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Abstract: There are a lot of developing countries with inadequate meteorological stations to measure
solar radiation. This has been a major drawback for solar power applications in these countries as the
performance of the solar-powered system cannot be accurately forecasted. In this study, two novel
hybrid neural networks namely; convolutional neural network/artificial neural network (CNN-ANN)
and convolutional neural network/long short-term memory/artificial neural network (CNN-LSTM-
ANN), have been developed for hourly global solar radiation prediction. ANN models are also
developed and the performance of the hybrid neural network models is compared with it. This study
contributes to the search for more accurate solar radiation estimation methods. The hybrid neural
network models are trained/tested with data from ten different countries across Africa. Results from
this study indicate that the performance of all the hybrid models developed in this study is superior
to what has been presented in existing literature with their r values ranging from 0.9662 to 0.9930.
CNN-ANN model is the best for solar radiation forecasting in Southern, Central, and West Africa.
CNN-LSTM-ANN is better for East Africa while both CNN-ANN and CNN-LSTM-ANN are suitable
for North Africa. CNN-ANN application for solar radiation prediction in Chad had the overall best
performance with an r-value, MAE, RMSE, and MAPE of 0.9930, 15.70 W/m2, 46.84 W/m2, and
4.98% respectively. The integration of CNN and LSTM algorithms with an ANN model enhanced
long-term computational dependency and reduce error terms for the model.

Keywords: artificial intelligence; convolutional neural network; artificial neural network; recurrent
neural network; solar radiation

1. Introduction

The accurate forecast of the available renewable energy (RE) resources is evolving
rapidly as this is one of the steps towards the maximization of RE potential. For instance,
the accurate forecasting of photovoltaic (PV) system production makes the use of solar
energy more reliable [1]. Hence the need to develop a model to predict systems’ monitoring
and renewable energy resources prediction. An innovative multi-layered architecture
for heterogeneous automation and monitoring of PV smart microgrid showed that the
developed model can foster digital transformation of power grids and empower real devel-
opments in microgrids [2]. Similarly, the implementation of various forecast approaches
for PV in microgrid and multigood demonstrated that PV systems can be used to operate
Islanded microgrids in safe conditions [3]. The continuous and accurate measurement
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of solar radiation over a long-term period makes the conversion and utilization of solar
power more efficient [4]. However, the measurement of solar radiation is inadequate or
unavailable for many (African and developing) countries [5].

In Nigeria (the largest economy and the most populated country in Africa), there are
only 54 stations for measuring solar irradiance instead of the required 9000 stations [6]. This
is the reality of most African/developing countries. The greenhouse effect and depletion
of fossil fuels have concentrated recent research attention on RE resources utilization
thereby increasing the demand for solar power [7]. The accurate forecasting of solar PV
power generation is important for the following reasons [8]: (a) Accurate solar irradiance
prediction can improve solar power utilization, thereby reducing economic losses from
electrical restrictions. (b) Solar PV power generation is random, volatile, and intermittent
creating a reliability problem in the power grid. Hence, the accurate prediction of solar
irradiation can increase solar PV integration and improve the reliability of the power grid.
These reasons have made solar irradiance and solar power generation an important subject
in the energy research field [9].

In recent years, forecasting techniques such as time-series model-based techniques [10],
physical methods, ensemble methods [11], and mapping techniques have been used for
different prediction purposes [12]. Furthermore, the use of random forest (RF), artificial
neural network (ANN), convolutional neural network (CNN), recurrent neural network
(RNN), and other deep learning models have been considered for different RE resources
prediction as well as electricity load forecast [13]. A review of different studies on the direct
prediction of PV power reported that ANN and SVM models perform well under rapid and
varying environmental conditions [14]. A short-term PV power forecast with the GA-SVM
hybrid model showed that hybrid models are more robust, accurate, and they require less
memory [15]. The adaptative neuro-fuzzy approach was used by Olatomiwa et al. [16] for
solar radiation prediction in Nigeria while Pang et al. [17] studied the use of RNN and ANN
for solar radiation prediction in Alabama. Their results reflect that both ANN and RNN
have good prediction accuracy for this purpose [17]. Furthermore, a comparative study of
reliable ensemble learning-based models for solar prediction showed that ensemble models
have a consistent and reliable prediction performance when applied to data from different
locations [18].

Bendiek et al. [19] proposed the use of a data-driven algorithm and contextual op-
timization for the forecasting of solar irradiance. Their approach achieved a consistent
performance for long and short-term predictions for all the cities considered in their study.
Aljanad et al. [20] also used the neural network approach for the prediction of global solar
irradiance using particle swarm optimization algorithm considering extremely short-time
intervals. From their results, the three days performance profile for the model proposed
in the study are 0.0292 of MSE, 0.7537 of MAE, 1.7078 of RMSE, and 31.4348 of MAPE (%)
considering a 5 s time interval. Their model outperformed the existing standalone neural
networks for solar irradiance prediction [20]. In another study, machine learning and deep
learning models were compared for solar irradiance prediction and it was concluded that
deep learning models are more viable for this specific forecasting task [21].

Other studies in existing literature [22–24] have worked on the forecast of solar radi-
ation of which the use of ANN, RNN, and CNN models was proposed for different case
studies. Owing to the under-development in Africa, models that will accurately predict
solar radiation are required to encourage solar energy utilization in the continent. Africa as
a continent has a high and well-distributed solar energy potential, however, this resource is
underutilized and underdeveloped. The energy poverty and lack of access to electricity
in many countries in Africa reflect the under-utilization of solar-powered systems. It is
estimated that over 600 million Africans lack access to electricity [25].

