
����������
�������

Citation: Rajab, A.; Hafeez, A.;

Shaikh, A.; Alghamdi, A.; Al Reshan,

M.S.; Hamdi, M.; Rajab, K.

UCLAONT: Ontology-Based UML

Class Models Verification Tool. Appl.

Sci. 2022, 12, 1397. https://doi.org/

10.3390/app12031397

Academic Editor: Jinho Kim

Received: 31 August 2021

Accepted: 25 January 2022

Published: 28 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

UCLAONT: Ontology-Based UML Class Models Verification Tool
Adel Rajab 1 , Abdul Hafeez 2, Asadullah Shaikh 1 , Abdullah Alghamdi 1 , Mana Saleh Al Reshan 1 ,
Mohammed Hamdi 1 and Khairan Rajab 1,*

1 College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia;
adrajab@nu.edu.sa (A.R.); asshaikh@nu.edu.sa (A.S.); aaalghamdi@nu.edu.sa (A.A.);
msalreshan@nu.edu.sa (M.S.A.R.); mahamdi@nu.edu.sa (M.H.)

2 Department of Software Engineering, SMI University, Karachi 76400, Pakistan; ahkhan@smiu.edu.pk
* Correspondence: kdrajab@nu.edu.sa

Abstract: The software design model performs an important role in modern software engineering
methods. Especially in Model-Driven Engineering (MDE), it is treated as an essential asset of software
development; even programming language code is produced by the models. If the model has errors,
then they can propagate into the code. Model verification tools check the presence of errors in the
model. This paper shows how a UML class model verification tool has been built to support complex
models and unsupported elements such as XOR constraints and dependency relationships. This tool
uses ontology for verifying the UML class model. It takes a class model in XMI format and generates
the OWL file. Performs verification of model in two steps: (1) uses the ontology-based algorithm
to verify association multiplicity constraints; and (2) uses ontology reasoner for the verification of
XOR constraints and dependency relationships. The results show the proposed tool improves the
verification efficiency and supports the verification of UML class model elements that have not been
supported by any existing tool.

Keywords: ontology; model verification; class model; verification tool; MDE

1. Introduction

A model is an abstract representation that is used to analyze and comprehend a
system [1]. In the engineering world, models are used in almost every discipline, such as
the house map in civil engineering and circuit diagram in electronic engineering. These
models are used to understand the characteristics of the system [2]. In software engineering,
design models play a vital role in software development. In modern software engineering
methodologies, they are used to elicit requirements, design the system, and generate
the code.

Software design models are a formal description of the structures and behaviors
of the system. The discourse is the complete software design, including functionality,
architecture, collaboration, user interfaces, and interaction with other software [3]. In
software engineering, designing a model before the implementation is very beneficial. It
provides an understandable view of the system and improves communication among all
stakeholders. Furthermore, the software design model provides early identification of
incompleteness and inconsistencies in the underdeveloped system with the help of model
verification techniques [4,5].

Current software design modeling techniques such as Unified Modelling Language
(UML) and Systems Modeling Language (SysML) are robust and cover all aspects of soft-
ware development. However, they do not have a formal foundation. Therefore, verification
of the model is not possible in them. On the other side, formal modeling methods pro-
vide the capability of analysis. A formal model mathematically represents the software
specification and provides an automated reasoning facility [6–8]. They eliminate ambi-
guities, design faults and improve system reliability [9]. However, they are complex and

Appl. Sci. 2022, 12, 1397. https://doi.org/10.3390/app12031397 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12031397
https://doi.org/10.3390/app12031397
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7633-4742
https://orcid.org/0000-0003-4806-6159
https://orcid.org/0000-0002-5006-8527
https://orcid.org/0000-0002-2266-9608
https://orcid.org/0000-0001-6304-9125
https://orcid.org/0000-0002-1260-5854
https://doi.org/10.3390/app12031397
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12031397?type=check_update&version=2

Appl. Sci. 2022, 12, 1397 2 of 17

inspired by mathematics [10]. UML is a modeling language that is especially involved in
the specification and visualization of the object-oriented system. Initially, Rational software
developed the UML, but now Object Modeling Groups (OMG) managing it [11]. In the
UML, an underdeveloped software system is represented by a set of different models, and
each model focuses on a different facet of the software.

The UML class model is the most essential element of UML. According to a survey
presented in [12], it is the most frequently used UML model. It is also a vital ingredient
of the MDE process [13–15]. The main elements of a class model are classes and different
types of relationships such as dependency, association, and generalization [16]. Association
and generalization are also dependency relationships; however, they have specific seman-
tics [16]. These three relationships (dependency, association, generalization) are the basic
building block of UML and object-oriented modeling [16].

In modern software development methodology like Model-Driven Engineering (MDE),
the software design model is considered a nucleus of all development activities and is rec-
ognized as a core element rather than a traditional programming language code [3,4,17,18].
In Model-Driven Software Engineering, the programming language code is produced from
the design model automatically, and defects of the model can implicitly transfer in the
programming code, which is harder to determine and repair. Model verification is a feasible
solution to this problem.

Model verification ensures that the model will be built without errors. It makes sure
that the model must have some important correctness features such as satisfiability and
consistency [19]. Model is considered incorrect when it does not satisfy any correctness
features, and when it satisfies all correctness features, it is considered correct [19].

Satisfiability, consistency, and well-formedness are the most fundamental correctness
proprieties [19–21]. The consistency verifies whether the model elements are consistent
with the declaration, whereas well-formedness verifies whether a model is a valid instance
of its meta-model [19,20]. However, both of them only verify the initial level of syntax
weaknesses and do not concern the model’s semantic correctness. Semantic correctness
concerns the constraints which are specified in the model graphically such as associations,
dependencies, and generalizations, or textually defined through constraint language such
as Object Constraint Language (OCL).

The most fundamental semantic correctness property of the UML class model is
satisfiability [19]. Other important correctness properties which are verified and come
under the umbrella of satisfiability are strong satisfiability, weak satisfiability, and class
liveliness [22]. Strong satisfiability checks whether a model can instantiate successfully
in which one instance of each element successfully populates. Weak satisfiability checks
whether at least one or more elements of the model can be instantiated successfully. Class
liveliness checks whether a class can populate successfully. The problem addressed in this
work is twofold and can be stated as follows:

Firstly, current UML class model verification methods are sufficiently good to check
correctness. However, they do not focus on some fundamental class model elements such
as dependency relationships and XOR constraints. With few exceptions in which the
XOR constraint is indirectly supported by some existing methods through OCL, however,
OCL has some limitations. For example, UML specification does not restrict constraint
language, and according to the UML specification, constraints can be defined through
formal languages, informal languages (JAVA, C#), and natural language [23]. Most of
the Computer-Aided Software Engineering (CASE) tools do not support OCL or provide
limited support because commercial CASE tools do not see a large market of OCL [24].

Secondly, the problem faced by the current verification methods is scalability due to
its high computational complexity [13,25]. When they deal with large and complex models,
they consume enormous computational resources and time [14]. In [19], authors also
identified different research directions for future UML class diagram verification methods,
in which one is search space reduction for dealing with scalability issues. Therefore, there is

Appl. Sci. 2022, 12, 1397 3 of 17

a need for UML class model verification methods that efficiently verify large and complex
models within a reasonable time and with minimum computational resources.

