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Abstract: Understanding biological materials is quite complicated. The material apple pomace is bio-
logically unstable has been dried under certain conditions. Modeling the pomace drying is necessary
to understand the heat and mass transport mechanism and is a prerequisite for the mathematical
description of the entire process. Such a model plays an important role in the optimization or control
of working conditions. Modeling of the pomace drying process is difficult as apple pomace is highly
heterogeneous, as it consists of flesh, seeds, seed covers, and petioles of various sizes, shapes and
proportions. A simple mathematical model (Page) was used, which describes well the entire course
of the drying process. This is used to control the process. In turn, complex mathematical models
describe the phenomena and scientifically explain the essence of drying. Mathematical modeling
of the dewatering process is an indispensable part of the design, development and optimization of
drying equipment.
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1. Introduction

Apples are the most popular fruit grown in the European Union, with Poland being
among the leaders. Due to large scale and relatively low cost of production, Poland has
become the global leader in fresh apples export, and is the second largest exporter of
apple juice concentrate, preceded only by China. For decades, apples have been the most
important fruit in Poland, both in terms of production and consumption. In Polish society,
apples constitute a significant component in the strict fruit and vegetable diet, and their
consumption reaches a few kilograms per head annually [1].

Production of apples in Poland is growing. It is estimated that in 2019, apple pro-
duction amounted to approx. 4.5 million tons, with 70% of the crop being used by the
processing industry [2].

2. Materials and Methods

Apples are spherical in shape, with a pit at the top, out of which a pedicel (stem) sticks
out. The flesh is covered by a thin yet quite hard skin. Inside, there is a core with pips.
Apple trees belong to fruit trees of moderate climate, and were grown by our ancestors as
early as neolith. At present, there are more than a thousand cultivars of apples, with the
most popular being, i.a., Champion, Antonovka, Lobo, Cortland, Malinówka, Jonagold,
Gloster or Ligol.

Apples contain approx. 2–3% of fiber, half of which constitutes soluble fiber (pectin),
and the content of acids and sugars determines the attractiveness of these fruits. Other
substances, responsible for biological value of apples are polyphenol compounds [3]. The
compounds participate in inactivation of free radicals in the organism, as well as prevention
and treatment of chronic diseases, i.e., coronary vascular disease or cancer [4]. Moreover,
apples contain pectin, which reduces the level of cholesterol and removes toxic substances,
e.g., heavy metals from the organism. Natural carbohydrates slowly and safely increase the
level of glucose in the blood, and keep it at a stable level for a longer period of time, which
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also has a positive effect on human health [1]. Healthy values of apples are indicated by
numerous epidemiological studies related to the decrease in LDL cholesterol levels [5], in
diabetes prophylaxis, and cancer [6].

The processing of apples in the fruit-vegetable industry is connected with the genera-
tion of production waste. The amount of waste produced reaches between 10–35% of the
processed apples [7]. Pomace, obtained as a result of the mechanical pressing of apples in
juice production has the highest share in production waste.

Fresh apple pomace is a biologically and chemically unstable material. It contains
juiced flesh, pip integuments, pips and pedicels. It is a material suitable for composting,
being an ingredient of feeds, a food product and a material for use in the production of fruit
fiber, bio-oils, natural dyes, food colorings or polyphenol extracts [8]. Pomace may be used
to cut the cost of a wholesome animal diet. Pomace should be treated as a half-finished
product, which may be further processed, as it is rich in nutrients: protein, saccharides,
mineral compounds, fiber, pectin, lipids, vitamins and organic acids. Pomace obtained
from apples may be a source of pectin. The value of vitamins and provitamins in the waste
product, i.e., pomace, after juicing fruits, depends on the conditions during the process
of pressing.

Moreover, apple pomace may be a source of energy. Energy in the form of biogas
may be produced in the process of anaerobic conversion of pomace. Biofuel is produced
by extracting energy from biomass, and is possible by means of fermentation of sugars into
alcohol. The results of research [9] show that pomace from apples is an excellent raw material
for the production of ethanol, which may be used as a biofuel or as a drink—e.g., cider.

The problem of how to efficiently use apple waste is not an easy one and existing
methods are complex. The further processing necessary in the processing plant depends on
technical and organizational possibilities. Extending pomace usefulness for consumption
and processing requires drying [10]. It is also necessary to dry pomace in order to use it to
produce solid biofuels for direct combustion [11].