Beyond Africa, the prediction of solar radiation has been studied in some literature [23],
but there is still a need to develop more robust, accurate, and fast predictive models for solar
radiation. The long short-term memory (LSTM) model retains long-term computational
dependency thereby reducing the error term. Additionally, in comparison to other deep
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learning algorithms, the CNN algorithm is capable of excellently extracting nonlinear
intrinsic features using a convolution process with pooling operations [26]. Consequently,
if CNN models are applied in real energy or renewable energy resources forecasting, it
will enhance the robustness of the energy design/resource for short-term or long-term
forecasts which may be difficult to attain conventionally. To address the gaps in knowledge
that advocate for a need to have versatile energy management devices that can boost the
integration of solar energy (considering its variability in behavior), the novelty of this paper
is to design a new hybrid deep learning forecast model based on the integration of LSTM,
ANN, and CNN models.

Two new hybrid neural network models namely, convolutional neural network/artificial
neural network (CNN-ANN) and convolution neural network/long short-term mem-
ory/artificial neural network (CNN-LSTM-ANN) are developed for accurate solar radiation
prediction in Africa. The first model (CNN-ANN) hybridized three hidden layers of CNN
to extract the nonlinear intrinsic features of the data. Then a flatten layer, and an ANN
model (with three hidden layers) in addition to an input and an output layer are integrated.
Model-2 (CNN-LSTM-ANN) hybridizes two layers of CNN, one layer of LSTM, and three
layers of ANN in its hidden layer. Although hybrid models such as LSTM-ANN [27] and
LSTM-CNN [28] have been used to predict solar radiation and solar PV power production,
no study in literature considered the use of the hybrid models presented in this research.
This work has been bench-marked against the ANN model as this model is fundamental to
the design of the hybrid models. Additionally, in the extant literature, ANN models have
been extensively used for solar radiation prediction, therefore, the performance of these
hybrid models is compared with that of the developed ANN model. The specific objective
of this study is:

- The development of two novel hybrid neural network models for solar radiation prediction.
- Integration of CNN with other models to enhance prediction robustness and accuracy.
- Development of solar radiation predictive hybrid models adaptable to different cli-

matic conditions.
- Comparison of these hybrid models and ANN model performances.

The hybrid models are applied for solar radiation prediction in ten countries from the
five geopolitical zones in Africa.

This study is important as the models developed will be instrumental in the calcula-
tion/estimation of solar-powered systems’ performance and subsequently increase solar
energy utilization for electricity generation and other purposes. Thereby reducing the lack
of access to electricity in Africa significantly. The development of these models is justified
in the subsequent section. The materials and methods (including the data preparation,
case study, model development, etc.) used in this study are reported comprehensively in
Section 2. The results from this study are discussed and compared with existing works of
literature in Section 3 while the concluding remarks from the entire study are highlighted
in Section 4.

2. Materials and Methods

Neural networks are a form of machine learning techniques that uses the connection of
computational nodes called neurons to determine or describe in essence any non-linear or
linear function [29]. In this study, two hybrid neural network models namely, CNN-ANN
and CNN-LSTM-ANN have been created to predict solar radiation in Africa. A flowchart
of this research is presented in Figure 1. The performance of these models is also compared
to that of an ANN model in this study. In this section, the materials and methods used in
building the neural networks are justified. A brief insight into the individual models (ANN,
CNN, LSTM) hybridized is first presented. Then, the area studied and the data preparation
process is briefly introduced. The model development and metrics used in evaluating these
models are also justified in the subsequent subsections.
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Figure 1. Research flowchart.

2.1. Artificial Neural Network (ANN)

ANN was inspired by the study of biological neural networks (animal brains). The
concept was first proposed for solving different complex problems and the first model
(McCulloch–Pitts neural model) was developed in 1943 [30]. Since then, hundreds of
various ANN models have been developed and optimized for different applications such
as data prediction, pattern recognition, image processing, optimization, controls, and
associative memory [17]. In this study, ANN will be used for data analysis. ANN has
received increased attention in recent years due to its power in data prediction. In recent
studies [31,32], it has been used for solar radiation prediction, however, some studies
argued that there is still room for improvement in the prediction accuracy of solar radiation
data. The ANN architecture adopted in this study is illustrated in Section 2.6.

2.2. Convolutional Neural Network (CNN)

CNN models are more suitable for ingesting and processing data or images, as the
input and hidden layers for the model consist of neuron layers that are arranged in different
dimensions [33]. In this study, a one-dimension CNN model is adopted as the target data
exist in the same dimension. The weights in each filter of a layer of CNN are connected to a
small region of the layer as it undergoes the convolution process [29]. In literature [34], this
model has also been used for solar radiation prediction. In most machine learning/deep
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learning frameworks such as Tensorflow, Keras, and Pytorch, a 1-D convolution layer is
used to convolve layer input over a single spatial (or temporal) dimension such as the data
used in our paper. In cases of data with two or three dimensions, the 2-D convolution is
more suitable, and for high-dimensional independent data samples, the recurrent neural
network is the most suitable.

2.3. Long Short-Term Memory (LSTM)

LSTM is a modified type of the recurrent neural network (RNN) used for sequence data
processing. The core feature of the RNN model is highlighted with the word “recurrent”
which means that the output of the network will remain together with the input of the next
moment to determine the output of the next moment [35]. LSTM models have been applied
for machine translation, speech recognition, and text generation. Similar in implementation
to the neural network that updates parameters by back-propagation, LSTM also optimizes
the model along the negative gradient direction. The gradient will gradually reduce and
approach zero as the sequence accumulates thereby causing the gradient to disappear [24].
LSTM model has been used for solar radiation prediction [36] and in this study, one layer of
the LSTM model is hybridized with a CNN and ANN model to ensure better performance
and learning of long-term dependencies.

