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Abstract: American and European Foulbrood (AFB and EFB) are considered the most contagious
infectious diseases affecting honeybees worldwide. New sustainable strategies need to be imple-
mented for their prevention and control, and probiotics may represent one solution to investigate. In
our study, we evaluated the efficacy of one strain of Lactobacillus plantarum (L. plantarum) isolated
from northern Italy, orally administered to the bees for AFB and EFB prevention. From March to
September 2014, a total of 979 honeybee colonies (9.6% of Viterbo province—Central Italy) were
taken under observation from 22 apiaries. Overall prevalence of AFB was 5.3% in treated colonies
and 5.1% in the untreated ones. On the contrary, EFB prevalence was lower in the treated colonies
(2.5%) compared to the untreated ones (4.5%). L. plantarum showed a significant effect in reducing
insurgence of cases of EFB up to 35 days after the end of the treatment (p-value: 0.034). Thanks to this
study we could investigate the preventive efficacy of L. plantarum in controlling AFB and EFB, and
obtain official data on their clinical prevalence in Central Italy.

Keywords: lactic acid bacteria; Lactobacillus plantarum; American Foulbrood; European Foulbrood;
Paenibacillus larvae; Melissococcus plutonius; Apis mellifera; control methods

1. Introduction

Recent losses of managed honeybee colonies and the need to reduce the use of veteri-
nary medicines at the apiary level to reach sustainable beekeeping goals are leading to a
growing interest in the development of new strategies for disease prevention and control,
under the One Health approach [1].

American Foulbrood (AFB) and European Foulbrood (EFB) are the two major bacterial
diseases affecting honeybee brood and present a considerable threat to beekeeping world-
wide [2]. These diseases are classified within the OIE—World Organisation for Animal
Health list, as having a socioeconomic impact in the international trade of bees and bee
products [3,4].

AFB, considered the most serious and widespread brood infection, is caused by
the spore forming, Gram-positive bacterium Paenibacillus larvae [5,6]. Young larvae are
infected through ingestion of food contaminated by the extremely resilient endospores of
the bacterium. The infection is transmitted through the resistant spores, which contaminate
bees and hive equipment and remain viable for decades. AFB is highly contagious and
destructive, often causing colony death if left untreated. As a result, in most countries AFB
is a notifiable disease, must be reported to the relevant government authorities [6] and is
included in the new EU Animal Health Law (Regulation (EU) 2016/429).
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EFB is caused by the bacterium Melissococcus plutonius, although associated with
secondary invaders like Paenibacillus alvei, Brevibacillus laterosporus, Enterococcus faecalis
and Achromobacter euridice [7]. The causative agent does not form spores, and therefore
the disease is considered less problematic than AFB. However, prevalence and severity of
EFB are variable in different areas and appear to be influenced by environmental factors
such as climatic conditions and food quality [7]. With regard to the distribution in Europe,
EFB is the most widespread bacterial brood disease in Great Britain [8], and is of relevant
interest in other countries, like Switzerland, where the incidence of the infection has risen
consistently since the late 1990s, without a clear cause [9].

On a global scale, several antibiotics and chemotherapies are of interest in apiculture
for the treatment of bacterial diseases, including: tetracyclines, streptomycin, sulfonamides,
tylosin, erythromycin, lincomycin, chloramphenicol, nitrofurans, bacitracin, and peni-
cillins [10]. Prophylactic treatment with oxytetracycline and tylosin is limited to some
countries (e.g., USA, Canada, Argentina, Australia) and generally only in cases of initial
stage disease [7,10]. In the European Union, antibiotics for honey bees are not registered [6],
and their use is admitted through the ‘cascade’ system, as described in Article 11 of Direc-
tive, 2001/82/EC, as amended by Directive 2004/28/EC and Regulation (EU) 2019/6 of
the European Parliament and of the Council of 11 December 2018 on veterinary medicinal
products and repealing Directive 2001/82/EC [10].

In many cases antibiotics have been used continuously and excessively or even ille-
gally [11]. Several problems may be associated with the routine use of antibiotics: it has
little impact on the epidemiology and control of bacterial diseases as they are not effec-
tive in destroying Paenibacillus larvae spores or in eliminate the reservoir of Melissococcus
plutonius cells persisting in beehives. Moreover, their administration, especially for AFB,
can only mitigate the disease by suppressing clinical signs and beekeepers may spread
the infection between colonies [6,12]. Furthermore, it has been observed that the use of
antibiotics may affect the longevity of the bees and the vitality of the brood [13] as well as
cause disequilibria in the normal microbiota of the beehive [14]. Another relevant issue
related to the use of antibiotics is the development of resistant strains of the pathogenic
bacteria. In particular OTC and sulfathiazole-resistance in P. larvae has become widespread
as a consequence of decade-long misuse [11,15–18]. Moreover, the transfer of resistance
from animal pathogens to human ones is a possible threat that has to be considered [19].
Finally, residues of antibiotics contaminate beehive products, especially honey, affecting
quality and safety for human consumption [11,20,21]. Due to lack of metabolism in the
beehive, an elimination of residues within a certain period of time, as defined for other
food producing animals, cannot be established in apiculture. Hence, the persistence of
residues of antibiotics in honey leads to significant commercial problems [10].