Drying is one of the most important thermal processes, in which food is preserved.
The aim of drying is to reduce water content to a level that prevents enzymatic reactions
and the development of microorganisms, which have a negative effect on the quality of the
material being dried [12,13]. High temperatures and long drying times, required to remove
water from fruit material during convective drying by air, may result in considerable
deterioration of taste, color, nutritional value and may decrease bulk (volumetric) density
and rehydration capacity of the product being dried [14,15].

There are numerous works describing the process of convective drying of apples and
evaluating the quality of dried material. However, the works do not describe the process of
drying apple pomace.

Drying is one of the most energy-consuming processes in the processing industry.
High consumption of energy is connected with the emission of large amounts of substances
harmful to the natural environment [16]. It means that improvements contributing to the
reduction in the technological process duration are both profitable to the production plant
and the natural environment. Generally, shortening the time biological material is exposed
to a high temperature has a positive effect on quality. As pomace is a valuable source of
fiber, pectin, polyphenols and anti-oxidants as well as vitamins—a shorter drying time
means higher retention of these elements in the dried material. Yet, both a too short and
too long drying times may have adverse effects on the product [17,18].

Despite the essence of kinetics, modeling of drying of pomace is necessary to under-
stand the mechanism of heat and mass transfer, and is a prerequisite for the mathematical
description of the whole process. Such a model plays a significant role in the optimization
and control of working conditions. Technological solutions in the industry are based on
simple mathematical models, which also describe the course of the process of drying very
well [19]. Therefore, they are used to control this process. On the other hand, complex
mathematical models describe phenomena and scientifically explain the process of drying.
Mathematical modeling of dehydration process is an inherent part of modeling, develop-
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ment and optimization of drying equipment [20]. It essentially involves detailed research
on the kinetics of drying, which describes the impact of the process variables on moisture
transfer. Correctly specified mathematical models may be used to select drying parameters,
assessment of kinetics of drying and optimization of drying conditions [21]. Appropriate
construction of drying equipment requires knowledge of drying characteristics of the ma-
terial subjected to drying as well as drying kinetics [22]. It requires emphasizing that a
higher temperature results in higher driving force of heat exchange. It also accelerates the
process of drying as higher temperature increases the pressure of vapor. When choosing
appropriate processing technology, optimization of the process parameters needs to be con-
sidered whenever possible so as to reduce the time needed to complete the process [23,24].
Mathematical modeling facilitates this part of modeling, and enables the course to be
predicted. It allows for the application of experimental results obtained in the laboratory in
industry. Modeling and simulation are also indispensable for designing industrial drying
plants, drying equipment as well as choosing appropriate drying conditions.

Modeling of the process of drying pomace is more difficult due to the fact that apple
pomace is highly heterogeneous as it contains flesh, pip integuments, pips, pedicles of
different shapes, sizes and proportions.

Empirical process may be presented by means of one or more models. Kinetic models
for drying agricultural products are models of water content and temperature changes. These
models contain physical variables, knowledge of which is required for their analysis [25].

In the process of the convective drying of solid bodies, conducted in the dominant
external conditions of heat and mass exchange, an important factor is the surface of the
body, through which the exchange occurs. The process is determined by the conditions
of transport of water molecules from the surface of the body being dried through the
adjacent gas layer. The process of convective drying of such materials is almost invariably
accompanied by the shrinkage phenomenon [26]. The occurrence of shrinkage in biological
material subjected to drying is most frequently the result of a significant loss of water [27].
Therefore, it is important to consider its individual changes in the mathematical model of
kinetics of drying of such bodies.

A mathematical model of drying kinetics of solid body molecules, with consideration
to shrinkage of the particles, is described by the following system of equations:

uI(τ) = u0

[
1

1 − b

(
1 − 1 − b

Nu0
k0τ

)N
− b

1 − b

]
(1)

where:

k0 =
A0α

msL
(t − tA) = −du(τ)

dτ
(2)

The value of exponent N in Equation (1) may be determined by the trial and error
method. The values of coefficient b of drying shrinkage are determined experimentally or
calculated from the formula [28]:

b =
ρ0

ρs(1 + u0)
∼=

0.85
1 + u0

(3)

A factor that determines the further course of the process is the internal diffusion of
water in a solid body being dried. It is indicated by a sudden increase in the relative error
of the model of the drying process. It is visible that the process further occurs according to
other laws. This change is not abrupt but continuous. At this stage, conditions of internal
diffusion of water molecules to the surface of the body play a decisive role.