2.4. Area of Study

Africa is the second-most populous and second-largest continent in the world. It
covers 6% of the earth’s total surface (20% of total land area) with a total area of about
30.3 × 106 km2 [37]. Solar energy distribution in Africa is fairly uniform and the global solar
horizontal irradiance for a larger proportion (85%) of the landscape is over 2000 kWh/m2/year.
The continent has a solar power generation potential of 1000 GW which is largely untapped
to date [38] and the theoretical estimated solar power production is 60 × 106 TWh/yr [39].
Ten out of the 54 countries in Africa have been selected to test the hybrid neural network
developed in this study. These countries are from the five geopolitical zones in Africa
(Nigeria and Ghana from West Africa; Algeria and Egypt from North Africa; South Africa
and Namibia from Southern Africa; Ethiopia and Somalia from East Africa; the Central
Africa Republic and Chad from Central Africa) and are highlighted with location tags
in Figure 2. The case study details in terms of latitude, longitude, elevation, optimum
azimuth, and optimum slope are summarized in Table 1.

Table 1. Case study location description.

Geopolitical
Zone Country City Latitude

(◦)
Longitude

(◦)
Elevation

(m)
Optimum

Azimuth (deg.)
Optimum

Slope (deg.)

West Africa Ghana (GH) Bongo 10.903 −0.812 216 6 16
West Africa Nigeria (NG) Kano 12.022 8.524 465 5 16
East Africa Ethiopia (ETH) Djibouti 10.647 41.286 538 0 13
East Africa Somalia (SOM) Bari 10.271 50.141 308 −4 12

Central Africa Chad (CH) Ennedi 18.064 22.576 545 3 20

Central Africa Central African
Republic (CAR) Vakaga 9.826 22.508 494 8 16

North Africa Algeria (ALG) Tamanrasset 24.072 4.679 874 26 27
North Africa Egypt (EGY) Mut 24.475 28.466 332 5 25

Southern Africa South Africa (SA) Northern Cape −29.186 20.464 874 −180 0
Southern Africa Namibia (NAM) Erongo Region −21.963 15.331 1179 −180 0
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Figure 2. Map of Africa highlighting the countries used as the case study.

2.5. Data Preparation

Data preparation involves various processes such as data division, data collection,
and data normalization. In this study, the data used in training and testing the model have
been obtained from Photovoltaic Geographical Information System (PVGIS) website [40].
The accuracy of this data set has been confirmed in literature as it has been used for other
machine learning and deep learning tasks in existing works of literature [41,42]. According
to PVGIS, the following parameters; ambient temperature sun elevation, and wind speed
at 10 m are required to determine/predict PV performance and solar irradiance and these
parameters are represented as Tamb (deg. C), AS (deg.), W10 (m/s), and Gi (W/m2) in this
study. While the ambient temperature affects the intensity of solar radiation, sun elevation
is directly related to solar irradiance [43]. Additionally, PVGIS uses information about
the elevation of the terrain with a resolution of 3 arc seconds (about 90 m). The hourly
measurement of these parameters for twelve years (2005–2016) will be used in the study.
The data collected (105,192 rows) are divided into training and testing sets respectively. A
total of 841,536 data points is used in this study for each location. The data split is done in
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9:1 proportion such that 90% of the data is used for training the hybrid neural networks
and the remaining (10%) is used for testing the models.

Data normalization is applied to improve accuracy and speed up the rate of conver-
gence of gradient descent. If the data is not normalized, the network often encounters
a model learning problem because the gradient descent becomes complex and does not
converge swiftly. This is done in accordance with machine learning literature. Since, nor-
malization is majorly to standardize the range of the values, the range [0, 1] is used because
it is better at reducing computation complexities. In this study, each dimension of the
dataset is normalized to values between 0 and 1 using Equations (1) and (2).

XN =
X − X̆
X̂ − X̆

(1)

X = XN
(
X̂ − X̆

)
+ X (2)

where X̆ and X̂ represent the minimum and maximum values of variable X respectively.
XN is the normalized value of variable X. The statistical summary of the data used in this
study is tabulated in Table 2. This data will be insightful in evaluating the performance of
all the models developed.

Table 2. Statistical summary of data.

Country Statistics G_i (W/m2) As (deg.) Tamb (deg. C) W10 (m/s)

Algeria
Mean 296.15 19.14 26.34 3.97

Std 386.39 24.82 8.98 1.71
Min 0 −4.95 −0.18 0.06
Max 1966.4 85.46 44.94 12.59

Central African
Republic

Mean 264.24 20.47 27.75 3.063
Std 358.36 26.17 4.82 1.443
Min 0 −5.53 14.36 0.010
Max 1812.9 84.39 44.17 10.47

Chad

Mean 305.4 19.68 26.13 4.751
Std 393.25 25.42 8.128 1.584
Min 0 −5.13 3.03 0.60
Max 1916.1 85.73 43.56 11.63

Egypt
Mean 303.94 18.76 22.09 4.595

Std 392.18 24.38 8.756 1.588
Min 0 −5.07 −1.10 0.04
Max 1753.6 88.95 43.11 13.31

Ethiopia
Mean 278.41 20.42 29.04 3.516

Std 363.85 26.12 5.29 1.451
Min 0 −80 13.42 0.04
Max 1130.5 83.17 41.14 9.48

Ghana

Mean 260.59 20.39 28.26 2.797
Std 350.14 26.15 4.461 1.095
Min 0 −6.29 14.64 0.03
Max 1735.3 89.49 42.8 8.21

Namibia

Mean 276.01 18.95 21.09 3.477
Std 362.98 24.63 6.297 1.924
Min 0 −5.93 0.75 0.010
Max 2002 89.53 41.03 12.41

Nigeria
Mean 272.79 20.31 27.31 2.875

Std 362.05 26.03 5.83 1.047
Min 0 −5.28 9.41 0.040
Max 1911 85.82 43.95 8.18

South Africa

Mean 259.16 17.60 19.60 4.46
Std 346.94 23.06 8.29 1.932
Min 0 −5.87 −2.52 0.040
Max 1911 82.20 42.86 17.21