Investigation of alternative, more sustainable methods to prevent and control honey
bee bacterial diseases is needed. One of the most studied methods is the selection of
honey bee colonies with hygienic behavior of adult bees toward infected larvae [22]. Other
strategies are based on the use of natural substances, including: essential oils, plant ex-
tracts, propolis, royal jelly, non-conventional natural molecules, bacteriocins [23–32] and
antagonistic bacteria [7,15,23,24,32–34]. The last may act as biocontrol agents representing
a promising alternative to antibiotics. Frequently, to this scope, autochthonous strains
isolated from honeybees are used [35–37].

Even if the microbiota associated with honeybees is not fully known, it is mainly
composed of yeasts, Gram-positive bacteria (such as Lactobacillus spp., Bacillus spp., Bre-
vibacillus spp., Streptococcus and Clostridium) and Gram-negative or Gram variable bacteria
(Achromobacter, Citrobacter, Enterobacter, Erwinia, Escherichia coli, Flavobacterium, Klebsiella,
Proteus and Pseudomonas) [33,38–42]. Gilliam [43] reported that these bacteria were likely to
be endemic in the alimentary tract of adult bees and were dependent neither on seasonal
factors nor on nutritional factors.

The ability of the spore-forming species to inhibit different fungi and bacteria, by
secreting a broad range of bioactive compounds, that include peptides, lipopeptides,
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bacteriocins, and bacteriocin-like inhibitory substances, has been well documented [15].
More in detail, Bacillus subtilis, Bacillus pumilus, Bacillus licheniformis, Bacillus cereus, Bacillus
megaterium and Brevibacillus laterosporus have been reported as normal microorganisms
associated with honeybees and honey [40,44,45], characterized by high inhibitory capacities
against P. larvae, as evidenced through in vitro studies by Alippi and Reynaldi [15]. More
generally, antagonistic activity against P. larvae showed by Bacillus and Brevibacillus species
has been confirmed by several studies [29,33,46].

The microbial group currently of major interest for honeybee probiotic purposes is
represented by lactic acid bacteria (LAB) [47–51]. Lactobacillus and Bifidobacterium, the most
important genera within LAB, are commonly beneficial commensals and are widely used
as probiotics to modulate the composition of the microflora in order to protect the host
from infections. LAB are in fact known to be good producers of antimicrobial substances
such as organic acids, hydrogen peroxide and antimicrobial peptides [52]. Multiple factors
are involved in the mechanisms associated with antibacterial activity in probiotic LAB
and there is a clear variation in the production of antimicrobial agents including common
organic acids, proteins, peptides, enzymes, and bacteriocins between the different LAB
species [7,53].

A novel flora of LAB composed of Lactobacillus and Bifidobacterium has recently been
identified in the honey stomach of honeybees [52,53]. A mutual dependence between
honeybees and the novel LAB flora was hypothesized: the LAB obtaining nutrients, the
honeybees and the honey in turn being protected by the LAB from harmful microorgan-
isms. Previously, Evans and Lopez [54] observed a strong immune response in larvae fed
with a mix of Lactobacillus and Bifidobacterium species, with the enhanced production of
antibacterial peptides. Moreover, growth of both P. larvae and M. plutonius was inhibited by
strain R4BT of the novel described species Lactobacillus apis [55].

The first findings above suggest that probiotic LAB linked to the honeybee gastroin-
testinal tract can have an important role for the tolerance of infective diseases. Forsgren [56]
demonstrated a strong inhibitory effect of combined honeybee stomach LAB flora on the
in vitro growth of P. larvae and, subsequently, proved that the administration of the LAB
mixture to young larvae reared in vitro significantly reduced the proportion of larvae suc-
cumbing to AFB infection. Vásquez [57] administrated the LAB mixture isolated from the
honey harvest to bee larvae reared in vitro exposed to M. plutonius and obtained a signifi-
cant reduction of the number of individuals killed by EFB. Recently, Kačániová [58] isolated
some Lactobacillus species and evaluated their antimicrobial activity against P. larvae.