The process of convective drying of solid bodies in such conditions is modeled with
the diffusion Equation (4).

uI I(τ) = ur + (u0 − ur) exp−Kτ (4)
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The continuity of the process requires that when u = ucr the drying rate during the
transport of water molecules from the surface of the body being dried and during internal
conditions of drying be equal. As this cannot be determined precisely, the drying rate
coefficient, in the range of water content, which contains the border value, is denoted by
the symbol K and determined from the following Equation (5):

k0

(
1 − 1 − b

Nu0
k0τcr

)N−1
= K(ucr − ur) (5)

Hence, the modeling equation takes the following form:

uI I(τ) = ur + (ucr − ur) exp

[
− k0(τ − τcr)

ucr − ur

(
1 − 1 − b

Nu0
k0τcr

)N−1
]

(6)

In practice, simplified equations are used, with the equation of average water content,
which takes the following form, being used more often (4). Since critical water content in a
body may be reached after critical time tau, Equation (4) may take the form of Equation (7):

uI I(τ − τcr) = ur + (ucr − ur) exp[−K(τ − τcr)] (7)

The models presented so far, scientifically explain the essence of the drying process.
The exponential model successfully describes kinetics of the drying of certain porous

materials such as clay [29,30], Al-Ni catalyzer [31] and foodstuffs [32,33]. In the literature,
the Page model is a model that reflects the results of the experiment well, and is relatively
simple, which makes it suitable for use in practice. Research conducted by numerous
authors confirm the Page model to be a good fit for the experimental data [15,34–37]. For
this reason, the Page model [38] was used to describe the process of drying apple pomace.

MR = exp(−Kτn), (8)

So
u(τ) = ur + (u0 − ur) exp(−Kτn), (9)

Fresh apple pomace from Energreen company was used in the experiment. Forced
convection drying was carried out in the laboratory dryer shown in the Figure 1. Drying
took place at an air temperature of 40 ◦C and 80 ◦C in forced convection, with the speed of
the drying agent at the level of 0.8 m/s.
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Figure 1. Convective drier scheme: 1-material basket; 2-sensor; 3-air supply duct; 4-heating element; 
5-regulating valve; 6-heat recorder; 7-autotransformer; 8-fan; 9-engine; 10-expansion tank [39]. 
Figure 1. Convective drier scheme: 1-material basket; 2-sensor; 3-air supply duct; 4-heating element;
5-regulating valve; 6-heat recorder; 7-autotransformer; 8-fan; 9-engine; 10-expansion tank [39].

Fountain-microwave drying was performed in the MP20 dryer of the Institute of
Agricultural Engineering of the University of Life Sciences in Wrocław. The construction of
the device is shown in Figure 2. Fountain drying of apple pomace at 60 ◦C with microwave
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support was performed (240 W). In order to ensure the deposit’s fountaining, the air flow
velocity was within the range of 2.5–4 m·s−1.
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Figure 2. Laboratory stand for spouted bed-microwave drying (MP20): 1-rack; 2-fan; 3-computer;
4-temperature sensor; 5-electric heaters; 6-spouted bed; 7-drying chamber; 8-outside shield stopping
microwaves; 9-cover; 10-temperature and pressure sensor; 11-magnetrons [40].

During drying, the current mass of the material was recorded each 60 s by computer
software. The process was considered completed when the mass of the material did not
change. It was assumed that the mass corresponded to the equilibrium water content (ur).
The process was repeated three times.

Dry mass content was determined based on the dryer-weight method according to
the norm PN-77/D-04100 by drying the material at the temperature of 105 ◦C until dry
substance was obtained.

In order to present the kinetics of the drying process, relative water content was
calculated from the following formula:

MR =
uτ − ur

u0 − ur
(10)

where:

• MR—relative water content (–),
• ur—equilibrium water content (g H2O·g–1 d.s.),
• u0—initial water content (g H2O·g–1 d.s.),
• uτ—water content after time τ (g H2O·g–1 d.s.).

Values of the relative and the absolute errors were also calculated. The absolute
error (11) is the difference between the measured value and the real value.

∆x = x − x0, (11)

The relative value is the quotient of the absolute error and the exact value. The relative
error (12) is dimensionless and is usually expressed as a percentage.

δ =
∆x
x0

× 100% =
x − x0

x0
× 100%, (12)
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3. Results

Figure 3 presents modeling for changes of water content in the process of drying
apple pomace in forced convection at 40 ◦C. Models used to describe the process of drying
represent empirical results very well, as low values of relative and absolute errors confirm.
The first 20 min of the process of apple pomace drying in forced convection at 40 ◦C is
described by the model of external exchange with the maximum value of the error of 2%
(Figure 4). The second stage, in which the external exchange of heat and mass occurs,
whose intensity predominantly depends on the temperature of drying, is described by the
model with the value of error below 7%.
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Figure 4. Relative and absolute errors for modeling of water content changes in the process of drying
apple pomace in forced convection at 40 ◦C.