Somalia

Mean 289.88 20.44 26.85 5.922
Std 372.68 26.19 4.52 3.093
Min 0 −80.81 13.42 0.010
Max 1157.9 89.02 39.53 16.66
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2.6. Research Modeling and Hybrid Neural Network Development
2.6.1. ANN Architectural Design

Typically, ANNs exist as organized layers that include interconnected input nodes,
output nodes, and hidden layers (Figure 3). They are computing systems that were inspired
by the biological/human neural network [44]. They are also a class of feed-forward models
that accepts data into the dense inputs layer and outputs prediction results based on the
number of neurons in the dense output layer. In the ANN model design, the input layer has
7 nodes representing the 7 (Year, Month, Day, Hour, Tamb, AS, and W10) input data columns
that are required to determine/predict solar radiation and 1 node on the output layer
representing the target column (Gi). The network has 1 hidden layer with 2500 neurons
which is followed by an activation function to add nonlinearity to the layer’s computation.
In this study, the rectified linear unit (ReLU) is applied as the nonlinear activation function
for the ANN models. The model loss was calculated using the mean square error being
a regression analysis, and the global minima are determined via the backpropagation
gradient descent. Adam optimizer was implemented with a learning rate of 0.001 and a
training batch size of 512. The model was carefully designed to optimally learn the features
of the data without underfitting and overfitting which is observed in the evaluated metric
score of the training data to the test. The model overfitting problem is avoided by increasing
the number of epochs gradually while checking the model performance. In total, the ANN
model was trained for the various number of epochs depending on input data. The number
of epochs used in training each model is highlighted in Table 3.

Figure 3. ANN model architecture.
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Table 3. Summary of training optimal epoch size.

Region Country Model Optimal No.
Epoch

Training/Testing
Time (s)

West Africa
Ghana

ANN 1000 3000
CNN-ANN 600 600

CNN-LSTM-ANN 100 200

Nigeria
ANN 350 1050

CNN-ANN 200 200
CNN-LSTM-ANN 600 1200

East Africa

Ethiopia
ANN 450 1350

CNN-ANN 600 600
CNN-LSTM-ANN 600 1200

Somalia
ANN 250 2250

CNN-ANN 250 250
CNN-LSTM-ANN 600 1200

Central Africa
Chad

ANN 300 900
CNN-ANN 500 500

CNN-LSTM-ANN 150 300
Central African

Republic
ANN 650 1950

CNN-ANN 650 1950
CNN-LSTM-ANN 300 600

North Africa

Algeria
ANN 300 900

CNN-ANN 1000 1000
CNN-LSTM-ANN 300 900

Egypt
ANN 570 1700

CNN-ANN 600 1800
CNN-LSTM-ANN 380 1600

Southern Africa
South Africa

ANN 500 5000
CNN-ANN 300 3000

CNN-LSTM-ANN 600 1200

Namibia
ANN 500 1500

CNN-ANN 300 300
CNN-LSTM-ANN 600 1200

2.6.2. Hybrid CNN-ANN Architectural Design

The CNN-ANN network combines the feature extraction from both networks. CNN
applies the kernel technique to update the filter weights which helps to learn the feature
representation of the training data. The model has a single CNN layer with 5 filters of
2 × 2 stride which convolves the input data. The CNN model has 3 hidden layers with
[32, 64, 32] neurons. The output of the CNN layer is then flattened such that it could be
fed to the complementary ANN model. The ANN network has 3 hidden layers with [32,
100, 32] neurons and an output layer consisting of one node. Both models are trained as a
single end-to-end network with cross-entropy as the loss function and backpropagated to
compute the corresponding derivatives. The model was trained for different numbers of
epochs (as seen in Table 3) using Adam optimizer, a learning rate of 0.001, and a training
batch size of 512. The model architecture is illustrated in Figure 4. The neurons in the hidden
layers of this hybrid network can be summarized as followed [32, 64, 32; ( ); 32, 100, 32].

Figure 4. CNN-ANN hybrid model architecture.
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Mathematically, each layer in the one-dimension (1-D) convolutional neural network
will extract patterns in the G_i as it relates to other input variables using Equation (3) [45].

hk..
y = f

((
Wk ∗ x

)
ij
+ bk

)
(3)

where Wk is the weight of the kernel connected to the kth feature map, f is the activa-
tion function, bk is the bias, and the star ∗ is the operator of the convolutional process.
Equation (3) can be re-written as Equation (4) where c is the output hk..

y.

q = f
((

Wk ∗ x
)

ij
+ bk

)
(4)

In the hybrid model, a flatten layer is used to convert the matrix to a singular vector
(Equation (5)) so that it can be suitable for input into the ANN model.

Z = f (q) (5)

The output of the flatten layer (Z) will serve as the input for the ANN model (Equation (6)).

y(x) = L(∑N
j=1 wj(p).Zj(p) + c) (6)

where y(x) is the forecasted G_i, wj(p) is the weight that connects neurons in the input
layer, Zj(p) represents the input variable in discrete-time t and c is the neuronal bias,
L(.) denotes the hidden transfer function.

2.6.3. Hybrid CNN-LSTM-ANN Architectural Design

The triple hybrid model was designed for comparing the efficiency of the model at
extracting the necessary features of the data by complimenting each other to learn both short
and long-term dependencies. As seen in Figure 5, for this hybrid model, a recurrent neural
network that runs in cycles is included, making it highly adept for analyzing sequence data.
In comparison to the CNN-ANN model, the LSTM integrated as such, the constituting
gates of the LSTM help it to retain necessary information from previous hidden states. The
input data is fed to the 2-hidden layer 1D CNN with [32, 16] neurons, after which it is
forwarded to the LSTM network with 32 hidden states and finally to the densely connected
network which produces the general model predictions. The ANN model for this hybrid
has 3 hidden layers with [25, 50, 25] neurons. Both the CNN and ANN architecture is
identical to the hybrid CNN-ANN design discussed in the preceding section.