Previously, we proposed ontology-based transformation and verification of UML class
model unsupported elements, that is, XOR constraints and dependency relationships. These
transformations map XOR and dependency relationships to an ontology for verification of
various correctness properties such as satisfiability, consistency, and consequences. The
proposed method verifies a large UML class model in an acceptable time [26]. In this paper,
we extend our work in multiple directions. Firstly, it presents the complete transformation
mechanism of UML’s XMI to ontology. Secondly, it demonstrates the implementation
details (Pseudocode) of the verification method proposed in the previous work. Finally, it
presents the complete transformation and the verification model. Furthermore, this paper
explores the various components of the tool and algorithms which have been used in the
Ontology-Based Verification method. Additionally, it shows the performance of the tool in
the real world for large and complex UML class models. In total, this paper presents the
software implementation of our previously published works [26–29].

The rest of the paper is structured as follows. Section 2 presents related work. Section 3
focuses on the running example along with the details of ontology-based finite satisfiability.
Section 4 explores the tool architecture with all details of transformation rules. Section 5
describes the experimental results measuring verification time as compared to other tools.
Finally, Section 6 provides the conclusions and future directions.

2. Related Work

The UML class model provides a graphical modeling notation without any formal
foundation [30]. The well-formedness rules have been specified in the meta-model without
any formal proof [31]. Therefore, different formal methods have been used to formalize and
verify meta-model and well-formedness in the initial research work [32,33]. Furthermore,
they also performed different analyses on the UML class models, such as diagrammatical
transformation analysis, intersection, and refinement analysis [33,34]. However, most
recent works focus on the consistency and satisfiability of the UML class model [24,35–40].

Ledang et al. [41] presented a tool ArgoUML+B on ArgoUML. This tool transformed
classes, class attributes, and class operations into B Machine and transformed OCL con-
straint into B’s method. In ArgoUML+B, the UML class model is inputted as XMI and
transformed into the B specification. Finally, this tool uses B Prover for checking the con-
sistency of the UML class model. Marcano et al. [42] build a tool called OCL2B, which
performs analysis on the UML class model and OCL. In the tool, the transformation pro-
cess performs in two stages. (1) an abstract machine is declared, representing the class
structure and the associations, and (2) abstract machines are made for all classes. OCL2B
uses OCAML language for transformation rules. Maraee et al. [37] developed a tool called
FiniteSatUSE, which uses the proposed algorithm FiniteSat for verification of generalization
relationships of the class model. This tool performs bounded verification of generalization
set constraint and analysis on different types of generalization, for example, tree structure,
acyclic structure, and graph structure through linear inequalities system.

Cabot et al. [43] proposed a tool called UMLtoCSP which uses Constraints Satisfaction
Problem (CSP) for representation of UML class diagram. In this tool, all UML class model
elements are represented through the set of variables, domains, and constraints of CSP,
and verification is performed in 2 stages. (1) cardinality variables for every instance
of classes, associations, domain, and entire constraints are defined. This step aims to
allocate legitimate values to all CSP variables, and if it is not possible, then CSP is declared
unsatisfiable. (2) an instance model is built through the value of cardinality variables.
UMLtoCSP takes a UML class model in the XML Meta-Model Interchange (XMI) format
and OCL in a separate text file. The XMI is parsed through the MDR, and the Dresden OCL
Toolkit processes OCL constraints. Anastasakis et al. [44] built a tool called UML2Alloy.
It formalized the class model and OCL into the specification of Alloy and used Alloy
Analyzer for variation. Maozi et al. [34] presented a plug-in CD2Alloy for ECLIPSE. It

Appl. Sci. 2022, 12, 1397 4 of 17

mapped advanced features of the class model through a combination of the basic construct
of Alloy. It supports different analyses on the UML class model, such as the intersection
and refinement analysis. It uses the FreeMarker template for making transformation rules.

Currently, ontology is extensively being used in software development practices, and
many researchers have used it for the specification and verification of numerous software
engineering objects and different UML models.

Nguyen et al. [45] combined USE-CASE modeling and goal-oriented techniques and
presented a verification framework through ontology for checking inconsistency, incor-
rectness, and incompleteness. The authors also created a tool called “GUITAR”, which
takes input requirements in a text format and transforms them into ontology. The tool
performs automatic reasoning through built-in reasoners and generates comprehensive
feedback about the problems. Corea et al. [46] represented the business in the ontology
and presented an ontology-based method for verifying business processes. In this method,
business rules are transformed in the logic program, and reasoning is performed to identify
model elements that violate the rules. Fellmann et al. [47] proposed an ontology-based tech-
nique for transformation and verification of business process model. This work divided the
verification task into two steps. In the first step, different model elements are transformed
into the ontology, and constraints of the model are represented through the rules. In the
second step, the ontology model and rules are tested through the built-in reasoner.

Sun et al. [48] proposed the transformation of software architecture into Web Ontology
Language (OWL) and used Semantic Web Rule Language (SWRL) for representing the
dynamic communication (constraints). Kezadri et al. [49] presented an ontology-based
transformation and verification of the behavioral model. They also proposed transforming
various verification and validation terms, elements, and relationships into the ontology. He
et al. [31] proposed ontology-based verification of UML behavioral models. The behavior
model is divided into static elements specified through ontology and dynamics elements
specified by DL-safe rules in this work. Dilo et al. [50] proposed the difference between
UML and Web Ontology Language (OWL) and presented many common elements such as
classes, attributes, and relationships. They also identified the difference between UML and
OWL, such as UML having many relationships (association, aggregation, and composition).
On the other side, OWL only has an object property.

Lastly, they presented that OWL and UML are compatible with each other. Bahaj et al. [51]
presented a different transformation procedure for the class model to ontology. They
transformed encapsulation and aggregation/composition into Object Property. Belghiat
et al. [52] proposed a graph-based transformation of the UML class Model into ontology.
Parreiras et al. [53] combined UML with OWL-DL for representing the software model.
They integrated the MOF meta-model as the backbone for both UML and OWL.

R. Clariso et al. [54] proposed incremental verification of the UML class model. The
significant feature of the proposed technique is the use of valid instances of the UML class
model as certificates of satisfiability. The proposed technique implemented the UML-based
Specification Environment (USE) Tool. Abbas, M et al. [55] present FoCaLiZe development
environment for specification and verification of UML class diagram. They generate
FoCaLiZe specification of multiple inheritances, dependency template, template binding,
and the navigation of OCL contained in the FoCaLiZe specification classes are transformed
into species, properties of a class into getter functions, operations into signatures, and OCL
constraints into species properties. FoCaLiZe uses Zenon theorem Prover for specification
verification. Perez [56] proposed a framework for reasoning on the UML class and the OCL
model through Constraint Programming Logic (CPL). They translate the UML class model
in constraint satisfaction problems and performed reasoning through the model-finding
formula and developed an Eclipse plug-in. the plug-in automatically translates the class
diagram into the CPL formula.

Current verification methods of the UML class model are capable of checking correct-
ness. However, they do support some fundamental constraints (such as XOR dependencies
and XOR). Another problem faced by the existing methods is scalability, due to high com-

Appl. Sci. 2022, 12, 1397 5 of 17

putational complexity when dealing with large and complex models verification methods
consume enormous computational resources and time. Various existing research works also
pointed out different research avenues for future UML class diagram verification methods
in which most important is search space reduction for dealing with scalability issues. There-
fore, there is a need of UML class model verification methods that efficiently verify large
and complex models within a reasonable time and with minimum computational resources.