The analysis of the process of drying the sample at 80 ◦C (Figure 5) shows that the
time of external transfer of mass is equal to approximately 10 min, and the model which
describes it is burdened with an error smaller than 7%. The fitness error for the other model
is below 14%.

The absolute error is very small and does not exceed 0.15 (Figure 6).
The analysis of fountain drying of apple pomace at 60 ◦C (Figure 7) with microwave

support shows that the time of internal exchange of mass is equal to approximately 30 min,
and the model which describes it is burdened with an error smaller than 6%. The fitness
error for the other model is equal 14%, which is acceptable as regards its use. This is also
confirmed by the absolute errors, whose values do not exceed 0.05 (Figure 8).
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apple pomace in forced convection at 80 ◦C.

Appl. Sci. 2022, 12, 1434 8 of 13 
 

 
Figure 7. The graph of models of water content changes in the process of drying apple pomace in 
forced convection at 60 °C with microwave support (240 W). 

 
Figure 8. Relative and absolute errors for modeling of water content changes in the process of drying 
apple pomace in forced convection at 60 °C with microwave support (240 W). 

Figure 9 presents the experimental drying curve and the drying curve determined 
based on the Page model. The model describes the whole process of drying. The relative 
and the absolute error values are smaller than or equal to 12% and 0.1, respectively (Figure 
10). 

The comparison of the models describing changes in water content during the pro-
cess of drying apple pomace in forced convection at 40 °C shows that the values of the 
absolute error are 5% higher for the Page model. The values of the absolute error are com-
parable. 

0

1

2

3

4

0 20 40 60 80

w
at

er
 c

on
te

nt
,  

kg
/k

g

time,  min

measurements model uI model uII

0
2
4
6
8

10
12
14

0 20 40 60 80 100

re
la

tiv
e 

er
ro

r. 
, %

time,  min

relative error uI relative error uII

0

1

2

3

4

-0.3 -0.2 -0.1 0.0 0.1 0.2

w
at

er
 c

on
te

nt
,  

kg
/k

g

absolute error

abolute error uI absolute error uII

Figure 7. The graph of models of water content changes in the process of drying apple pomace in
forced convection at 60 ◦C with microwave support (240 W).



Appl. Sci. 2022, 12, 1434 8 of 12

Appl. Sci. 2022, 12, 1434 8 of 13 
 

 
Figure 7. The graph of models of water content changes in the process of drying apple pomace in 
forced convection at 60 °C with microwave support (240 W). 

 
Figure 8. Relative and absolute errors for modeling of water content changes in the process of drying 
apple pomace in forced convection at 60 °C with microwave support (240 W). 

Figure 9 presents the experimental drying curve and the drying curve determined 
based on the Page model. The model describes the whole process of drying. The relative 
and the absolute error values are smaller than or equal to 12% and 0.1, respectively (Figure 
10). 

The comparison of the models describing changes in water content during the pro-
cess of drying apple pomace in forced convection at 40 °C shows that the values of the 
absolute error are 5% higher for the Page model. The values of the absolute error are com-
parable. 

0

1

2

3

4

0 20 40 60 80

w
at

er
 c

on
te

nt
,  

kg
/k

g

time,  min

measurements model uI model uII

0
2
4
6
8

10
12
14

0 20 40 60 80 100

re
la

tiv
e 

er
ro

r. 
, %

time,  min

relative error uI relative error uII

0

1

2

3

4

-0.3 -0.2 -0.1 0.0 0.1 0.2

w
at

er
 c

on
te

nt
,  

kg
/k

g

absolute error

abolute error uI absolute error uII

Figure 8. Relative and absolute errors for modeling of water content changes in the process of drying
apple pomace in forced convection at 60 ◦C with microwave support (240 W).

Figure 9 presents the experimental drying curve and the drying curve determined
based on the Page model. The model describes the whole process of drying. The relative and
the absolute error values are smaller than or equal to 12% and 0.1, respectively (Figure 10).

The comparison of the models describing changes in water content during the process
of drying apple pomace in forced convection at 40 ◦C shows that the values of the absolute
error are 5% higher for the Page model. The values of the absolute error are comparable.

Figure 11 presents the experimental drying curve and the drying curve determined
based on the Page model of apple pomace in forced convection at 80 ◦C.