Figure 5. CNN-LSTM-ANN hybrid model architecture.
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The summary of the neurons in the hidden layers of the hybrid model is [32, 16; 32;
25, 50, 25]. This model has basic calculations embedded in it which is described in four
subsequent separate steps [46].

1st Step: According to the hidden state ht−1 and the new input qt from Equation (4),
the LSTM model will determine the information that will be thrown away from the “forget
gate” ft as seen in Equation (7).

ft = σ
(

W f × [ht−1, qt] + b f

)
(7)

where Wf is the weight of the matrices, σ(. . .) is the logistic sigmoid function, and b f is the
bias function.

2nd Step: In this step, the information that will be stored in the cell state will be
decided. A new candidate cell (C̃t) is also generated and it is scaled by an “input gate” it.

C̃t = tanh(WC × [ht−1, qt] + bC) (8)

it = σ(Wi × [ht−1, qt] + bi) (9)

tanh( . . . ) in Equation (8) is the hyperbolic tangent function.
3rd Step: The new cell Ct is updated with the combination of a previous cell state Ct−1

and C̃t. The former cell is affected by ft and also scaled by it.

Ct = ft ∗ Ct−1 + it ∗ C̃t (10)

4th Step: In the final step, the output process is divided into two steps and an “output
gate” ot is built to decide the cell state that is outputted. Ct activated by tanh function is
filtered by the multiplication of ot. The result of the multiplication is the desired output ht

ot = σ(Wo × [ht−1, qt] + bo) (11)

ht = ot × tanh(Ct) (12)

For this hybrid model, the flatten layer converts the matrix (Equation (12)) to a singular vector.

Z = f (ht) (13)

The output of the flatten layer (Z) will serve as the input for the ANN model (Equation (6)).

2.7. Model Training and Implementation

In implementing the hybrid models and the ANN model, the selection of the number
of neurons in different layers of the model was strategically determined to ensure optimal
convergence and fitting of the models. The regression models were built using the Keras
library (which is a library in Python open-source programming package) while mean square
error (MSE) is adopted as the loss function. Adam optimizer is used to minimize the cost
function, and the rectified linear unit (ReLU) is applied as the nonlinear activation function
due to its ability to make the network sparse and efficient. ReLU is one of the non-linear
activation functions available and it is specifically used after each layer in a neural network
to ensure that the computed output is activated (such that not all the neurons are activated
at the same time). This is also adopted to apply non-linearity and overcome the vanishing
gradient problem. The supervised learning feature of deep learning models creates room
for further improvement of the model (especially when applied in other locations), however,
the model overfitting problem is avoided by increasing the number of epochs gradually
while checking the model performance. The optimal number of epochs is determined
when the reduction in training losses stops. All the models developed were implemented
in a Python environment running under core i7, 2.20 GHz system with 16 GB RAM, and
GTX1060 6 GB Graphics card. The specifications of the computer used for the simulation
are chosen considering the implementation of the models developed and these specs are
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common in the market nowadays. The optimal number of epochs required for the training
of each model for different locations is summarized in Table 3.

The neural network models try to learn the relationship between the data features by
computing and updating the weight and bias functions of a logistic regression operation.
As the model is trained, the weights and biases are finetuned and updated to yield better
prediction at every cycle by comparing the prediction to the data label. The differences
between the prediction and label are computed as the loss function and averagely as the
cost function. The cost function is then minimized using the backpropagation algorithm
such that a global minimum is reached, ensuring that the predicted value is as close to the
label as possible.

Specifically, for CNN integrated models, kernels are designed to run convolution
on the data to update the weights and bias for refining the model prediction. The model
predicted values are compared to the labels and the cost functions are modified by updating
the model parameters using backpropagation. In the case of the LSTM model, the input,
forget and output gates help the model to determine which values to retain for keeping
long-term computational dependencies.

2.8. Evaluation Metrics

The performance of the two-hybrid neural network (CNN-ANN and CNN-LSTM-
ANN) models, as well as that of the ANN model, will be evaluated with different deep
learning statistical indicators and metrics. These include correlation coefficient (r), mean
absolute error (MAE), mean absolute percentage error (MAPE), and root mean square
error (RMSE). The mean square error (MSE) is used as a loss function for the training
and testing of the model. These metrics have been used in different literature [32,47].
They serve as deterministic models to evaluate the performances of the models. The
mathematical representation of these metrics can be found in Equations (14)–(19). It is
noteworthy that the smaller the value of MAE and RMSE, the more accurate the model.
Additionally, a model is said to be more accurate as the r value approaches 1. In addition to
other metrics, the promoting percentage of MAE (λMAE) and RMSE (λRMSE) presented in
literature [45] are also adopted to check the model performance. Finally, the change in MAE
and RMSE (∆RMSE and ∆MAE) for the training and test task is used to check the models’
performances. While a small value of ∆RMSE and ∆MAE signifies that the developed
model is good for the prediction task, a ∆RMSE, and ∆MAE of zero does indicate that the
model is not good.

r =

 ∑N
i=1

((
Gm

i −
〈

Gm
i
〉)(

Gp
i −

〈
Gp

i

〉))
√

∑N
i=1
(
Gm

i −
〈

Gm
i
〉)2
√

∑N
i=1

(
Gp

i −
〈

Gp
i

〉)2


2

(14)

MAE =
∑N

i=1

∣∣∣Gm
i − Gp

i

∣∣∣
N

(15)

MAPE =
N

∑
i=1

∣∣∣∣∣Gm
i − Gp

i
Gm

i

∣∣∣∣∣× 100 (16)

RMSE =

√√√√ 1
N

N

∑
i=1

(
Gm

i − Gp
i

)2
(17)

λRMSE =

∣∣∣∣RMSE1 − RMSE2

RMSE1

∣∣∣∣ (18)

λMAE =

∣∣∣∣MAE1 − MAE2

MAE1

∣∣∣∣ (19)
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where Gm
i is the measured value and Gp

i represents the predicted value, and
〈

Gm
i
〉
/
〈

Gp
i

〉
are the average values of Gm

i and Gp
i , respectively. MAE1 and RMSE1 are the training

performance metrics while the MAE2 and RMSE2 are the prediction performance metrics.
N is the number of the dataset used and λMAE/λRMSE are the promoting percentage of
MAE/RMSE.