3. Running Example

Throughout the paper, we will use a running example, simple enough to illustrate
the UCLAONT concepts and mechanisms concisely. This example represents the entire
verification process of the ontology-based verification process. However, faulty model and
its verification through ontology has been discussed in our previous work [27].

Figure 1 shows the running example “Monopoly Game”, which will demonstrate the
functionality of UCLAONT. Monopoly is a board game in which players roll dice to move
around the game board and try to buy various properties. Players gather rent from other
players to drive them into bankruptcy.

The “Model Monopoly” has six classes, eight associations, and two associations
between “player” and “Unowned property” are annotated with the XOR constraint.
Monopoly Game class is a central class which has association relationships with the three
classes Die, Players, and Board. The Plays association between Player and Monopoly Game
specifies that two to eight players can play the game together. The game will be played
with two dice is specified through Played with the association between Die and Monopoly
Game. The game will be played on one Board is specified by the association Played On. The
Board has 40 Squares as specified by the Contains association between Board and Square
classes. Zero to eight Pieces can be placed on Square is specified through Is-On association.
The Player can either Buy or Auction the property but cannot perform both actions because
the associations are marks as XOR.

Figure 1. Running Example of Monopoly Game.

Ontology-Based Finite Satisfiability

There are two techniques for verifying satisfiability of static model: (1) linear inequali-
ties; and (2) detection graph. In the first technique, a class model is transformed into linear
inequalities, and the satisfiability problem is solved by finding the solution of inequalities.
In the second technique, a class model is converted into a directed graph, and satisfiability
is checked through the detection of the critical cycle. Ontology is also based on graph-
theoretic structure and has concepts like vertices and edges of the graph. In this work
ontology-based technique is used for finding critical cycles in the ontology graph of the
class model. Figure 2 shows how an ontology graph of Figure 1 (Monopoly Game class
model) will be built.

Appl. Sci. 2022, 12, 1397 6 of 17

In graph-based representation, many cycles are not important for checking the class
model’s satisfiability, such as balance or greater. In the balance cycle, the same quantities
are involved for the division and multiplication for calculating cycle weight. Therefore,
quantity 1 is always produced. In the greater cycle, a smaller quantity for the division and a
larger quantity is involved for multiplication. Therefore, a quantity greater than 1 is always
produced. Both balance and greater cycles are not crucial for determining satisfiability.
Therefore, they should not be part of the search. Furthermore, one critical cycle is enough
for proving the unsatisfiability of the class model. As per the above investigation, this
work proposes an ontology-based technique that minimizes the search space for finding a
critical cycle in the ontology graph of the ontology-based representation of the UML class
model. In this proposed tool, the object property is used for traversing the graph. In the
proposed method, an arbitrary object is selected for traversing and step forward to the next
object property until and unless the next selected object property range becomes equal to
the domain of the first selected object property where the traversing was started. Further
details can be found in [27].

Figure 2. Ontology Graph of Monopoly Game Class Model.

UML classes connect to each other with different relationships; one of them is the
dependency relationship. The dependency relationships specify the object of class effects
on the object of another class such as in initiate dependency when an object of a class is
created, it also creates an object of another class. The dependency relationships are not
only used in the class diagram they can also be used in package diagrams, component
diagrams, and so forth. The dependency relationships which impact the correctness of
the class model only those are considered in this work such as create/Initiate, drive, call
and use. In the proposed solution, the dependency relationship is transformed into object
property and some additional restrictions are also applied on them such as use and calls
are annotated as transitive, and drive and create/initiate are annotated as transitive and
asymmetric. Sometimes a class model can become incorrect due to some concealed aspects
of the dependency such as a class model presented in Figure 3. According to the model,
Class A initiates the object of Class B, when the Class B object is initiated, it initiates the
object of Class C. Furthermore, Class C has a generalization relationship with Class D, and
the Class C object will also be considered a Class D object due to inheritance. ultimately,
there will be a cycle of objects initialization that will never end and the model will not be
finitely satisfiable.

Appl. Sci. 2022, 12, 1397 7 of 17

Figure 3. Infinitely Unsatisfiable Dependency Relationships.

4. UCLAONT Architecture

There are many tools available for the verification of the UML class model. However,
none of them focus on XOR constraints and dependency relationships. They also face scala-
bility issues: their performance goes down when they deal with large and complex models.
UCLAONT tool uses the ontology-based approach to verify large and complex association
constraints, XOR constraint and decadency constraint of the class model. Additionally, it
provides the formalization and verification of various XOR constraints and different types
of dependency relationships. The implemented approach in UCLAONT is very prompt
and can check the correctness of large models within a few milliseconds. The tool has been
implemented in Apache JENA, which is an open-source JAVA-based API. JENA is used
for extracting and writing OWL and RDF. It has many inference engines and also provides
support for many third-party inference engines. The core of JENA is a JAVA library that
manipulates the ontology graph.

The proposed tool takes the UML class model in the XML Metadata Interchange
(XMI) format, that is, XMI 2.41. The XMI provides the facility of exchanging UML models
among the CASE tools in XML format. It provides a common format of UML models
for sharing them among different CASE tools. The architecture of the prototype tool is
shown in Figure 4. The UML class model in the XMI format is given as an input to the
tool. The transformation component is responsible for transforming the UML class model
into the ontology, so the proposed method can be implemented. The reasoning component
is in charge of the verification of the UML class model. Finally, the feedback component
generates feedback on the verification result.

4.1. Transformation Component

The transformation component translates the UML class model into the ontology. The
transformation component contains the XLST templates, which map a given UML class
model elements to the corresponding ontology elements, and used Saxon 9 XSLT parser to
generate ontology TURTLE format. Figure 5 depicts the outline of the model transformation
process within the UCLAONT tool.

4.1.1. Transformation Rules

Rules are developed as eXtensible Stylesheet Language Transformations (XSLT). XSLT
is a language that transformed XML content into another Format, Such as HTML, RDF,
OWL. In the transformation rules, we transformed the UML XMI file into an OWL file
(Turtle Format). Other transformation techniques can be used for transformation, but XSLT
is very powerful than DOM and SAX. Its templates are based on XPath, which are very
powerful in term of performance to process XML documents. We used saxon9 to process
the XSLT because its engine supports standard Java application programming interfaces
and supports XSLT version 3.0.

Appl. Sci. 2022, 12, 1397 8 of 17

Figure 4. Architecture of UCLAONT.

Figure 5. Model Transformation Process of UCLAONT.

4.1.2. Class and Attributes

In the proposed tool, UML classes are transformed into ontology classes. In XMI,
we filter xmi:type uml:Class for classes and transformed it to rdf:type owl:Class. The
attributes of a class are declared as datatype properties of OWL and make the respected
class a domain of the property and datatype set as a rang.

Appl. Sci. 2022, 12, 1397 9 of 17

Rules (XSLT)
< x s l : i f t e s t =" ./@xmi : type = ’uml : Class ’ ">
: < x s l : value −of s e l e c t ="@name"/> rdf : type owl : Class .
</ x s l : i f >

Example (XMI)
<packagedElement xmi : type="uml : Class "
xmi : id="_0bvU1IwREeeHI8ZOY9KM8g" name=" Player "/>

Output (OWL)
: Player rdf : type owl : Class .

4.1.3. Generalization Relationship

The generalization relation of the UML class diagram transformed into the subClass
constraints of OWL. In XMI, we filter generalization keywords for generalization relation-
ships. Then the key function is used for searching parent class.