The activity of L. plantarum in inhibiting honeybee pathogenic bacteria has so far
been investigated through few studies, limited however to P. larvae. Mudroňová [34]
isolated from the digestive tract of adult honeybees a L. plantarum strain and showed its
strong inhibiting activity against P. larvae. Recently, Daisley [32] stated that administering
Lactobacillus species (including L. plantarum ATCC 14917) improved honeybee survival and
colony resilience against AFB.

Our study was designed to investigate the efficacy in reducing clinical symptomatic
cases of AFB and EFB by the preventive administration of Lactobacillus plantarum into
colonies at the beginning of the active season.

2. Materials and Methods

Field trials were carried out from March 2014 to September 2014 (220 days) in 22 apiaries
distributed in the Viterbo province (Central Italy), in an area of approximately 2700 km2

(Figure 1).
L. plantarum, stable stabulogen autochthonous strain (LMG P-21806), isolated from

healthy bees and brood in northern Italy (Piacenza), was applied in water solution trickled
on the bees. Then, 20 g containing 2 × 1011 CFU of L. plantarum were mixed in one litre of
water to obtain a suspension of 2 × 108 CFU/mL. The amount of solution administered
per colony (dosage) was of 5 mL for each intercomb space covered by bees. Trials involved
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979 colonies, kept in 10 frame Dadant-Blatt hives, free of any other symptomatic disease at
the beginning of the trial. These colonies were randomly divided into two groups (Table 1):

• L. plantarum group, consisted of 488 colonies treated once a week, for a total of
4 administrations.

• Control group, consisted of 491 colonies that received only water in the amount of
5 mL per hive, dropped onto the inter comb space covered by bees, for a total of
4 administrations.

Table 1. Number of colonies randomly assigned to the treatment and control groups in the 22 apiaries.

Apiary ID Number of Hives Belonging
to L. plantarum Group

Number of Hives Belonging
to Control Group

1 21 22
2 25 25
3 25 25
4 25 25
5 25 25
6 25 25
7 28 27
8 30 30
9 25 27
10 25 25
11 16 16
12 20 20
13 20 20
14 18 17
15 30 30
16 20 20
17 17 18
18 18 17
19 15 15
20 20 20
21 20 20
22 20 22

Total 488 491

All colonies were carefully checked at least once a month by visual inspection for the
presence of clinical symptoms of disease. The on-field diagnosis was performed by the
Public Veterinary Services and the confirmation was provided by the official laboratory
Istituto Zooprofilattico Sperimentale del Lazio e della Toscana (IZSLT) following the meth-
ods reported in the OIE Manual of diagnostic tests and vaccines for terrestrial animals.
Suspicious larval samples collected were cultured for the isolation and characterization of
P. larvae or M. plutonius isolates, subsequently processed by RT-PCR [59,60].

All hives that resulted positive to EFB or AFB were recorded and immediately de-
stroyed by the Public Veterinary Services.

Kaplan–Meier estimator of the survival function, followed by Log-Rank test was used
to evaluate the efficacy of L. plantarum administration in preventing disease outbreaks in
tested colonies. Data were processed by means of statistical software XLSTAT™ (Addinsoft,
Paris, France, 2020).
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3. Results

During the whole observation period, untreated colonies showed a peak of AFB cases
in March (10 outbreaks) and April (9 outbreaks) while EFB showed the largest number of
cases in the untreated group in April (Figure 2).

The overall prevalence of clinical cases in the untreated group was of 5.1% for AFB
and 4.5% for EFB. The administration of L. plantarum for four weeks determined a reduced
EFB prevalence of 2.0%. On the contrary, the prevalence of AFB in the treated group was
higher than the untreated group of 0.2% (Figures 3 and 4, Table 2). Moreover, during the
whole observation period, the group treated with L. plantarum showed lower cases of EFB,
except during June and July (Figure 3), after 4 months since the end of the treatment.
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Table 2. Disease prevalence in L. plantarum and control groups.

Number of Colonies
Number of Clinical Symptomatic Cases Disease Prevalence

AFB EFB AFB EFB

Control group 491 25 22 5.1% 4.5%
L. plantarum group 488 26 12 5.3% 2.5%

Total number of colonies 979 51 34 5.2% 3.5%

Kaplan–Meier estimator of the survival function applied to the AFB cases is reported
in Figure 5.
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p-value of Log-Rank test was 0.906 (obs. value 0.014) showing no statistical differences
between the survival curve of the treated and untreated groups compared to the number of
symptomatic AFB cases.

