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Abstract: The industrial use of ultrasonic flaw classification using neural networks in weldments
must overcome many challenges. A major constraint is the use of numerous systems, including a
combination of transducers and equipment. This causes high complexity in the datasets used in
the training of neural networks, which decreases performance. In this study, the performance of a
neural network was enhanced using signal processing on an ultrasonic weldment flaw dataset to
achieve system invariance. The dataset contained 5839 ultrasonic flaw signals collected by various
types of transducers connected to KrautKramer USN60. Every signal in the dataset was from
45 FlawTech/Sonaspection weldment specimens with five types of flaw: crack, lack of fusion, slag
inclusion, porosity, and incomplete penetration. The neural network used in this study is a residual
neural network with 19 layers. The performance evaluation of the same network structure showed
that the original database can achieve 62.17% ± 4.13% accuracy, and that the invariant database using
the system invariant method can achieve 91.45% ± 1.77% accuracy. The results demonstrate that
using a system invariant method for ultrasonic flaw classification in weldments can improve the
performance of a neural network with a highly complex dataset.

Keywords: weldments; ultrasonic testing; flaw classification; system invariant; residual neural network

1. Introduction

Ultrasonic testing is a non-destructive testing technique that is commonly used in
many industries. Because most defects occur in weldments, ultrasonic inspections are
usually focused on weldments, and thus detecting and classifying ultrasonic flaw signals is
a long-standing task in the field of ultrasonic testing. Determining flaws requires numerous
experiences, and it is difficult to perform non-destructive testing efficiently because there is
the possibility of human misjudgment. To solve this problem, many studies on ultrasonic
testing to determine the presence, type, shape, and size of flaws using artificial intelligence
are being conducted.

Song et al. [1] used probabilistic neural networks on ultrasonic weldment defect signals.
Masnata et al. [2] used a neural network and Fisher discriminant analysis to classify cracks
and volumetric defects. Polikar et al. [3] applied a neural network to develop a frequency-
invariant weldment defect classification system for pipes. Margrave et al. [4] used neural
networks to detect flaws in steel pipes. Song et al. [5] developed an intelligent ultrasonic
evaluation system (IUES) for real-time weldment flaw classification. Simas Filho et al. [6]
developed a flexible decision support system based upon neural network and principal
component analysis to evaluate fiber-metal laminates. Cruz et al. [7] also developed a
decision support system that selects parameters for the neural network to detect flaws
in steel-welded joints. Meng et al. [8]. used a combination of wavelet transform and a
convolutional neural network to classify void and delamination defects in CERP specimens.
With the exception of [4], all these methods are limited due to their complexity [9–11].
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A large amount of data must be collected to ensure the performance of artificial
intelligence (AI). It is highly difficult to collect a large amount of real inspection data in
the ultrasonic testing research field. Many studies collect data from specimens to solve
this problem; however, there is a limit on the amount of data that one research group
can collect. This works well for systems with little variation, such as those that use an
ultrasonic transducer from the same manufacturer. However, inspectors use various types
of transducer and equipment for industrial ultrasonic testing. The limitation of dataset
size can be a problem in this scenario for the following reasons. First, the AI may not
sufficiently train signals from each system. Second, flaw signals from various systems
may interfere with the training process, finding global minimum. To solve this problem,
this study proposes a system invariant technique to reduce the complexity of ultrasonic
weldment flaw databases and compares the performance of two different databases, one
without a system invariant method and the other with a system invariant method, using
the same neural network architecture.

2. Ultrasonic Weldments Flaw Databases

To properly train neural networks, a database of well-inspected ultrasonic weldments
flaw signals was developed. The signals were collected from 45 FlawTech/Sonaspection
weldment specimens, including five types of flaw: crack, lack of fusion, slag inclusion,
porosity, and incomplete penetration. The signals were collected with 21 different ultrasonic
transducers to make the system complex. This group of transducers included 2, 4, and
5 MHz central frequencies, 45, 60, and 70 degree inspection angles, and four different
manufacturers (KrautKramer, GE, Olympus, and TKS). All the inspections were performed
using KrautKramer and USN-60 flaw detector as the ultrasonic pulser-receiver instrument
and a 50 MHz sampling frequency. The list of transducers is presented in Table 1.

Table 1. List of transducers.

