–5 mm) and reduced in a large value of ice thickness (more than 10 mm). The
reason for this phenomenon was the joint action of the increase in wind load and tensile
force of the conductor induced by ice thickness. On the one hand, wind load increased with
ice thickness, which resulted in an increase in horizontal displacement of the conductor. On
the other hand, the tensile force also increased with ice thickness, which led the conductor
to tighten. According to the obtained results, the horizontal displacement of the conductor
did not change linearly with the increase in ice thickness.
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Figure 17. The influence of wind speed on maximum horizontal displacement of conductor (fixed ice
thickness with 10 mm).

In order to cross the valleys, the long-span CRS was designed for multi-span, which
brings about the increase in flexibility of the structure. The structure was more sensitive
to wind load in this condition. Therefore, the wind resistance performance of multi-span
CRS was studied to provide the basis for the actual engineering design. The FE model of
long-span CRS with a different number of spans was analyzed to compare the influence
of the number of spans on the tensile force of the suspension cable and the horizontal
displacement of the conductor. The results are shown in Figures 18 and 19. As the results
show, the horizontal displacement of the conductor increased with the number of spans
but had no effect on the tensile force of the suspension cable.
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Generally, the FE model of the full structure was directly created and assessed for its 
mechanical behavior. Compared with axial tensile stress, minor bending stress was al-
ways ignored in the flexible and long-span cable. Thus, the two-force member, such as the 
link element without considering bending, was appropriate for modeling overhead trans-
mission lines. As it is similar to conventional cable-supported structures, components of 
the long-span CRS, including conductors, insulators, cables and connectors, were meshed 
by a two-node link element. The external wind force was subjected to all nodes of the 
above components (Figure 20). Wind load effect during VIV was simplified and equiva-
lent to lift force, as the following expression [11]: 
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The vortex-induced force was expressed as the function of air density, mean wind 
speed, the diameter of the cross-section and corresponding aerodynamic parameters 
[22,23]. Assuming that vortex shedding is an essentially sinusoidal process, the sectional 
lift coefficient was expressed as: 

Figure 18. The influence of number of spans of conductor on tensile force of suspension cable (wind
speed: 10 m/s).
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5. Aeolian Vibration and Its Controlling
5.1. Equivalent Lift Force of Vortex-Induced Vibration

Generally, the FE model of the full structure was directly created and assessed for
its mechanical behavior. Compared with axial tensile stress, minor bending stress was
always ignored in the flexible and long-span cable. Thus, the two-force member, such as
the link element without considering bending, was appropriate for modeling overhead
transmission lines. As it is similar to conventional cable-supported structures, components
of the long-span CRS, including conductors, insulators, cables and connectors, were meshed
by a two-node link element. The external wind force was subjected to all nodes of the
above components (Figure 20). Wind load effect during VIV was simplified and equivalent
to lift force, as the following expression [11]:

FL(t) =
1
2

ρDV2CL(t) (6)

where ρ is air density (kg/m3), V is wind speed (m/s), CL(t) is equivalent sectional lift
coefficient related to time history t.
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The vortex-induced force was expressed as the function of air density, mean wind
speed, the diameter of the cross-section and corresponding aerodynamic parameters [22,23].
Assuming that vortex shedding is an essentially sinusoidal process, the sectional lift coeffi-
cient was expressed as:

CL(t) =
√

2CL′ sin(2π fwt) (7)

where fw is the frequency of vortex shedding (Hz), CL′ is R.M.S. (root mean square) lift
coefficient, which was approximated the calculation as below [24]:

CL′ = 0.045 + 1.05× (1− Re/1600)4.5 (8)

where Re is the Reynolds number. Experiment data showed that the above formula
was available for 260 < Re ≤ 1.6× 103. Within the above range, the Reynolds number
was approximately calculated from the Strouhal number, St, Re ' (0.2139− St)/4 and
St = 0.185 in this case [25].

