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Abstract: The acoustic emission (AE) technique has become a well-established method of monitoring
structural health over recent years. The sensing and analysis of elastic AE waves, which have involved
piezoelectric wafer active sensors (PWAS) and time domain and frequency domain analysis, has
proven to be effective in yielding fatigue crack-related information. However, not much research
has been performed regarding (i) the correlation between the fatigue crack length and AE signal
signatures and (ii) artificial intelligence (AI) methodologies to automate the AE waveform analysis.
In this paper, this crack length correlation is investigated along with the development of a novel
AE signal analysis technique via AI. A finite element model (FEM) study was first performed to
understand the effects of fatigue crack length on the resulting AE waveforms and a fatigue experiment
was performed to capture experimental AE waveforms. Finally, this database of experimental AE
waveforms was used with a convolutional neural network to build a system capable of performing
automated classification and prediction of the length of a fatigue crack that excited respective AE
signals. AE signals captured during a fatigue crack growth experiment were found to match closely
with the FEM simulations. This novel AI system proved to be effective at predicting the crack length
of an AE signal at an accuracy of 98.4%. This novel AI-enabled AE signal analysis technique will
provide a crucial step forward in the development of a comprehensive structural health monitoring
(SHM) system.

Keywords: structural health monitoring; artificial intelligence; acoustic emission waves; fatigue
cracking; guided wave; damage detection; piezoelectric wafer active sensors; FEM simulation

1. Introduction

For engineering structures in service, safety and trustworthiness are of the utmost
concern. In the numerous different operation modes that engineering structures are exposed
to, there exist various types of possible failure mechanisms. In metals, common damage
cases include fatigue, static failure, and friction each of which may result depending on the
loading and working conditions to which the metal structures are exposed. The number
of fatigue-prone structures in current and future engineering applications continues to
grow, yielding the demand for a robust and efficient method of monitoring their structural
integrity during operational use. The structural health monitoring (SHM) field is an
emerging methodology that is used as a technique for detecting damages in structures,
such as fatigue damage [1–3]. In general, the SHM approach involves the installation of
sensors to collect pertinent data, enabling decisions on structure reliability and remaining
life [4]. The SHM technique/process, in general, can be described in four levels. These
levels explain how, from start to finish, an SHM system can yield useful information [5].
The four functional levels are as follows:
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• Level 1: Detection of the occurrence of an event;
• Level 2: Identification of the geometric location of the event, also known as “source

localization”;
• Level 3: Determination of the type, magnitude, and/or severity of the event;
• Level 4: Prognosis (estimation of remaining service utility/strength/service life).

In this paper, a novel approach to discerning the length of a fatigue crack in metal-
lic structures, an aspect of the aforementioned Level 3, is presented, utilizing artificial
intelligence and the acoustic emission technique.

The acoustic emission (AE) method, a passive SHM method, has been used and has
seen significant growth in recent years as a method of monitoring damages, such as growing
fatigue cracks. This AE method is well-established in the structural health monitoring and
non-destructive evaluation (NDE) communities, with continued research and development
since its inception [6–11]. A damage case common to metallic structures is the initiation
and growth of fatigue cracks due to various operating conditions that expose them to
cyclic loading, which in turn generates acoustic emission signals that can be analyzed.
Haider et al. [12] used excitation potentials to perform numerical and theoretical analyses
of these guided waves released during an acoustic emission event. These analyses were
used to predict the out-of-plane displacement of the AE guided wave at some distance
away from the source, as well as provide trends in the characteristics of A0 and S0 modes in
the waves. Barat et al. [13] studied the analytical models of AE signals by using the modal
analysis of Lamb wave propagation and the AE sensor frequency response to develop
an algorithm for obtaining model AE signals that are very similar to the experimental
signals. Pascoe et al. [14] investigated the behavior of fatigue crack growth events by
studying a single fatigue cycle. This study yielded an understanding that crack growth
can occur during both loading and unloading so long as the strain energy release rate
is greater than a crack growth threshold value. Zheng et al. [15,16] developed a novel
hybrid meshless displacement discontinuity method for cracked Reissner’s plate. Much
initial research [17–21] has been performed in recent years to utilize and adapt the AE
methodology for fatigue and impact damage monitoring in composites, an area that poses
a distinctive challenge due to the unique material characteristics of composite materials
and their impact on wave propagation.

While many researchers have used sensors to capture AE waves and have analyzed
the wave characteristics, not much research has been performed to establish a relationship
between the length of a fatigue crack and the AE waveform signatures. Some initial novel
work from Joseph et al. [22] presents analytical and experimental evidence that such a
relationship may exist within fatigue crack AE signals. The general concept is that when
energy is released from the fatigue crack, it resonates with the crack forming a standing
wave pattern. The wave pattern contains frequency information related to the crack’s
resonant frequencies. Utilizing this understanding, we propose the potential to develop
an artificial intelligence-related signal analysis system that could discern the AE wave
information and predict the length of the crack from which it originates. The development
of such capability would yield significant benefits for various industries, offering the
potential of a paradigm shift from scheduled maintenance to on-demand maintenance of
monitored engineering structures.