3. Results and Discussion

This work has two main objectives. The first objective is to develop two-hybrid neural
network models suitable for estimating hourly global solar radiation in Africa. The second
objective is to compare the performance of the hybrid neural network models with that of
an artificial neural network model developed for the same purpose. Ten different countries
in Africa have been selected for testing the developed models. There is no one-size-fits-all
indicator for measuring the prediction accuracy of a model. Therefore, eight different
evaluation metrics are used to evaluate the performance of the models developed in this
study, and the results are presented in Table 3. Where r is the correlation coefficient of
a model, it is a relative measure of fit of the predicted variable in comparison to the test
dataset. The higher the r-value of a model, the more accurate the model for a prediction
task. When comparing the prediction model used for a single time series, or multiple time
series with the same units, MAE and RMSE are popular used to evaluate the performance
of such models [48]. Minimization of MAE leads to a forecast of median and minimizing
the RMSE will lead to a forecast of mean, thereby both metrics are crucial in evaluating
model predictive performance. In comparison to MAE, RMSE does not treat each error
equally, therefore, one large error can lead to a bad RMSE. In this study, the best model
will be chosen based on the highest r-value, however, the corresponding MAE, RMSE,
MAPE, and other metrics should be the least or one of the least for it to be categorized
as the best. In the subsequent subsections, the overview of the hybrid neural networks
model’s performance is discussed, and the performance of these models is also compared
for different countries. The performance of the hybrid models and the ANN model is
summarized in Table 4.

Table 4. Statistical summary of data.

Region Country Model
Evaluation Metrics

r MAE RMSE MAPE ∆MAE ∆RMSE λMAE λRMSE

West Africa
Ghana

ANN 0.9675 39.22 88.88 15.05 0.1089 0.071 0.0028 0.0008
CNN-ANN 0.9682 37.74 87.54 14.39 0.022 0.612 0.0006 0.0069

CNN-LSTM-ANN 0.9675 36.52 88.53 14.13 0.848 1.571 0.0227 0.0174

Nigeria
ANN 0.9792 32.06 73.57 11.754 1.384 4.519 0.0414 0.0579

CNN-ANN 0.9762 30.99 78.795 11.311 0.063 0.635 0.0020 0.0081
CNN-LSTM-ANN 0.9762 31.73 78.55 11.60 2.457 7.423 0.0840 0.1044

East Africa

Ethiopia
ANN 0.9787 28.13 73.81 10.28 0.615 2.601 0.0224 0.0365

CNN-ANN 0.9792 29.41 73.74 10.60 2.138 6.785 0.074 0.1013
CNN-LSTM-ANN 0.9800 25.89 72.27 9.31 1.534 5.508 0.063 0.0825

Somalia
ANN 0.9898 22.21 52.801 7.78 0.374 2.626 0.0166 0.0474

CNN-ANN 0.9894 19.94 54.119 6.908 0.0628 0.1085 0.00314 0.0020
CNN-LSTM-ANN 0.9904 16.60 51.54 5.725 0.219 1.879 0.0130 0.0352

Central Africa
Chad

ANN 0.9939 17.07 42.99 5.62 0.991 5.843 0.055 0.1196
CNN-ANN 0.9930 15.70 46.84 5.04 0.1981 0.884 0.0128 0.0185

CNN-LSTM-ANN 0.9921 15.23 49.08 4.98 0.0988 0.4797 0.006 0.0097
Central
African

Republic

ANN 0.9667 44.53 91.46 16.92 0.9837 0.8588 0.0216 0.0093
CNN-ANN 0.9675 39.83 89.99 15.24 0.3056 0.3136 0.0077 0.0035

CNN-LSTM-ANN 0.9662 39.71 92.43 14.98 0.2792 0.8224 0.0071 0.0090

North Africa

Algeria
ANN 0.9815 30.19 73.94 10.24 0.1382 1.8773 0.0046 0.0261

CNN-ANN 0.9827 27.70 71.35 9.45 0.996 3.287 0.0373 0.0483
CNN-LSTM-ANN 0.9830 32.05 71.03 10.76 0.3594 2.6834 0.0111 0.0364

Egypt
ANN 0.9914 17.64 50.88 5.86 0.4002 2.788 0.0232 0.0580

CNN-ANN 0.9925 17.25 48.33 5.56 0.7367 1.567 0.045 0.034
CNN-LSTM-ANN 0.9919 17.37 49.59 5.74 0.3298 1.648 0.0194 0.034

Southern
Africa

South
Africa

ANN 0.9732 28.22 79.49 10.99 1.332 6.922 0.0495 0.0954
CNN-ANN 0.9782 26.41 72.80 9.98 0.356 0.221 0.0137 0.0030

CNN-LSTM-ANN 0.9769 26.64 74.25 10.22 0.949 2.898 0.037 0.041

Namibia
ANN 0.9752 31.41 80.12 11.47 1.084 4.998 0.0357 0.0665

CNN-ANN 0.9793 26.27 73.54 9.49 0.1378 0.4651 0.0052 0.0062
CNN-LSTM-ANN 0.9791 29.05 73.31 10.67 0.426 1.734 0.0145 0.0231

Bold numbers represent best result.