Manufacturer KrautKramer GE Olympus TKS

MWB 45-2 WB 45-2 WB 45-4 MWB 45-4 SWB 45-5 A430S (45◦, 2 MHz) 4C14 X 14A45
MWB 60-2 WB 60-2 WB 60-4 MWB 60-4 SWB 60-5 A430S (60◦, 2 MHz) 4C14 X 14A60
MWB 70-2 WB 70-2 WB 70-4 MWB 70-4 SWB 70-5 A430S (70◦, 2 MHz) 4C14 X 14A70

To construct the database, 5839 signals were acquired for each flaw and, subsequently,
2048 points were extracted with the flaw signal (Figure 1). The number of each weldment
flaw is presented in Table 2.

Figure 1. Flaw A scan signal example for database construction: (a) crack; (b) porosity.



Appl. Sci. 2022, 12, 1477 3 of 15

Table 2. Ultrasonic weldment flaw database.

Title 1 Flaws No. of Signals

1 Crack 2899
2 Lack of Fusion 1196
3 Slag Inclusion 634
4 Porosity 493
5 Incomplete Penetration 617

Total 5839

To check the performance of the neural networks for training, the database was
separated. To balance the learning between each flaw, 40% of the crack signal and 10% of
other flaw signals were randomly divided into the test signal. The compositions of the
training and testing signals are described in Table 3.

Table 3. Ultrasonic weldment flaw database.

Weldment Flaw Database

Training Database Testing Database

Crack 1740 Crack 1159
Lack of Fusion 1076 Lack of Fusion 120
Slag Inclusion 571 Slag Inclusion 63

Porosity 444 Porosity 49
Incomplete Penetration 555 Incomplete Penetration 62

Total 4386 Total 1453

3. Database Augmentation

Although 4386 signals were obtained, considering the complexity of the system, the
amount of data was not sufficient. Therefore, the number of training data was increased
through augmentation. In terms of data augmentation, noise addition and time shifting
were effective in various studies [3,10].

Because ultrasonic testing is usually performed in harsh environments, the possibility
of the testing results being corrupted by electric noise, presented as white Gaussian noise
(WGN), exists. Additive WGN was used to initiate this. The mathematical details of WGN
are described in [12,13]. The WGN is added with two different signal-to-noise ratios (SNR)
levels i.e., SNR 20 and SNR 15 (Figure 2). The number of testing signals increased threefold
from 4386 to 13,158, including the original signal.

Figure 2. Additive WGN: (a) non-; (b) SNR 15.
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Another augmentation technique was adjusted after developing the augmentation
database with WGN. In terms of ultrasonic testing signals, time shifting is equivalent to
changing the distance between the transducer and the flaw location [10]. Therefore, new
signals were created that shifted 20 and 10 points backward, and 20 and 10 points forward
(Figure 3). Because the system features a sampling frequency of 50 MHz, one point on the
time axis is 0.02 µs. Because of time shifting, including the original signal, the testing signal
number increased fivefold, from 13,158 to 65,790. This augmented dataset is referred to as
the original database and is described in Table 4.

Figure 3. Time shifting of signals: (a) 10 points (0.2 µs) forward and backward shift; (b) 20 points
(0.4 µs) forward and backward shift.

Table 4. Augmented database (original database).

Original Database

Training Database Testing Database

Crack 26,100 Crack 1159
Lack of Fusion 16,140 Lack of Fusion 120
Slag Inclusion 8565 Slag Inclusion 63

Porosity 6660 Porosity 49
Incomplete Penetration 8325 Incomplete Penetration 62

Total 65,790 Total 1453

4. Artificial Neural Networks

Artificial neural networks (ANNs) are computational neural models inspired by
a sequence of biological neurons. ANNs operate on the basis of the backpropagation
algorithm proposed by Rumelhart et al. [14]. In the early stage of ANNs, a significantly
simplified form of neural network, known as a multilayer perceptron (MLP), was developed,
which led to fully connected neural networks (FCNNs) [15]. FCNNs are composed of input,
hidden, and output layers. Each layer contains nodes with weights, and each node in the
layer is connected to every node in the next layer. Deep neural networks are networks with
more than two hidden layers.