Rules (XSLT)
< x s l : for −each s e l e c t =" ./ g e n e r a l i z a t i o n ">
: < x s l : value −of s e l e c t =" . . / @name"/> r d f s : subClassOf
: < x s l : value −of s e l e c t =" key (’ Class id ’ , @general)/@name" / >.
</ x s l : for −each >

Example (XMI)
<packagedElement xmi : type="uml : Class " xmi : id=" _LxECg " name="A"/>
<packagedElement xmi : type="uml : Class " xmi : id="_LxECh" name="B">
< g e n e r a l i z a t i o n xmi : type="uml : Genera l iza t ion " xmi : id="_LxEC"
general=" _LxECg "/>
</packagedElement >

Output (OWL)
:A rdf : type owl : Class .
: B rdf : type owl : Class ;
r d f s : subClassOf :A

4.1.4. Association

The association relationship is transformed into the object property of OWL, and
respected classes appear as domain and range. In XMI, we filter the UML: Association
keyword for the association. We defined a customized function in XSLT for the identification
of class positions in the association. If the class appeared in position one, it appeared as
domain, and the other class appeared as a range. Additionally, another object property
is added as an inverse of the declared property due to maintained two-way navigation
between classes.

Rules (XSLT)
< x s l : i f t e s t =" ./@xmi : type = ’uml : Assoc ia t ion ’ ">
< x s l : choose >
< x s l : when t e s t ="mf : check (. / ownedEnd/@xmi : id , . . / ownedRule/
@constrainedElement) "> </ x s l : when>
< x s l : otherwise >
: < x s l : value −of s e l e c t ="@name"/> rdf : type owl : ObjectProperty ;
< x s l : for −each s e l e c t =" ./ownedEnd">
< x s l : i f t e s t =" p o s i t i o n () = 1 ">
r d f s : domain : < x s l : value −of s e l e c t =" key (’ Class id ’ , @type)/@name" / >;
</ x s l : i f >
< x s l : i f t e s t =" p o s i t i o n () ! = 1 ">
r d f s : range : < x s l : value −of s e l e c t =" key (’ Class id ’ , @type)/@name" / >.
</ x s l : i f >
</ x s l : for −each >

Appl. Sci. 2022, 12, 1397 10 of 17

: inv −< x s l : value −of s e l e c t ="@name"/> rdf : type owl : ObjectProperty ;
owl : inverseOf : < x s l : value −of s e l e c t ="@name" / >.

Example (XMI)
<packagedElement xmi : type="uml : Class " xmi : id="_C" name=" Player "/>
<packagedElement xmi : type="uml : Assoc ia t ion " xmi : id="_D"
name=" Plays " memberEnd="_CE">
<ownedEnd xmi : type="uml : Property " xmi : id="_CE" type=" _CJ "
a s s o c i a t i o n ="_D"/>
<ownedEnd xmi : type="uml : Property " xmi : id=" _Cc "
type=" _Cf " a s s o c i a t i o n ="_D"/> </packagedElement >
<packagedElement xmi : type="uml : Class " xmi : id=" _E "
name=" Monopoly Game"/>

Output (OWL)
: Plays rdf : type owl : ObjectProperty ;
r d f s : domain : Player ;
r d f s : range : Monopoly Game ;
: inv −Plays rdf : type owl : ObjectProperty ;
r d f s : domain : Monopoly Game ;
r d f s : range : Player ;
: Plays owl : inverseOf : inv −Plays

4.1.5. Multiplicities

In the association relationship, multiplicities define how many instances of a class can
be linked to how many instances of the other class. Association multiplicity can be defined
in various ways such as range of values, an exact value, unlimited, and a set of distinct
values. In ontology, the association multiplicity is represented by qualified cardinality
in Range constructs. We specified UML association multiplicities in ontology through
owl:minQualifiedCardinality and owl:maxQualifiedCardinalityc in owl:equivalentClass
constraint.

Rule (XSLT)
< x s l : i f t e s t =" p o s i t i o n () ! = 1 ">
< x s l : value −of s e l e c t =" key (’ Class id ’ , . / preceding − s i b l i n g : : *
[1] / @type)/@name"/>
owl : equiva lentClass [rdf : type owl : Class ;
owl : i n t e r s e c t i o n O f ([rdf : type owl : R e s t r i c t i o n
owl : onProperty : < x s l : value −of s e l e c t =" . . / @name" / >;
owl : onClass : < x s l : value −of s e l e c t =" key (’ Class id ’ , @type)/@name" / >;
owl : minQual i f iedCardinal i ty "< x s l : choose >
< x s l : when t e s t =" not (. / lowerValue) "> 1 </ x s l : when>
< x s l : when t e s t =" ./ lowerValue/@value "> < x s l : value −of s e l e c t =" .
/lowerValue/@value "/> </ x s l : when> < x s l : otherwise > 0 </ x s l : otherwise >
</ x s l : choose >"^^xsd : nonNegativeInteger] [rdf : type owl : R e s t r i c t i o n ;
owl : onProperty : < x s l : value −of s e l e c t =" . . / @name" / >;owl : onClass
: < x s l : value −of s e l e c t =" key (’ Class id ’ , @type)/@name" / >;
owl : maxQual i f iedCardinal i ty "
< x s l : choose >
< x s l : when t e s t =" not (. / upperValue) "> 1 </ x s l : when>
< x s l : when t e s t =" ./ upperValue/@value ">< x s l : value −of s e l e c t =" ./
upperValue/@value "/> </ x s l : when>
< x s l : otherwise > 0 </ x s l : otherwise >
</ x s l : choose >"^^xsd : nonNegativeInteger])]
</ x s l : i f >

Example (XMI)
<ownedEnd xmi : type="uml : Property " xmi : id=" _bc1 " a s s o c i a t i o n =" Plays ">
<upperValue xmi : type=" uml : L i t e r a l I n t e g e r " xmi : id=" _b1 " value=" 1 "/>

Appl. Sci. 2022, 12, 1397 11 of 17

<lowerValue xmi : type="uml : L i t e r a l I n t e g e r " xmi : id=" _b2 " value=" 1 "/>
</ownedEnd>

Output (OWL)
r d f s : range [rdf : type owl : Class ;
owl : i n t e r s e c t i o n O f ([rdf : type owl : R e s t r i c t i o n ; owl : onProperty : Plays ;
owl : onClass : Monopoly Game ; owl : minQual i f iedCardinal i ty
" 1 "^^xsd : nonNegativeInteger] [rdf : type owl : R e s t r i c t i o n ;
owl : onProperty : Plays ; owl : onClass : Monopoly Game ;
owl : maxQual i f iedCardinal i ty " 1 "^^xsd : nonNegativeInteger])] .

4.1.6. XOR Constraint

In the UML class model, a class can be associated with multiple associations with other
class/classes. These associations can be mutually exclusive by XOR constraint, as shown in
Figure 1, where Player and Unowned Property classes are linked through Buy and Auction
associations. The XOR constraint can be applied to a single association when an association
is asscoaited with more than one class, as shown in Figure 6, where the Account class is
associated with the Company and Person classes through Belong association. In this case,
the XOR constraint restricts the instance of a source class which can be linked only to the
one target class instance.

Figure 6. XOR Constraint on Single Association between Different Classes.

In the proposed tool, for the first case, two disjoint object properties are declared
for XOR association constraint. Due to disjoint constraint, an instance of Player can be
connected with an instance of Unowned Property through object property Buy or through
object property Auction but not both of them.