The Kaplan–Meier estimator of the survival function applied to the AFB cases is
reported in Figure 6.
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p-value of Log-Rank test applied to EFB cases (Figure 6) resulted in 0.083 (obs. value
3.005) showing a higher difference compared to the survival curves of AFB.
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In order to establish if the use of L. plantarum could have a preventive effect in reducing
the number of cases of EFB based on the time elapsed from the end of the treatment period,
the Log-Rank test has been applied to different time-frames, excluding from the analysis all
the other cases that emerged during the trial. The p-values are reported in Table 3.

Table 3. Log-Rank test values of EFB survival curves applied at different time-frames.

Day Obs. Value p-Value

34 4.513 0.034
36 3.078 0.079
60 0.948 0.330
65 3.254 0.071

The p-value of Log-Rank test applied to survival curves of EFB cases in the treated
and untreated groups showed a statistical difference at day 34.

4. Discussion

EFB is endemic in most parts of the world [61,62] except New Zealand [62]. For a
long time the effects of the disease on colonies health have been underestimated and the
prevalence has increased in the last decades in many countries such as Switzerland, UK,
Netherlands and others [63–68]. AFB disease is present wherever honey bees are reared and
its economic impact is still one of the most important across brood diseases [69]. According
to Genersch [5] two subspecies exist, belonging to four ERIC genotypes (ERIC I–IV), but
only P. l. larvae (genotypes ERIC I and ERIC II) can be frequently isolated from foulbrood
diseased colonies in Europe and on the American continent.

The first EU-wide epidemiological dataset regarding foulbroods were obtained in
2012–2013, when 17 Member States took part to the first active epidemiological surveillance
program on honeybee colony mortality in Europe (EPILOBEE) [66–68]. The overall clinical
prevalence of AFB and EFB in 14 Member States was, respectively, lower than 12% for AFB
and did not exceed 5% for EFB.

In Italy, 1682 colonies have been put under observation in the EPILOBEE project: in
regard to AFB, during the experimental period, the prevalence ranged from 2.7% before
wintertime; 0% after wintertime to 2.2% during the active season. Similarly, in regard to
EFB, the prevalence observed in Italy was 0% before wintertime and during the season and
1.1% after wintertime [68].

The Viterbo province presents 10,201 honeybee colonies, distributed in 169 apiaries
(Italian National Beekeeping Registry—December 2014). During our study, 979 colonies
were monitored, the equivalent of 9.6% of the total amount of colonies in the whole province
territory. The obtained prevalence of 5.1% for AFB and of 4.5% for EFB on 491 untreated
colonies is the first data ever reported in Central Italy involving a substantial number of
honey bee colonies.

The majority of outbreaks occurred during spring (March–May 2014) when the
brood coverage in colonies is developing and an imbalance between the number of
larvae and nurse bees as well as food shortages, particularly of protein, can play an
important role [69,70].

Worldwide, the control of AFB and EFB relies on different strategies. In many countries,
quarantine, incineration of symptomatic colonies or, alternatively, use of the shook swarm
technique are considered priority measures regulated by health laws.

L. plantarum is widely used in the food industry. It is, in fact, a versatile bacterium
living in several ecological niches, ranging from vegetable and plant fermentations to
the human gastrointestinal tract. The EU Commission, by means of Regulation (EU) N.
93/2012, approves the use of Lactobacillus plantarum (strains DSM 8862 and DSM 8866) as a
feed additive for all animal species, without maximum residue limit.

Several LAB species isolated from honey bees showed in laboratory conditions benefi-
cial health effects at the individual bee level respect the AFB infection [52,56,71,72], but in
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literature no optimistic results have ever been obtained from trials on colonies [73]. The
results obtained with the L. plantarum strain tested in our study underline that, at the
moment, the best practice to avoid the spread of AFB and the development of antibiotic
resistance is the incineration of symptomatic colonies [10].

In Italy, where both infections are almost endemic, quarantine measures and burning
the symptomatic colonies are the usual legal requirements for AFB and EFB, limiting
the chance of recovery to the colonies presenting an early stage of the disease; shook
swarm is permitted and the best management practice for symptomatic EFB colonies is the
shook swarm method into clean boxes with new frames. Supplemental feeding is highly
suggested, and this technique should be adopted only on strong colonies able to draw
combs and store sufficient honey for winter time [74,75].

The preventive administration at the beginning of the active season of the L. plantarum
strain tested in our study reduced clinical symptomatic cases of EFB until 34 days after
the application of the product. Only one reference [57] reported a preventive action on
bee larvae reared in vitro exposed to M. plutonius. Considering that field data on the
application of LAB are not available in the literature, our data suggest the importance of
further investigations on LAB strains as biological preventive or control agents of EFB.
Multiple treatment applications as a preventive technique or combining their use with the
shook swarm method on symptomatic colonies could be tested, also verifying the absence
of residues in hive products.
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