The process of training a neural network involves adjusting the weight and connections
between the layers. First, the data enter the input layer and pass through the hidden layers,
while the dot product between the input data and weight matrix, whose size depends on
the shape of the hidden layers, is computed. While computing, the activation function
is used for tuning the training direction. After calculating the output, a loss function is
computed, which gives the error between the true label and the predicted output. The error
is then inverted using a backpropagation algorithm, and the weights are slightly updated
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to reduce this error. This process can be repeated until the error becomes sufficiently small
or saturated [16–19].

4.1. Convolutional Neural Network

Convolutional neural networks (CNNs) were first proposed by Lecun et al. [20].
They later gained popularity in the computer vision community [21]. CNNs feature a
convolutional layer that is connected to a specific spatial region in the previous layer and
is based on the size of a defined filter, in contrast to FCNNs. This architecture allows
the network to focus on lower-level features before assembling them into higher-level
features. CNNs also include pooling layers, which help to reduce the computational load
by downsampling the input data, but increase the complexity of the network [22].

4.2. Residual Neural Network

Residual neural networks (ResNets), first proposed by Kaiming He et al. [23], are
based on CNN but include shortcuts between the input and output of the unit layer. If the
input data are referred to as x, the output of ResNets is described by Equation (1):

F(x) + x (1)

where F is the weight of computation. The calculational direction of ResNets minimizes the
value of F(x) + x, which means F(x) becomes 0 since x is a fixed (input) value here. Con-
ventional CNNs feature a weak spot in significantly deep networks, as their performance
degrades after a certain depth. However, significantly deep networks are required to train
with large amounts of data. ResNets solve this problem through their distinct network
architecture as previously described, obtaining the best results by training 152 layers of
ResNet using the CIFAR-10 dataset [24–27].

4.3. Residual Neural Network Architecture

The ResNet used in this study was designed in Keras, based on Tensorflow (Google
open-source software for deep learning). The algorithm included an input layer, nineteen
convolutional layers, and three stages of ResNet blocks. Each stage features the same
architecture, but a different number of feature maps. The detailed architecture of the stage
with feature map FM is described in Table 5. The final ResNet architecture used when these
unit stages were combined is shown in Table 6.

Table 5. Detailed architecture of unit stage of ResNet.

Adopted ResNet Stage

Layer Type Kernel
Size/Stride

Feature
Maps

Activation
Function Description

1 Input layer - - - x

2 Conv 1 (1× 3)/(1× 1 ) FM Relu y = Conv 1 (x)

3 Dropout 0.5 - - y = Dropout(y)

4 Conv 2 (1× 3)/(1× 1 ) FM Relu y = Conv 2 (y)

5 Dropout 0.5 - - y = Dropout (y)

6 Shortcut - - - x = x

7 Conv s (1× 1 )/(1× 1 ) FM Relu x = Conv s (x)

8 Add shortcut - - Relu x = x + y

9 Conv 3 (1× 3)/(1× 1 ) FM Relu y = Conv 3 (x)
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Table 5. Cont.

Adopted ResNet Stage

Layer Type Kernel
Size/Stride

Feature
Maps

Activation
Function Description

10 Dropout 0.5 - - y = Dropout (y)

11 Conv 4 (1× 3)/(1× 1 ) FM Relu y = Conv 4 (y)

12 Dropout 0.5 - - y = Dropout (y)

13 Shortcut - - - x = x

14 Add shortcut - - Relu x = x + y

15 Conv 5 (1× 3)/(1× 1 ) FM Relu y = Conv 5 (x)

16 Dropout 0.5 - - y = Dropout (y)

17 Conv 6 (1× 3)/(1× 1 ) FM Relu y = Conv 6 (y)

18 Dropout 0.5 - - y = Dropout (y)

19 Shortcut - - - x = x

20 Add shortcut - - Relu x = x + y

Table 6. Architecture of ResNet.