Rule (XSLT)
< x s l : i f t e s t ="@name= ’ xor ’ ">
< x s l : v a r i a b l e name=" abc " s e l e c t =" tokenize (@constrainedElement , ’ ’) "/>
< x s l : v a r i a b l e name= " key1 " s e l e c t =" key (’ consid ’ , $abc [1]) / @assoc ia t ion "/>
< x s l : v a r i a b l e name= " key2 " s e l e c t =" key (’ consid ’ , $abc [2]) / @assoc ia t ion "/>
< x s l : v a r i a b l e name=" Ass1 " s e l e c t =" key (’ Class id ’ , $key1)/@name"/>
< x s l : v a r i a b l e name =" Ass2 " s e l e c t =" key (’ Class id ’ , $key2)/@name"/>
< x s l : v a r i a b l e name=" Ass1End " s e l e c t =" key (’ Class id ’ , $key1)/@memberEnd"/>
< x s l : v a r i a b l e name =" Ass2End " s e l e c t =" key (’ Class id ’ , $key2)/@memberEnd"/>
< x s l : v a r i a b l e name=" leftAssownedend1 " s e l e c t ="mf : s e a r c h o b j e c t ($Ass1End , 2) "/>
< x s l : v a r i a b l e name=" l e f t c l a s s i d 1 " s e l e c t =" key (’ consid ’ , $leftAssownedend1)
/@type "/>
< x s l : v a r i a b l e name=" rightAssownedend1 " s e l e c t ="mf : s e a r c h o b j e c t ($Ass1End , 1)
"/>
< x s l : v a r i a b l e name=" r i g h t c l a s s i d 1 " s e l e c t =" key (’ consid ’ , $rightAssownedend1)
/@type "/>
< x s l : v a r i a b l e name=" rightAssownedend2 " s e l e c t ="mf : s e a r c h o b j e c t ($Ass2End , 1) "/>
< x s l : v a r i a b l e name=" r i g h t c l a s s i d 2 " s e l e c t =" key (’ consid ’ , $rightAssownedend2)
/@type "/>

Example (XMI)
<ownedRule xmi : type="uml : Constra int " xmi : id="_Q1" name=" xor "
constrainedElement="_Q2 _Q1">
< s p e c i f i c a t i o n xmi : type="uml : L i t e r a l S t r i n g " xmi : id="_Q2" value=" "/>
</ownedRule>
<packagedElement xmi : type="uml : Class " xmi : id="_Q1" name=" Player "/>

Appl. Sci. 2022, 12, 1397 12 of 17

<packagedElement xmi : type="uml : Assoc ia t ion " xmi : id="_Q3" name="Buy">
</packagedElement >
<packagedElement xmi : type="uml : Assoc ia t ion " xmi : id="_Q6" name=" Auction ">
</packagedElement >
<packagedElement xmi : type="uml : Class " xmi : id=" _Q11 " name=" Auction "/>

Output (OWL)
: Unowned Property rdf : type owl : Class .
: P layers rdf : type owl : Class .
: Auction rdf : type owl : ObjectProperty ;
: Buy rdf : type owl : ObjectProperty ;
owl : propertyDis jo intWith : Auction .

For the second case, the association is transformed into an object property with the
constraint as shown below.

Rule (XSLT)
< x s l : when t e s t =" $Ass1=$Ass2 ">
: < x s l : value −of s e l e c t =" $Ass1 "/> rdf : type owl : ObjectProperty .
: < x s l : value −of s e l e c t =" key (’ Class id ’ , $ l e f t c l a s s i d 1)/@name"/>
owl : equiva lentClass [rdf : type owl : Class ;
owl : unionOf ([rdf : type owl : Class ;
owl : i n t e r s e c t i o n O f ([rdf : type owl : Class ;
owl : complementOf [rdf : type owl : R e s t r i c t i o n ;
owl : onProperty : < x s l : value −of s e l e c t =" $Ass1 "/> ;
owl : someValuesFrom : < x s l : value −of s e l e c t =" key (’ Class id ’ , $ r i g h t c l a s s i d 2)
/@name" / > ;]]
[rdf : type owl : R e s t r i c t i o n ; owl : onProperty : < x s l : value −of s e l e c t =" $Ass1 "/> ;
owl : someValuesFrom : < x s l : value −of s e l e c t =" key (’ Class id ’ , $ r i g h t c l a s s i d 1)
/@name" / > ;])]
[rdf : type owl : Class ;
owl : i n t e r s e c t i o n O f ([rdf : type owl : Class ;
owl : complementOf [rdf : type owl : R e s t r i c t i o n ;
owl : onProperty : < x s l : value −of s e l e c t =" $Ass1 "/> ;
owl : someValuesFrom : < x s l : value −of s e l e c t =" key (’ Class id ’ , $ r i g h t c l a s s i d 1)
/@name" / > ;]]
[rdf : type owl : R e s t r i c t i o n ;
owl : onProperty : < x s l : value −of s e l e c t =" $Ass1 " / >;
owl : someValuesFrom : < x s l : value −of s e l e c t =" key (’ Class id ’ , $ r i g h t c l a s s i d 2)
/@name" / > ;])])] . </ x s l : when>

Example (XMI)
<packagedElement xmi : type="uml : Class " xmi : id=" _L1 " name=" Account "/>
<packagedElement xmi : type="uml : Assoc ia t ion " xmi : id=" _L2 " name=" Belong ">
</packagedElement >
<packagedElement xmi : type="uml : Class " xmi : id=" _L10 " name=" Person "/>
<packagedElement xmi : type="uml : Class " xmi : id=" _L11 " name="Company">
</packagedElement >

Output (OWL)
: Account
owl : equiva lentClass [rdf : type owl : Class ; owl : i n t e r s e c t i o n O f ([rdf : type owl : Class ;
owl : i n t e r s e c t i o n O f ([rdf : type owl : Class ; owl : complementOf [rdf : type owl : R e s t r i c t i o n ;
owl : onProperty : Belong ; owl : someValuesFrom : Person]] [rdf : type owl : R e s t r i c t i o n ;
owl : onProperty : Travel ; owl : someValuesFrom : CommercialVehicle])]
[rdf : type owl : Class ; owl : unionOf ([rdf : type owl : R e s t r i c t i o n ; owl : onProperty : Belong ;
owl : someValuesFrom : Vehic le] [rdf : type owl : R e s t r i c t i o n ; owl : onProperty : Travel ;
owl : someValuesFrom : Company])])] .

4.2. Reasoning Component

After transformation, the reasoning component performs model verification. The rea-
soning component initially passes the transformed ontology to the association satisfiability
verifier sub-component, which uses an ontology-based algorithm to determine whether the
association multiplicity constraints are finitely satisfiable, and the model has a finite number
of elements. The ontology-based algorithm optimized the “detection graph technique” and
improved the verification time through the search space reduction. It transformed the Class
model into the ontology graph, as shown in Figure 2, and traverse the graph for finding the
critical cycles. The tool does not transverse unimportant cycles (greater, balance cycles),
which cause unnecessary delay in the verification process. Here is an abstract pseudo-code
of the ontology-based verification of association constraints.