Considering the balance of wind-induced vibration of the structural system, the
frequency of vortex shedding ( fw) was equal to the frequency of structure vibration ( f ).
Based on the Strouhal equation, the relationship between vibration frequency and wind
speed was expressed as follows:

f = fw = V
St
D

(9)

Energy consumption of the Single Degree-Of-Freedom (SDOF) system with viscous
damping under harmonic load (W) was expressed as below:

W =
∫ T

o
fdydt = cA2ω2

∫ T

0
cos2(ωt− ϕ)dt = πcA2ω (10)

where A is the vibration amplitude of conductor and A = 2ymax, fd is the damping force,
c is the damping coefficient, ω is the circular frequency of harmonic vibration, t is the
time (s). During the VIV process, dissipating power of the conductor per length was
equivalent to the energy consumption of damping forces. According to Equation (10),
energy consumption was expressed as below [26]:

W = Pct∆l = Pc∆l/ f = πcA2ω (11)

where Pc is the dissipating power of conductor per length, and the dissipating power of
conductor per length was evaluated as below (Foti and Martinelli 2018):

Pc = 4π4m2EI
y2

max f 5

T2 (12)

where T is the tensile force of conductor (N), m is the mass per unit length of conductor
(kg/m) and EI is equivalence sectional flexural rigidity of conductor (N·m2).

Thus, damping coefficient c was obtained:

c =
1
2

π2m2EI
f 3

T2 (13)

where EI is sectional flexural rigidity of conductor (N·m2). Accordingly, the self-damping
characteristic of the conductor was introduced to the FE model, and thus accurate simula-
tion of VIV of the conductor was achieved by damping coefficient [26].

The relationship between the conductor and suspension cable during vibration was
analyzed. Equivalent lift force of VIV was applied on conductors and suspension cables,
respectively. Dynamic wind loads were applied to the deformed structure under gravity.
Steady vibrating amplitude was defined as the maximum amplitude of the conductor or
cable in given frequency vibration.
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In order to regulate evaluation and industry practice, the IEEE committee in 1966 proposed
the establishment of a conductor vibration intensity from peak-to-peak deflection, mea-
sured at 89 mm (3.5 in) from the clamp exit (Figure 21) [8], where yb is the deflection of
measure point.
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The dynamic bending strain was established as follows [27]:
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where z = 89 mm is the distance from the clamp exit to the amplitude measurement point.

5.2. FE Model of Damper

Currently, Stockbridge dampers (FRSD), shown in Figure 22, are one of the most widely
used protective equipment for controlling wind-induced vibration in power transmission
lines [28]. In the mechanical model, the damper mass and clamp of FRSD were assumed as
a rigid body, and the cable was equivalent to an elastic spring. The dynamic characteristics
of the damper were considered as equivalent mass and rotary inertia in full FE modeling,
as shown in Table 2. FE model of FRSD dampers was modeled by 3D beam element.
Concentrated masses adhered to either end of the damper cable. Dampers were fixed
connected to the cable and conductor. The detail of the connection between suspension
cable, conductor and insulators is shown in Figure 23.
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5.3. Result

As described above, the analysis of bending strains of an individual conductor (fixed
at both ends) and conductor and cable within the long-span CRS are shown in Figure 24.
For the case of the long-span CRS, it is worth noting that its dynamic bending strain of
conductor had significant change trends between the individual conductor. The bending
strain of the conductor of the CRS increased with frequency in the low-frequency stage
and decreased after a peak value, where the frequency was about 7.5 Hz. The reasons
for this phenomenon were the source of increasing equivalent lift force and dissipating
the power of the conductor with frequency. The equivalent lift force led to an increase in
vibration, but dissipating power of the conductor suppressed it. Additionally, the structure
feature of CRS limited the effect dissipating the power of the conductor, especially in the
low-frequency stage. On the other hand, when VIV occurs in cable, the bending strain
approximately increases with frequency except for a peak value of 4 Hz. It was concluded
that compared with conductor conventional tower-line system, long-span CRS was more
vulnerable because of the larger amplitude of VIV.

Table 2. Structure parameters of FRSD.