Adopted ResNet Architecture

Layer Type Kernel Size/Stride Feature Maps Output Size

1 Input Layer - - 2048

2 Conv 1 (32)/(1× 8 ) 64 (256× 64)

3 Dropout 0.5 - (256× 64)

4 Activation Relu - (256× 64)

5 Max Pool (3)/(1× 2 ) - (128× 64)

6 Stage 1 - 64 (128× 64)

7 Max Pool (3)/(1× 2 ) - (64× 64)

8 Stage 2 - 128 (64× 128)

9 Max Pool (3)/(1× 2 ) - (32× 128)

10 Stage 3 - 256 (32× 256)

11 Dense Layer 300 - 300

12 Dropout 0.5 - -

13 Output Layer 5 - 5

The number of nodes in the input layer was maintained at the same level as the
sampling point of the input signal, which was 2048. The first convolutional layer contained
64 kernels of size 1 × 32, which remained large because of their performance for ultrasonic
and vibration signals. [10,11,28]. The pooling layer reduces the number of layers but does
not affect performance [22]. After the data have passed through stage 3, there is one fully
connected (dense) layer and an output layer. The number of nodes in the fully connected
layer was chosen as the best performance over multiple trials. The number of nodes in
the output layer was kept equal to the number of flaws for classification. The activation
function used in the layers was rectified linear unit (Relu), described by Equation (2)

Relu =

{
(x < 0) f (x) = 0
(x ≥ 0) f (x) = x

(2)
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because of its state-of-the-art performance in deep learning [29–31]. The loss function used
is sparse categorical cross-entropy, described by Equation (3):

−
M

∑
i=1

yi log(pi) (3)

where M is the number of data, y is a vector of the true label, and p is the predicted label.
Sparse categorical cross-entropy gives the result as integer form, and it is widely used for
multiclass classification problems. The activation function applied to the output layer is
softmax, described by Equation (4):

σ(y)i =
eyi

∑K
k=1 eyk

(4)

where y is the input vector to the output layer, and i indexes the output nodes, i = 1, 2, K. In
this study, the number of classes is 5, so K is 5. Additionally, dropout normalization was
used to avoid overfitting. The network is then trained to minimize cross-entropy loss.

ResNet is trained with optimizer adaptive moment estimation (Adam) for 500 epochs.
Adam is an algorithm for the first-order gradient-based optimization of stochastic objective
functions, based on adaptive estimates of lower-order moments. The hyper-parameters
feature intuitive interpretations and typically require little tuning. The method is suitable
for the classification of flaw signals in complex systems since it is appropriate for non-
stationary objectives and problems with very noisy and/or sparse gradients [32].

4.4. ResNet Performance Evaluation

The performance of ResNet was then evaluated on the original database (Figure 4).
The results show that highly complex datasets with a comparably low amount of data can
be a significant penalty when training a neural network. In epoch 461, the training accuracy
increased to 92.63%, whereas the testing accuracy reached 70.75% in epoch 241. Here, the
meaning of testing accuracy is simply how much data were predicted to be the same as
the true label. For a more detailed analysis of the testing accuracy, the average accuracy
after epoch 100 was 62.17%, with a standard deviation of 4.13%. This means that training
ResNet with the original database can result in a network performance of 62.17% ± 4.13%.

Figure 4. Performance of ResNet trained with original database: (a) training accuracy curve;
(b) testing accuracy curve.

Prior research demonstrates that for simpler databases acquired with KrautKramer
transducers, the testing accuracy exceeds 90% [10,11]. This low testing accuracy has two
possible explanations. One is that the network is overfitted, and the other is that the
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complexity of the database is too high. However, since this network already includes many
regularization techniques that are widely known to solve overfitting, it is difficult to regard
it as a problem of overfitting alone. Or, at least, it is difficult to solve this problem with only
the regularization technique. Therefore, reducing the complexity of the database down can
be a possible solution for this problem.

5. System Invariant Method

Because the database was obtained from 21 different transducers, the neural network
may be confused by other types of signals because of the unique characteristics of each
transducer. There are several approaches to making ultrasonic signals invariant to system
or frequency to improve the performance of the neural network training. Polikar et al.
created a frequency invariant system to enhance the performance of a neural network for
ultrasonic signals by normalizing the frequency [3]. Song et al. developed an intelligent
system for ultrasonic flaw classification in weldments [5]. During the process, the system
was normalized using a reference signal in the frequency domain.

5.1. Principle of System Invariant Method

Weldment flaws signal Vf include the system, flaw scattering pattern, and specimen
as variables. Among these, systems and specimens increase the complexity of the database,
which can inhibit performance in classifying neural network flaws, so the database must be
refined by extracting only the flaw scattering patterns. The schematic experiment setup is
shown in Figure 5.