Appl. Sci. 2022, 12, 1397 13 of 17

CheckCardinality ()
for (Graph g :list)
findPath(g,g.getRange , g.getDomain);
CriticalCycle=false;
for (CardFeedBackObject f : fb)
if (f.criticalCycle)
CriticalCycle=true;
return CriticalCycle;
findPath(Graph g,String r, String s)
String p=g.getProperty ();
Path.add(p);
weight =1.0;
while (true)
Graph g1=searchInverse(p);
weight *=g.getMax *(1.0/ g1.getMin);
g= searchInGraph(g.getRange ,g.getProperty);
r=g.getRange;
p=g.getProperty;
Path.add(p);
if (s=r)
g1=searchInverse(p);
weight *=g.getMax *(1.0/ g1.getMin);
break;

If the association constraints are successfully verified, then the verification process
moves toward the verification of XOR constraint and dependency realtionship. The XOR
constraint verifier sub-component verifies the satisfiability of both types of XOR constraints
through built-in ontology reasoner.

4.3. Feedback Component

Once the UML class model is verified successfully or fails in any test, the result of
the verification is prepared by the feedback component. In the failure condition, a proper
reason for the failure is generated by the feedback component, as shown in Figure 7.

Figure 7. Verification Result Generated from UCLAONT.

5. Experimental Results

We implemented our approach as a Java prototype tool which has been already
discussed in the previous section. For the subject of our study, we consider 11 different
UML class models in which six models are used for association verification, 5 are used for
XOR constraints. The Bellman-Ford algorithm [57] has been used to compare the proposed
method because Bellman-ford is also a graph-based technique for detecting negative weight
critical cycles. Many current verification techniques have employed the same with a little
bit of adjustment for verification of satisfiability of association constraint. Furthermore,
we also compared the proposed tool with UMLtoCSP and Alloy because they are widely
used. To be justified, the proposed approach should provide an advantage over OCL based

Appl. Sci. 2022, 12, 1397 14 of 17

approach that does not support direct verification of XOR constraint. We thus compared the
performance of the proposed approach with UMLtoCSP and UML2Alloy, which support
verification of the UML class model with OCL.

For the performance verification of the proposed tool, the experimental setup was
made to run on a Core i7 machine with 4 GB of RAM. However, UMLtoCSP tool does not
execute on 64-bit architecture due to this experimental setup was made to run on Core2Duo
1.34 GHz computer with two Gigabytes of RAM.

The implemented approach in UCLAONT is very prompt and can check the correct-
ness of large and complex model within a few milliseconds, as shown in Table 1 and Figure 8.
For example, a class model containing 100 classes and 100 associations can be verified in
0.68 s in Alloy [44] and 0.89 s in UMLtoCSP [15,43]. On the other side, UCLAONT takes
only 0.003963 s. The presented tool offers two major advantages compared to other similar
tools. First, it supports verification of large class model in a reasonable time, such as a class
model containing 1000 classes and 1000 associations it takes only 0.090366 s. Secondly, it
provides unbounded verification of XOR constraints and dependency relationships.

Table 1. Experimental Results.

Model Classes Associations UMLTOCSP Alloy UMLtoONTO

Employee Department 3 5 0.032 s 0.032 s 0.00099 s

Travel Agency 12 12 0.51 s 0.51 s 0.00210 s

Pet Store 18 19 0.65 s 0.631 s 0.00328 s

Programmed 1 100 100 0.89 s 0.686 s 0.003963 s

Programmed 2 500 500 Timeout 3.890 s 0.04534 s

Programmed 3 1000 1000 Timeout 7.28 s 0.090366 s

Figure 8. Verification Time of UML Class Models with UMLtoCSP, Alloy, and UCLAONT.

Table 2 presents the execution time to verify the XOR models. For the first model, that
is, Project-Tasks, the proposed tool takes on average 0.035 s with three classes and 1 XOR
association. In Order Management, which has XOR constraints of type 2 (XOR on multiple
associations), the proposed tool takes on average 0.103 s with eight classes and three XOR
association constraints. In the Restaurant model, which has XOR constraints of type 1 (XOR
on single association), the proposed tool takes on average 0.100 s with eight classes and
three XOR associations. the Meta-model of value properties attributes model, which has
both types of XOR constraints takes on average 0.080 s. Finally, for checking the proposed
tool’s performance on a large model, an experiment is performed on Programmed 4, which

Appl. Sci. 2022, 12, 1397 15 of 17

has 100 classes, 200 associations, 100 XOR constraints, and the proposed tool takes on
average 0.570 s.

Table 2. Experimental Results.

Model Name Classes Associations XOR Case 1 Case 2 Verification Time

Project Tasks 4 3 1 X × 0.035

Order Management 6 8 3 × X 0.103

Meta-model of value Properties Attributes 4 10 3 X × 0.080

Restaurant 8 8 3 X X 0.100

Programmed 4 100 200 100 × X 0.547

6. Conclusions and Future Work

Software Model verification tools are required in many software methodologies, in-
cluding Model-Driven Engineering, Agile, rational unified process methodology, and so
forth. Generally, a model verification tool checks the bugs’ presence in the model. UML is an
industry-standard and well-recognized modeling language among software practitioners.
The UML class model is the essential UML model, and it is used in the analysis and design.
In the existing literature, various correctness properties of the UML class model have been
checked by vacuous tools. However, the two correctness properties: (1) consistency; and
(2) satisfiability are the most frequently tested correctness properties. Consistency can be
cover in satisfiability because consistency focuses on non-emptiness and finite satisfiability
focuses on finiteness. This paper presents a research tool—UCLAONT—which verifies
the UML class model. The tools can verify a complex class model which has thousands of
classes and associations. Additionally, the tool supports verification of XOR constraints
and dependency relationships, which did not support any existing tool. This tool uses an
ontology-based graph algorithm to verify the class model and provides feedback to the
user if it is unsatisfiable. As our future work, we plan to develop an Eclipse plugin along
with other relationships such as aggregations.

Author Contributions: Conceptualization, A.R., A.H. and A.S.; Methodology, A.A. and A.S.; Soft-
ware, A.H.; Validation, M.S.A.R., M.H. and K.R.; Formal Analysis, A.H.; Investigation, A.R. and
M.S.A.R.; Data Curation, M.H. and K.R.; Writing—Original Draft Preparation, A.R., A.H. and A.S.;
Writing—Review & Editing, A.A. and M.S.A.R.; Visualization, M.H.; Supervision, K.R.; Funding
Acquisition, A.A. All authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to express their gratitude to the ministry of education and the
deanship of scientific research Najran University Kingdom of Saudi Arabia for their financial and
technical support under code number NU/-/SERC/10/554.

Data Availability Statement: All the data is available within the article and relevant software
code for this research work are stored in GitHub and can be downloaded from this link https:
//github.com/hafeez1978/UMLtoON, accessed on 30 August 2021.

Conflicts of Interest: The authors declare that they have no conflict of interest to report regarding
the present study.