Appl. Sci. 2022, 12, 1435 14 of 21

3.1. Hybrid Neural Network Models’ Performance Overview

The three neural network models (ANN, CNN-ANN, and CNN-LSTM-ANN) devel-
oped in this are capable of giving a good solar irradiance prediction. It is noteworthy that
the performance of all the models developed in this study is very good, the r values range
from 0.9662 to 0.9930. This is superior to the model developed in literature [49] for solar
radiation prediction in which their r-value range between 0.8426 and 0.9356. Additionally,
the performance of the models is better for countries with a well-distributed global solar
radiation resource. According to the statistical summary of the data used in training and
testing the models (Table 2), countries with a good mean value (Chad, Egypt, and Somalia)
that corresponds to the maximum solar radiation have a better prediction performance.
The RMSE and MAE of the models indicate that the model can accurately predict solar
radiation for all the countries across Africa. It is noteworthy that the units of the MAE
and RMSE are W/m2 which makes the errors above 10 in most cases. Typically, the errors
(MAE and RMSE) are presented in MJ/m2 or kW/m2 [45,49] and this will reduce these
values significantly.

Out of all the case studies, the CNN-ANN hybrid model had the best performance for
seven countries (Ghana, Nigeria, Central African Republic, Chad, Egypt, South Africa, and
Namibia) while CNN-LSTM-ANN had the best performance for three countries (Ethiopia,
Somalia, and Algeria) considering the r-value and other metrics (Table 4). The time taken
to train and test the hybrid (CNN-ANN and CNN-LSTM-ANN) models is smaller in
comparison to the ANN model and this is an outstanding attribute for these models.
CNN-ANN model for solar radiation prediction in Chad had the best accuracy of all the
countries considered in this study. Although the r-value of the ANN model (0.9939) is
higher than that of the CNN-ANN (0.9930), the performance of the ANN model considering
the MAE, RMSE, MAPE, and other evaluation metrics shows that the prediction accuracy
is not as good as the CNN-ANN model. The ∆RMSE for the ANN model is 5.843 and this
reflects that the model has not trained very well in comparison to the CNN-ANN model.
Furthermore, the ANN model performance for the Central African Republic had the least
performance of all the models in this study (Table 4). To further highlight the strength and
accuracy of all the models, out of the entire testing dataset, the performance of the models
within 24 h period is plotted (Figures 6–10). This plot shows the fitting characteristics of
each model.

Figure 6. CNN-ANN predictive performance in comparison to other models for West Africa (Ghana).
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Figure 7. CNN-LSTM-ANN predictive performance in comparison to other models for East
Africa (Ethiopia).

Figure 8. CNN-ANN predictive performance in comparison to other models for Central Africa (Chad).
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Figure 9. CNN-ANN-LSTM predictive performance in comparison to other models for Algeria in
North Africa.

Figure 10. CNN-ANN predictive performance in comparison to other models for Southern Africa.

3.2. Performance of Hybrid Neural Network Models and Its Comparison for Different
Geopolitical Zones

CNN-ANN had the best prediction performance for the two west African coun-
tries. While the r, MAE, RMSE, and MAPE values for the model application are 0.9682,
37.74 W/m2, 87.54 W/m2, and 14.39% for Ghana; it is 0.9762, 30.99 W/m2, 78.80 W/m2,
and 11.31% for Nigeria, respectively. The integration of CNN refines the performance of
the ANN model in this region by reducing the errors (MAE, MAPE), and the difference
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in models’ training and test (∆RMSE, ∆MAE, λMAE, λRMSE) performance. The predictive
performance comparison of the three models for hourly solar radiation prediction over
24 h for one west African country is illustrated in Figure 6. The performance of the model
also shows that the CNN-ANN can be used for hourly solar radiation prediction for any
country in the region (West African).

In East Africa, CNN-LSTM-ANN had the best performance and is most accurate for
hourly solar radiation in Ethiopia and Somalia. As seen in Table 4, the performance of the
CNN-LSTM-ANN hybrid model is better and more refined than that of the ANN model
and CNN-ANN model. It also had the highest r-value (0.9800 for Ethiopia; 0.9904 for
Somalia) and the least MAE, RMSE, and MAPE (25.89 W/m2, 72.72 W/m2 W/m2, and
9.31% for Ethiopia; 16.60 W/m2, 51.54 W/m2, and 5.725% for Somalia). The integration of
one layer of LSTM with the CNN and ANN models smoothens the predictive performance
of the model as seen in Figure 7 (where the predictive performance of the three models is
compared based on their hourly solar radiation prediction with 24-h).

As discussed in the preceding section, CNN-ANN has the most accurate predictive
performance for Chad. This model also has the best for the Central African Republic
(Table 4). The hourly solar irradiation prediction illustrated in Figure 8 further shows that
the CNN-ANN is the closest to the true value. It is however noteworthy that CNN-LSTM-
ANN had the least performance out of the three models considered for this region.

Contrary to the model performance in other regions (where one model is good for
both countries), the two-hybrid model had the most accurate predictive performance in
North Africa. While CNN-ANN is the best model for Egypt, CNN-LSTM-ANN had the
best performance for Algeria. The r-value, MAE, RMSE, and MAPE for the two countries
respectively are 0.9925, 17. 25 W/m2, 48.33 W/m2, and 5.56% for Egypt; 0.9782, 26.41 W/m2,
72.80 W/m2, and 9.98% for Algeria. Figure 9 highlights the accuracy of the CNN-LSTM-
ANN model when predicting solar radiation on an hourly time step for Algeria.