The values of the relative and the absolute errors are smaller than 20% and 0.1, respec-
tively (Figure 12). The relative error is large.

The comparison of the models describing changes of water content in the process of
drying apple pomace in forced convection at 80 ◦C, shows that the values of relative error
are 6% higher for the Page model.

Figures 9 and 11 present the experimental data and the data predicted based on the
Page model versus air temperature introduced in the dryer. The analysis of the curves
shows that the increase in the temperature has an impact on the kinetics of drying pomace.
For instance, it took 270 min to reach the equilibrium water content of 0.11 for the samples
dried at 40 ◦C, while it took only 120 min for the samples dried at 80 ◦C.
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Figure 9. The Page model of water content changes in the process of drying apple pomace in forced
convection at 40 ◦C.
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Figure 10. Relative and absolute errors for Page modeling of water content changes in the process of
drying apple pomace in forced convection at 40 ◦C.
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Figure 11. The Page model of water content changes in the process of drying apple pomace in forced
convection at 80 ◦C.
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Figure 12. Relative and absolute errors for Page modeling of water content changes in the process of
drying apple pomace in forced convection at 80 ◦C.

It may be concluded that both the distribution of measurement points and the values
of coefficients in Page equation indicate the intensity of the drying process. Similar relations
were observed by Jakubczyk [41], Jakubczyk and Wnorowska [42], and Seiiedlou et al. [43]
regarding the process of drying foamed apple pomace.

Table 1 presents the coefficients of equations that describe the kinetics of drying
depending on the method and parameters of the process.
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Table 1. Coefficients of equations that describe the kinetics of drying depending on the method and
parameters of the process.

Type of Drying Equation Coefficient

b k0 N K n

Models of external and internal heat and mass transfer

Forced
convection 40◦ 0.200668 0.0533 1.03 0.0258 -

Forced
convection 80◦ 0.196212 0.19986 4.60 0.0837 -

60-MVD 0.200260 0.0868 1.18 0.1078 -

Page model

Forced
convection 40◦ - 0.021995 - - 1.01

Forced
convection 80◦ - 0.069859 - - 1.02

Following the analysis of the values of the coefficients it may be concluded that, in
forced convection, the drying shrinkage coefficients vary little for different drying tempera-
tures. Drying coefficients k0 and K increase together with the increase in temperature, which
confirms the validity of the model applied. The complete verification of the theoretical
model also requires logical verification, in addition to empirical verification.

It is also worth noticing that parameter k in the Page model is interpreted as a drying
coefficient, whose physical dimension is associated with the rate of drying.

Velić et al. [15] confirmed that with the increase in air flow velocity, an increase in the
heat transfer coefficient and the effective diffusion coefficient is observed.

Sacilik et al. [44] found that increasing the drying air temperature and reducing the
thickness of the slices shortened the drying time and increased the drying speed. It was
shown that the logarithmic model showed a better fit with the experimental drying data
compared to the other models. Wang came to the same conclusions. Royen et al. [45], after
examining such process parameters as temperature, air humidity, air velocity and layer
thickness, on the kinetics of the process and water activity in the product, decided that the
thickness of the sample was the most important parameter. By increasing the slice thickness
from 4 to 12 mm, the time needed to achieve the required moisture content was extended
by over 500 min.

Kaleta et al. [46] in their study on the evaluation of apple drying models carried out a
statistical analysis of the parameters of these models and the temperature of the drying air.
The values of the constant drying rate K and the moisture diffusion coefficient increased
along with the temperature of the drying air.

4. Conclusions

The process of drying apple pomace may be modeled by means of Page equation. The
estimation results were consistent with the experimental results.

As expected, the results of the research also confirmed the fact that the temperature of
drying air had the greatest impact on drying time. The increase in temperature resulted
in a shortening of the drying time and in the increase in intensity of moisture release by
the pomace.

Despite the essence of kinetics, modeling of drying of materials is indispensable for
understanding the basic mechanism of transport, and is a precondition for successful
simulation or for the increase in the scale of the whole process in order to optimize it
or control working conditions. Simple models are effective for engineering purposes.
Mathematical modeling of dehydration process is an inherent part of design, development
and optimization of drying equipment.
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Present expectations of consumers regarding higher quality foodstuffs result in re-
search intensification and improvement of drying technology. The observed differences
in kinetics of drying and initial processing need to be taken into account when choosing
the best conditions of drying in order to improve the quality of the finished product. Con-
sumption of energy and economic viability of the process of drying apple pomace also
require consideration.
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Uniwersytetu Przyrodniczego: Poznań, Poland, 2009.
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