References
1. Eriksson, H.E.; Penker, M. Business Modeling with UML; Citeseer: New York, NY, USA, 2000 ; pp. 1–12.
2. Rhazali, Y.; Moulay Youssef, H.; Mouloudi, A. A Model transformation from computing independent model to platform

independent model in model driven architecture. J. Ubiquitous Syst. Pervasive Netw. 2017, 8, 19–26. [CrossRef]
3. Biehl, M. Literature study on model transformations. R. Inst. Technol. Tech. Rep. ISRN/KTH/MMK 2010, 291, 1–28.
4. Mens, T.; Van Gorp, P. A taxonomy of model transformation. Electron. Notes Theor. Comput. Sci. 2006, 152, 125–142. [CrossRef]
5. Meedeniya, D.A. Correct Model-to-Model Transformation for Formal Verification. Ph.D. Thesis, University of St Andrews,

St Andrews, UK, 2013.
6. Singh, M.; Sharma, A.K.; Saxena, R. An UML+ Z framework for validating and verifying the Static aspect of Safety Critical

System. Procedia Comput. Sci. 2016, 85, 352–361. [CrossRef]

https://github.com/hafeez1978/UMLtoON
https://github.com/hafeez1978/UMLtoON
http://dx.doi.org/10.5383/JUSPN.08.01.003
http://dx.doi.org/10.1016/j.entcs.2005.10.021
http://dx.doi.org/10.1016/j.procs.2016.05.243

Appl. Sci. 2022, 12, 1397 16 of 17

7. Dwyer, M.B.; Hatcliff, J.; Robby, R.; Pasareanu, C.S.; Visser, W. Formal software analysis emerging trends in software model
checking. In Proceedings of the 2007 Future of Software Engineering, Minneapolis, MN, USA, 23–25 May 2007 ; pp. 120–136.

8. Filax, M.; Gonschorek, T.; Ortmeier, F. Correct formalization of requirement specifications: A v-model for building formal models.
In International Conference on Reliability, Safety, and Security of Railway Systems; Springer: Berlin/Heidelberg, Germany, 2016;
pp. 106–122.

9. Bowen, J.P. Formal Specification and Documentation Using Z: A Case Study Approach; International Thomson Computer Press:
London, UK, 1996; Volume 66.

10. Beato, M.E.; Barrio-Solórzano, M.; Cuesta, C.E.; de la Fuente, P. UML automatic verification tool with formal methods. Electron.
Notes Theor. Comput. Sci. 2005, 127, 3–16. [CrossRef]

11. Kobryn, C. UML 2001: A standardization odyssey. Commun. ACM 1999, 42, 29–37. [CrossRef]
12. Dobing, B.; Parsons, J. How UML is used. Commun. ACM 2006, 49, 109–113. [CrossRef]
13. Shaikh, A.; Wiil, U.K. A feedback technique for unsatisfiable UML/OCL class diagrams. Softw. Pract. Exp. 2014, 44, 1379–1393.

[CrossRef]
14. Shaikh, A.; Wiil, U.K.; Memon, N. Evaluation of tools and slicing techniques for efficient verification of UML/OCL class diagrams.

Adv. Softw. Eng. 2011, 2011, 370198. [CrossRef]
15. Shaikh, A.; Wiil, U.K. UMLtoCSP (UOST): A tool for efficient verification of UML/OCL class diagrams through model slicing. In

Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering, Cary, NC, USA,
11–16 November 2012; ACM: New York, NY, USA, 2012; p. 37.

16. Rumbaugh, J.; Jacobson, I.; Booch, G. The Unified Modeling Language Reference Manual; Pearson Higher Education: Hoboken, NJ,
USA, 2004.

17. Batory, D.; Azanza, M. Teaching model-driven engineering from a relational database perspective. Softw. Syst. Model. 2017,
16, 443–467. [CrossRef]

18. Hilken, F.; Gogolla, M. User Assistance Characteristics of the USE Model Checking Tool. arXiv 2017, arXiv:1701.08471.
19. Cabot, J.; Clarisó, R. UML/OCL verification in practice. In Proceedings of the ChaMDE 2008 Workshop Proceedings: International

Workshop on Challenges in Model-Driven Software Engineering, Toulouse, France, 28 September–3 October 2008; ACM:
New York, NY, USA, 2008; pp. 31–35.

20. Przigoda, N.; Soeken, M.; Wille, R.; Drechsler, R. Verifying the structure and behavior in UML/OCL models using satisfiability
solvers. IET Cyber-Phys. Syst. Theory Appl. 2016, 1, 49–59. [CrossRef]

21. Shaikh, A.; Clarisó, R.; Wiil, U.K.; Memon, N. Verification-driven slicing of UML/OCL models. In Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, Antwerp, Belgium, 20–24 September 2010; ACM: New York, NY,
USA, 2010; pp. 185–194.

22. Cabot, J.; Claris, R.; Riera, D. Verification of UML/OCL class diagrams using constraint programming. In Proceedings of the
2008 IEEE International Conference on Software Testing Verification and Validation Workshop, Lillehammer, Norway, 9–11 April
2008; pp. 73–80.

23. Object Management Group. OMG Unified Modeling Language TM (OMG UML) Superstructure v. 2.3. InformatikSpektrum 2010,
21, 758.

24. Pandey, R. Object constraint language (OCL) past, present and future. ACM Sigsoft Softw. Eng. Notes 2011, 36, 1–4. [CrossRef]
25. Balaban, M.; Maraee, A. Finite satisfiability of UML class diagrams with constrained class hierarchy. ACM Trans. Softw. Eng.

Methodol. (TOSEM) 2013, 22, 24. [CrossRef]
26. Shaikh, A.; Hafeez, A.; Elmagzoub, M.; Alghamdi, A.; Siddique, A.; Shahzad, B. Ontology-Based Verification of UML Class

Model XOR Constraint and Dependency Relationship Constraints. Intell. Autom. Soft Comput. 2021, 27, 565–579. [CrossRef]
27. Khan, A.H.; Musavi, S.H.A.; Rehman, A.U.; Shaikh, A. Ontology-Based Finite Satisfiability of UML Class Model. IEEE Access

2018, 6, 3040–3050. [CrossRef]
28. Hafeez, A.; Abbas, S.; Rehman, A. Ontology-Based Transformation and Verification of UML Class Model. Int. Arab. J. Inf. Technol.

2020, 7, 758–768. [CrossRef]
29. Shaikh, A.; Khan, A.H.; Wagan, A.A.; Alrizq, M.; Alghamdi, A.; Reshan, M.S.A. More Than Two Decades of Research on

Verification of UML Class Models: A Systematic Literature Review. IEEE Access 2021, 9, 142461–142474. [CrossRef]
30. Truong, N.T.; Souquières, J. An approach for the verification of UML models using B. In Proceedings of the 11th IEEE International

Conference and Workshop on the Engineering of Computer-Based Systems, Brno, Czech Republic, 27 May 2004; pp. 195–202.
31. He, H.; Wang, Z.; Dong, Q.; Zhang, W.; Zhu, W. Ontology-based semantic verification for uml behavioral models. Int. J. Softw.

Eng. Knowl. Eng. 2013, 23, 117–145. [CrossRef]
32. Berardi, D.; Calvanese, D.; De Giacomo, G. Reasoning on UML class diagrams. Artif. Intell. 2005, 168, 70–118. [CrossRef]
33. France, R.; Evans, A.; Lano, K.; Rumpe, B. The UML as a formal modeling notation. Comput. Stand. Interfaces 1998, 19, 325–334.

[CrossRef]
34. Maoz, S.; Ringert, J.O.; Rumpe, B. CD2Alloy: Class diagrams analysis using Alloy revisited. In Proceedings of the International

Conference on Model Driven Engineering Languages and Systems, Wellington, New Zealand, 16–21 October 2011; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 592–607.