Similar to West and Central Africa, the CNN-ANN hybrid model had the best predic-
tive accuracy in comparison to the two other models (Table 4) for countries in the southern
part of Africa. As seen in Figure 10, the CNN-ANN hybrid model can predict the hourly
global solar radiation better than the ANN and CNN-LSTM-ANN models. The evaluation
metrics (r-value, MAE, MAPE, and RMSE) for the two countries studied in this region are
similar. This is a reflection of the uniform distribution of solar radiation in the region. While
CNN-ANN had the best performance for this region, it is noteworthy that CNN-LSTM-
ANN performance is also good for solar radiation prediction. However, ANN had the least
accuracy of all the three models in this region. It should be noted that the performance of
the models is compared over a period of 24 h out of the total 10,519 h test results. This is to
highlight the intrinsic detailed differences in the models’ predictive performance.

3.3. Performance Comparison of Hybrid Neural Network Models with Existing Literatures

Comparing the novel hybrid deep learning models presented in this study to other
models that have been presented in existing literature for solar radiation prediction pur-
poses, the CNN-ANN and CNN-LSTM-ANN model has superior performance as seen
in Table 5. In comparison to the hybrid models presented by Olatomiwa et al. [50] and
Feng et al. [51], the CNN-ANN and CNN-LSTM-ANN models have higher r-values and
the RMSE are significantly smaller. Although the use of MLP and EANN models in an-
other study [52] reported r-values of 0.9749 and 0.9598, the performance of all the models
developed in this study is significantly better leading to a more accurate solar radiation
prediction (Table 5).
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Table 5. Hybrid model performance comparison with existing literature.

Research Country Model
Evaluation Metrics

r RMSE MAPE

Olatomiwa et al. [50] Nigeria
SVM-FFA 0.7280 1.8661 MJ/m2 11.52%

ANN 0.6496 2.0458 MJ/m2 13.43%
GP 0.6899 1.9532 MJ/m2 13.21%

G-Rubio et al. [52] Spain EANN 0.9598 85.71 W/m2 -
MLP 0.9749 67.69 W/m2 -

Agbulut et al. [53] Turkey
ANN 0.9397 2.776 MJ/m2 23.33%
KNN 0.9247 3.092 MJ/m2 27.74%
SVM 0.9380 2.820 MJ/m2 23.37%

Feng et al. [51] China

ANN 0.9402 2.855 MJ/m2/day -
MEA-ANN 0.9407 2.814 MJ/m2/day -

RF 0.9284 3.103 MJ/m2/day -
WNN 0.9391 2.839 MJ/m2/day -

Blal et al. [49] Algeria
TM4 0.9111 2.3643 MJ/m2 -
TM5 0.8740 2.7879 MJ/m2 -
TM6 0.8954 2.5543 MJ/m2 -

Present study

Chad
ANN 0.9939 42.99 W/m2 5.62%

CNN-ANN 0.9930 46.84 W/m2 5.04%
CNN-LSTM-ANN 0.9921 49.08 W/m2 4.98%

Algeria
ANN 0.9815 73.94 W/m2 10.24%

CNN-ANN 0.9827 71.35 W/m2 9.45%
CNN-LSTM-ANN 0.9830 71.03 W/m2 10.76%

Egypt
ANN 0.9914 50.88 W/m2 5.86%

CNN-ANN 0.9925 48.33 W/m2 5.56%
CNN-LSTM-ANN 0.9919 49.59 W/m2 5.74%

4. Conclusions

In this study, two novel deep learning models namely CNN-ANN and CNN-LSTM-
ANN have been developed in Keras-Python and used to forecast hourly global solar
radiation in Africa. The developed model is also compared to an ANN model developed
for the same purpose. Data from ten different African countries within the five geopolit-
ical zones have been used to train and test the models developed. Variation in weather
conditions is one of the main factors that affect the performance of the model as seen in
Table 4. The models performed better for locations with high and well-distributed solar
radiation as in the case of Egypt, Chad, and Somalia. The integration of LSTM helps the
model to retain long-term computational dependency thereby reducing the error term in
comparison to ANN and this is obvious in the MAE results in Table 4. Additionally, the
addition of CNN to the ANN algorithms helps in boosting the performance of the model
thereby giving a more accurate or higher r-score (Table 4). The concluding remarks from
this study are highlighted as follows.

- The hybrid models were found to predict solar radiation more accurately than the
ANN model. While CNN-ANN had the best performance for seven different countries
(Ghana, Nigeria, Chad, CAR, Egypt, Namibia, and South Africa), CNN-LSTM-ANN
had the best predictive performance for Algeria, Somalia, and Ethiopia.

- Also, the integration of a flatten layer in the CNN-ANN hybrid model enhanced the
predictive performance of this model.

- The two-hybrid models train faster than the ANN model making it more desirable for
computation in developing countries.

- Out of all the countries considered in the scope of this study, the application of the
CNN-ANN hybrid model in Chad had the overall best performance. The r-value,
MAE, RMSE, and MAPE for this case are 0.9930, 15.70 W/m2, 46.84 W/m2, and
4.98 respectively.
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- Also, the performance of the model was found to be better for countries with well-
distributed solar radiation.

- Finally, the performance of the ANN model developed in this study is also very good,
however, the large number (2500) neurons in the hidden layer and the lengthy training
period make it undesirable for developing nations. On the other hand, the novel
hybrid neural network models presented in this study can achieve a better result with
the use of a lesser number of neurons and this makes it more suitable for application
in any part of the world.

Overall, it can be concluded that CNN-ANN has the best prediction performance of
the two-hybrid neural network due to its simplified methodology. Although the hybrid
models in this study have been tested on data from Africa, it is noteworthy that this can
be applied for a similar purpose in other continents. In future studies, the application of
these hybrid models for other renewable energy resources forecasts will be considered.
Additionally, the development of hybrid models with traditional learning and machine
learning tools will be studied. The proposed approach in this study can also be considered
for PV-related systems modeling including the single diode modeling of PV systems.
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