Substructures Big Damper Mass Small Damper Mass

Mass of damper (kg) 2.557 1.842
Length of damper cable (m) 0.202 0.145

Center of mass to the junction (m) 3.25 × 10−2 1.21 × 10−2

Rotary inertia (kg·m2) 6.51 × 10−3 3.30 × 10−3

Flexural rigidity of damper cable (N·m2) 22.41 22.41
Damping ratio of the system [29] 0.16
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Conductor and suspension cables were modeled independently and studied indi-
vidually. The results of VIV occurred in different parts of long-span CRS were studied.
In Figure 25, the distinction between VIV occurred only in the conductor or the cables,
and amplitude changes after the damper was installed were shown. Dampers have a
limited effect in the low-frequency stage for conductors but a significant effect in almost all
frequency stages for suspension cables. Moreover, dampers can effectively clip the peak of
amplitude besides reducing the amplitudes of the suspension cable. Figure 26 considered
that VIV occurred in both the conductor and suspension cable. Compared with Figure 25,
the significant difference is that VIV occurred in cable leads to a faster increase in ampli-
tudes of the conductor in 3~6 Hz but has no effect on the peak amplitude. However, with
the increase in frequency, which leads to the dissipating power of the damper increasing,
amplitudes of the conductor were significantly reduced.
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In summary, the installation of dampers had an effect on the vibration characteris-
tics of a long-span CRS. Additionally, dampers in the conductor and suspension cables
significantly reduce amplitudes, and the effect increases with frequency. Accordingly, the
installation of dampers on both conductor and suspension cables was effective and essential
to protect the structure from the danger of VIV.

The above discussion provided the preliminary basis for the design of protective
measures of long-span CRS. Attaching dampers to the conductor and suspension cable
was a practical protective measurement regarding VIV of long-span CRS. For suspension
cables, the maximum amplitude occurred in a lower frequency band, which needs more
attention. For the conductor, the resonance frequency band of the conductor and suspension
cable should be of concern because of the larger dynamic bending strain. Moreover, the
installation of dampers had an effect on the vibration characteristics of long-span CRS.
Accordingly, installing dampers on both conductor and suspension cables was effective
and necessary to protect the structure from the danger of VIV.

6. Conclusions

This paper presented a study on the wind-induced response of a long-span cross-rope
suspension transmission power line with a tension insulator. The following corresponding
conclusions were summarized.

Assembly modeling of long-span CRS is one of the major topics discussed in this
paper. Based on the approximate parabola shape function and finite element method,
deformed shapes of each substructure by gravity were calculated and assembled into a full
structural system;

The increase in wind speed resulted in significant changes in the tensile force and
horizontal displacement of the structure. The results showed that horizontal displacement
of conductor and tensile force of suspension cable increased with wind speed and number
of spans. These results provide the basis for the actual engineering design of wind resistance
performance of multi-span CRS;

The increase in ice thickness resulted in an increase in the tensile force of suspension
and cable. Moreover, the longer span length of the conductor induced a larger windward
projected area of the conductor and thus larger tensile force in the suspension cable. On the
other hand, horizontal displacement of the conductor increased firstly and then reduced
with ice thickness. The reason for this phenomenon was the combined action of increased
wind load and tensile force of conductor induced by ice thickness;

The VIV of long-span CRS and the effect of dampers were studied in the FE model. For
the conductor, the increase in amplitude was majorly influenced by the equivalent lift force
and dissipating power of the conductor, which led the amplitude to firstly increase and
then decrease with frequency. For the cable, amplitude increased with frequency except
for a peak value, which is about 3.5 Hz, the resonance frequency band of the conductor
and suspension cable. Maximum amplitudes of the conductor and cable decreased when
dampers were installed. For the conductor, dampers have a limited effect in the low-
frequency stage, but with an increase in frequency, which leads to an increase in the power
of the damper dissipating, the amplitudes of the conductor were significantly reduced.
For the cable, dampers can effectively clip the peak of the amplitude besides reducing
the amplitudes.
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