35. Anastasakis, K.; Bordbar, B.; Georg, G.; Ray, I. On challenges of model transformation from UML to Alloy. Softw. Syst. Model.
2010, 9, 69. [CrossRef]

http://dx.doi.org/10.1016/j.entcs.2004.10.024
http://dx.doi.org/10.1145/317665.317673
http://dx.doi.org/10.1145/1125944.1125949
http://dx.doi.org/10.1002/spe.2211
http://dx.doi.org/10.1155/2011/370198
http://dx.doi.org/10.1007/s10270-015-0488-7
http://dx.doi.org/10.1049/iet-cps.2016.0022
http://dx.doi.org/10.1145/1921532.1921543
http://dx.doi.org/10.1145/2491509.2491518
http://dx.doi.org/10.32604/iasc.2021.015071
http://dx.doi.org/10.1109/ACCESS.2017.2786781
http://dx.doi.org/10.34028/iajit/17/5/9
http://dx.doi.org/10.1109/ACCESS.2021.3121222
http://dx.doi.org/10.1142/S0218194013500010
http://dx.doi.org/10.1016/j.artint.2005.05.003
http://dx.doi.org/10.1016/S0920-5489(98)00020-8
http://dx.doi.org/10.1007/s10270-008-0110-3

Appl. Sci. 2022, 12, 1397 17 of 17

36. Artale, A.; Calvanese, D.; Ibáñez-García, A. Full satisfiability of UML class diagrams. In Proceedings of the International
Conference on Conceptual Modeling, Vancouver, BC, Canada, 1–4 November 2010; Springer: Berlin/Heidelberg, Germany, 2010;
pp. 317–331.

37. Maraee, A.; Balaban, M. Efficient recognition of finite satisfiability in UML class diagrams: Strengthening by propagation of
disjoint constraints. In Proceedings of the 2009 International Conference on Model-Based Systems Engineering, Herzeliya and
Haifa, Israel, 2–5 March 2009; pp. 1–8.

38. Malgouyres, H.; Motet, G. A UML model consistency verification approach based on meta-modeling formalization. In
Proceedings of the 2006 ACM Symposium on Applied Computing, Dijon, France, 23–27 April 2006; ACM: New York, NY, USA,
2006; pp. 1804–1809.

39. Cadoli, M.; Calvanese, D.; De Giacomo, G.; Mancini, T. Finite satisfiability of UML class diagrams by Constraint Programming.
CSP Tech. Immed. Appl. (CSPIA) 2004, 2, 2–16.

40. Cabot, J.; Teniente, E. Incremental integrity checking of UML/OCL conceptual schemas. J. Syst. Softw. 2009, 82, 1459–1478.
[CrossRef]

41. Ledang, H. Automatic translation from UML specifications to B. In Proceedings of the 16th Annual International Conference on
Automated Software Engineering (ASE 2001), San Diego, CA, USA, 26–29 November 2001; p. 436.

42. Marcano, R.; Levy, N. Using B formal specifications for analysis and verification of UML/OCL models. In Workshop on Consistency
Problems in UML-Based Software Development, Proceedings of the 5th International Conference on the Unified Modeling Language, Dresden,
Germany, 30 September–4 October 2002; Citeseer: New York, NY, USA, 2002; pp. 91–105.

43. Cabot, J.; Clarisó, R.; Riera, D. UMLtoCSP: A tool for the formal verification of UML/OCL models using constraint programming.
In Proceedings of the Twenty-Second IEEE/ACM International Conference on Automated Software Engineering, Atlanta, GA,
USA, 5–9 November 2007; ACM: New York, NY, USA, 2007; pp. 547–548.

44. Bordbar, B.; Anastasakis, K. UML2ALLOY: A Tool for Lightweight Modelling of Discrete Event Systems. In Proceedings of the
IADIS International Conference on Applied Computing, Algarve, Portugal, 22–25 February 2005; pp. 209–216.

45. Nguyen, T.H.; Grundy, J.C.; Almorsy, M. Ontology-based automated support for goal–use case model analysis. Softw. Qual. J.
2016, 24, 635–673. [CrossRef]

46. Corea, C.; Delfmann, P. Detecting Compliance with Business Rules in Ontology-Based Process Modeling. 2017. Available online:
https://aisel.aisnet.org/wi2017/track03/paper/6/ (accessed on 30 August 2021).

47. Fellmann, M.; Hogrebe, F.; Thomas, O.; Nüttgens, M. An ontology-driven approach to support semantic verification in business
process modeling. In Proceedings of the Modellierung Betrieblicher Informationssysteme (MobIS 2010), Modellgestütztes
Management, Dresden, Germany, 15–17 September 2010.

48. Sun, J.; Wang, H.H.; Hu, T. Design Software Architecture Models using Ontology. In Proceedings of the 23rd International
Conference on Software Engineering and Knowledge Engineering, Miami, FL, USA, 7–9 July 2011; pp. 191–196.

49. Kezadri, M.; Pantel, M. First Steps Toward a Verification and Validation Ontology; Embedded Real Time Software and Systems
(ERTS2012): Toulouse, France, 2012; pp. 440–444.

50. Xu, W.; Dilo, A.; Zlatanova, S.; van Oosterom, P. Modelling Emergency Response Processes: Comparative Study on OWL and UML;
Information Systems for Crisis Response and Management, Harbin Engineering University: Harbin, China, 2008; pp. 493–504.

51. Bahaj, M.; Bakkas, J. Automatic conversion method of class diagrams to ontologies maintaining their semantic features. Int. J.
Soft Comput. Eng. (IJSCE) 2013, 2, 65.

52. Belghiat, A.; Bourahla, M. From UML Class Diagrams to OWL Ontologies: A Graph Transformation Based Approach. In
Proceedings of the 4th International Conference on Web and Information Technologies ICWIT 2012, Sidi Bel Abbes, Algeria,
29–30 April 2012; pp. 330–335.

53. Parreiras, F.S.; Staab, S. Using ontologies with UML class-based modeling: The TwoUse approach. Data Knowl. Eng. 2010,
69, 1194–1207. [CrossRef]

54. Clarisó, R.; González, C.A.; Cabot, J. Incremental Verification of UML/OCL Models. J. Object Technol. 2020, 19, 3. [CrossRef]
55. Abbas, M.; Ben-Yelles, C.B.; Rioboo, R. Formalizing UML/OCL structural features with FoCaLiZe. Soft Comput. 2020, 24,

4149–4164. [CrossRef]
56. Pérez, B.; Porres, I. Reasoning about UML/OCL class diagrams using constraint logic programming and formula. Inf. Syst. 2019,

81, 152–177. [CrossRef]
57. Goldberg, A.; Radzik, T. A Heuristic Improvement of the Bellman-Ford Algorithm; Technical Report; Computer Science Department,

Stanford University: Stanford, CA, USA, 1993.

http://dx.doi.org/10.1016/j.jss.2009.03.009
http://dx.doi.org/10.1007/s11219-015-9281-7
https://aisel.aisnet.org/wi2017/track03/paper/6/
http://dx.doi.org/10.1016/j.datak.2010.07.009
http://dx.doi.org/10.5381/jot.2020.19.3.a7
http://dx.doi.org/10.1007/s00500-019-04181-2
http://dx.doi.org/10.1016/j.is.2018.08.005

	Introduction
	Related Work
	Running Example
	UCLAONT Architecture
	Transformation Component
	Transformation Rules
	Class and Attributes
	Generalization Relationship
	Association
	Multiplicities
	XOR Constraint

	Reasoning Component
	Feedback Component

	Experimental Results
	Conclusions and Future Work
	References