Figure 5. Schematics of the experimental setup to obtain a flaw signal in the weldment.

Because the ultrasound system is linear time-invariant (LTI), Vf can be expressed in a
time domain with convolution between system variables, as in Equation (5) [33]:

Vf (t) = β(t) ∗ C1(t) ∗ T12(t) ∗ C2(t) ∗ A(t) ∗ C2(t) ∗ T21(t) ∗ C1(t) (5)

where β is system factor, C1 is the diffraction correction in the wedge, T12 is the transmission
coefficient of the wedge to the specimen, C2 is the diffraction correction in the specimen,
A is the scattering pattern from the flaw, and T21 is the transmission coefficient of the
specimen to the wedge.

To eliminate system and specimen parameters, signals were acquired from a reference
specimen using the same system used for the weldment signal acquisition. A reference
signal was acquired using a circular reference block to obtain the same ultrasound path for
every inspection angle for each transducer–system combination. Here, 21 reference signals
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by 21 different types of transducers were obtained using the same ultrasonic pulser-receiver
device. The schematic experimental setup for the reference signal is shown in Figure 6.

Figure 6. Schematics of experiment setup to obtain reference signal.

Furthermore, the reference signal VR can be described in a time domain as a convolu-
tion between system factors, as in Equation (6):

VR(t) = β(t) ∗ C1(t) ∗ T12(t) ∗ C′2(t) ∗ R(t) ∗ C′2(t) ∗ T21(t) ∗ C1(t) (6)

where C′2 is diffraction correction in the reference specimen and R is the reflection coef-
ficient from the round surface. In the frequency domain, the signals Vf and VR can be
combined by simple multiplication, not convolution [34,35]. Using fast Fourier transforms
(FFT), Vf and VR are described in the frequency domain as Equations (7) and (8):

Vf (ω) = β(ω)C1(ω)T12(ω)C2(ω)A(ω)C2(ω)T21(ω)C1(ω) (7)

VR(ω) = β(ω)C1(ω)T12(ω)C′2(ω)R(ω)C′2(ω)T21(ω)C1(ω) (8)

Divide these two terms, flaw scattering pattern A can be extracted as Equation (9):

Vf (ω)

VR(ω)
=

(
C2(ω)

C′2(ω)

)2 A(ω)

R(ω)
(9)

The reflection R is affected only by the mechanical property of the two mediums and
the incidence angle. Here, the round surface of the reference block fixes the incidence angle
as normal when the transducer angle varies. Therefore, Ri is constant, while i represents
each transducer with a different angle. Furthermore, the reflection coefficient for steel to
air is significantly close to −1 in this case. This means that Equation (9) is described as
Equation (10):

Vf (ω)

VR(ω)
∼= −

(
C2(ω)

C′2(ω)

)2
A(ω) (10)

Diffraction correction C(ω) in far-field is represented as Equation (11):

C(ω) =
−ika2

2z
(11)
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where k is the wavenumber, a is the radius of the transducer and z is the flight distance. C2
and C′2 feature the same frequency and radius as the transducer, except for distance. Thus,
Equation (10) reduces to:

Vf (ω)

VR(ω)
∼= −

(
z′

z

)2

A(ω) (12)

where z′ is the distance between the transducer and the flaw of the weldment specimen,
while z is the distance between the transducer and the round surface of the reference
specimen. With constant a = −(z′/z)2, A(ω) can be represented as Equation (13):

aA(ω) ∼=
Vf (ω)

VR(ω)
(13)

Applying inverse fast Fourier transform to A(ω) can restore the time domain signal
of the flaw scattering pattern. When training a neural network, each signal becomes
normalized for increasing performance; the constant a disappears. The flow diagram of
this process is shown in Figure 7.

Figure 7. Flow diagram of the system invariant method.

5.2. Applying System Invariant Method to Original Database

To reduce complexity, the system invariant method should be used to reconstruct the
ultrasonic weldment signals in the original database. Examples of crack signals before and
after using the system invariant method are shown in Figure 8. The system factor was
removed from the original signals, leaving only the scattering pattern from flaws. The
database that uses the system invariant method is referred to as the invariant database.

5.3. ResNet Performance Evaluation with Invariant Database

Because the original database and the invariant database featured the same number
and composition, training the same architecture of ResNet with the original database and
invariant database is suitable for verifying the effect of the system invariant method.

The performance of ResNet was then evaluated on the invariant database, as shown
in Figure 9. The results show that the system invariant method can reduce database
complexity and enhance network performance. The training accuracy increased to 92.15%
in epoch 446, which is comparable to the original database, whereas the testing accuracy
was higher than 95.04% in epoch 491. For a more detailed analysis of the testing accuracy,
the average accuracy after epoch 100 was 91.45%, with a standard deviation is 1.77%. This
means that training ResNet with the invariant database can obtain a network performance
of 91.45% ± 1.77%.
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Figure 8. Examples of cracks and porosity signals when applying system invariant method, from
left to right: original signal, flaw scattering pattern in the frequency domain, and invariant signal;
(a) crack signal with Olympus A430S (45 degrees, 2 MHz); (b) crack signal with KrautKramer WB70-4
(70 degrees, 4 MHz); (c) porosity signal with Olympus A430S (45 degrees, 2 MHz); (d) porosity signal
with KrautKramer WB70-4 (70 degrees, 4 MHz).



Appl. Sci. 2022, 12, 1477 12 of 15

Figure 9. ResNet performance training with invariant database: (a) training accuracy curve;
(b) testing accuracy curve; (c) comparison between accuracy and testing accuracy curves.

A further reason why the invariant method can improve network performance is that
the test curve behaves similarly to the training curve, with only a minor shift up and down.
This implies that the system invariant method can confuse the network into believing that
training and testing data with the same flaw type are similar signals with which to classify.

5.4. Performance Comparison

Table 7 and Figure 10 show a performance comparison. Comparing the training
accuracies, the invariant database featured lower average accuracy, but a smaller standard
deviation than the original database, making it difficult to determine which is better. It
is more rational to consider this as an error that can occur naturally during the training
process of a neural network, rather than a performance deviation.

Table 7. ResNet performance comparison between the original and the invariant database.

Original Database Invariant Database

(Epoch > 100) Training Testing Training Testing
Average Accuracy (%) 92.63 62.17 92.15 91.45

Standard Deviation (%) 0.64 4.13 0.43 1.77
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Figure 10. ResNet testing performance comparison between original and invariant database.

Comparing the test accuracies, there was a significant improvement in accuracy for
the invariant database. The average accuracy improved by 29.28 pp from 62.17% to 91.45%,
making it possible to classify ultrasonic weldment flaw signals more precisely; furthermore,
the standard deviation improved by 2.36 pp from 4.13% to 1.77%, making the network
performance more stable. Furthermore, the average training and test accuracies of the
invariant database were almost similar, suggesting that the system invariant technique can
effectively secure the system invariant.

6. Summary

In this study, a system invariant method was developed and tested using a complex
database obtained from 21 different transducers. The flaw signal database contained
65,790 training data and 1453 test data, referred to as the original database. By developing
a system invariant method in the frequency domain and using it in the original database,
an invariant database was constructed. Consequently, comparing performance using a
residual neural network, the invariant database showed a significant improvement in
accuracy compared to original database. The proposed system invariant method showed
meaningful performance improvements against complex ultrasonic equipment. In future
studies, practical research is needed in order to overcome difficulties that may arise when
the system invariant technique is applied to the actual ultrasonic testing site.

Author Contributions: Conceptualization, H.-J.K. and S.-S.K.; methodology, H.-J.K. and S.-J.S.;
software, J.P.; validation, H.-J.K., S.-S.K. and J.P.; formal analysis, J.P.; investigation, J.P.; resources,
J.P.; data curation, J.P. and S.-E.L.; writing—original draft preparation, J.P.; writing—review and
editing, J.P.; visualization, J.P.; supervision, H.-J.K. and S.-J.S.; project administration, S.-S.K.; funding
acquisition, H.-J.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Nuclear Safety Research Program of the Korea Founda-
tion of Nuclear Safety (KoFONS), funded by the Nuclear Safety and Security Commission (No. 1805005).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2022, 12, 1477 14 of 15

Abbreviations

WGN White Gaussian noise
ANN Artificial neural network
FCNN Fully connected neural network
CNN Convolutional neural network
ResNet Residual neural network
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