Artificial intelligence proficiencies have been investigated and used in similar manners
in recent years. Tang et al. [23] and Xu et al. [24] used machine learning clustering tech-
niques to characterize different fracture mechanisms in fatigue-loaded wind turbine blades
and to perform damage mode correlation in adhesive composite joints subjected to tensile
AE tests, respectively. Ren et al. [25] tackled the minimally addressed issue of complex
and varying environmental and operational conditions, which affect the guided waves in
aerospace composites by utilizing Gaussian mixture models. Xu et al. [26] and Ramasso
et al. [27] utilized signal clustering and pattern recognition machine learning algorithms to
group AE signals into desired categories. Yuen et al. [28] and Mehrjoo et al. [29] showed
the early application of artificial neural networks (ANN) to structural damage detection
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using multilayer perception models (MLP) by applying a Bayesian probabilistic approach
to help design an appropriate ANN [28] and to use ANNs for the estimation of the damage
percentage of joints for truss bridge structures [29]. Tao et al. [30] used deep learning convo-
lutional neural networks to build an automated fatigue damage characterization model for
composite structures. Nasiri and Khosravani [31] applied the machine learning to predict
the structural performance and fracture of additively manufactured components. The
applications of AI in the fracture prediction of various materials can be found in [32–34].

The exact quantification of the crack length is very important for scheduling the main-
tenance of the structure in which the crack growth is happening. In the work presented
herein, the objective was to develop an automated system capable of discerning the dif-
ferences between AE waveforms originating from different crack lengths. The goal is to
estimate the length of a fatigue crack in sheet-metal structures from individual AE signals
without recourse to the AE-signal history or AE-signal amplitude. To do this, the robust
capabilities of a convolutional neural network for image recognition were sought out and
utilized. The waveforms of AE signals were processed by means of a wavelet transform,
which would yield data that would be in a format consumable for an image recognition
artificial neural network. An automated system with such capability would greatly advance
the future of fatigue crack SHM by drastically improving the efficiency of analysis and of
returning usable information to the end user. The schematic of the proposed approach is
shown in Figure 1.
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Figure 1. Schematic of the proposed approach for crack length estimation.

2. FEM Simulation of Fatigue Crack AE

In this section, finite element modeling (FEM) was conducted to study the fatigue-
crack-generated AE signals. Commercial finite element package ANSYS 17.0 was used to
implement and realize the three-dimensional (3D) FEM model. The dimensions of the FE
model are 120 mm × 60 mm × 1 mm. In the simulation, only a half model (Figure 2) was
created by applying the symmetric boundary condition to reduce the calculation time. The
material properties of aluminum 2024-T3 are given in Table 1.

Table 1. Material properties of aluminum 2024-T3.

Young’s Modulus (E) Poisson’s Ratio (ν) Density (ρ)

73.1 GPa 0.33 2780 kg/m3

Non-reflective boundaries (NRB) developed in Ref. [35] can eliminate boundary reflec-
tions, and thus allow for simulation of guided wave propagation in an infinite medium
with small-sized models. 3D structural solid elements (SOLID45) were used to mesh the
aluminum plate. COMBIN14 spring-damper elements were used to construct the 30-mm
NRB around the model. Figure 2 shows the schematic of FEM model for AE simulation.
The mesh size is 1/3 mm for the length and thickness of the model. The dipole moment ex-
citation concept [36] was used to simulate the fatigue crack growth source. In this approach,
the AE source due to a fatigue crack growth event was considered as self-equilibrating
dipole forces (M11 moment tensor) acting at the crack tip. In the FEM simulation, the
M11 dipole excitation was defined using equal and opposite nodal forces. The detailed
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information can be found in Ref. [36]. The time profile of the excitation was defined as
a cosine-bell function with 0.5 µs as the rise time. The parameter summary of the FEM
simulation is given in Table 2.

Table 2. Parameter summary of finite element modeling (FEM) simulation.

Parameters Description

Dimension 120 mm × 60 mm × 1 mm
Mesh size 1/3 mm

Element type SOLID45
Time step 40 ns
Excitation Cosine-bell function with 0.5 µs as the rise time

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 18 
 

proach, the AE source due to a fatigue crack growth event was considered as self-equili-
brating dipole forces (M11 moment tensor) acting at the crack tip. In the FEM simulation, 
the M11 dipole excitation was defined using equal and opposite nodal forces. The detailed 
information can be found in Ref. [36]. The time profile of the excitation was defined as a 
cosine-bell function with 0.5 µs as the rise time. The parameter summary of the FEM sim-
ulation is given in Table 2. 

Table 2. Parameter summary of finite element modeling (FEM) simulation. 

Parameters Description 
Dimension 120 mm × 60 mm × 1 mm 
Mesh size 1/3 mm 

Element type SOLID45 
Time step 40 ns 

Excitation 
Cosine-bell function with 

0.5 µs as the rise time 

First, wavefield analysis was performed to understand the fatigue crack generated 
AE. The wavefield of surface strain (εxx + εyy) was extracted from the FEM simulations to 
analyze the wave propagation pattern, as shown in Figure 3. Figure 3a shows the wave-
field pattern in a non-cracked specimen and Figure 3b shows the wavefield pattern of an 
8-mm crack specimen. It can be found that an additional wave packet was observed due 
to wave scattering at the crack tip for the case of an 8-mm crack. The AE wave generated 
at one crack tip travels to the other tip and generates additional propagating waves. 

 
Figure 2. Schematic of FEM model for the acoustic emission (AE) simulation. (NRB: non-reflective 
boundary; PWAS: piezoelectric wafer active sensors.) 

 

30mm NRB 
COMBIN14 spring damper element 

O 
M11 x 

y 

Symmetric boundary condition 

PWAS location 

25
 m

m
 

Figure 2. Schematic of FEM model for the acoustic emission (AE) simulation. (NRB: non-reflective
boundary; PWAS: piezoelectric wafer active sensors.)

First, wavefield analysis was performed to understand the fatigue crack generated
AE. The wavefield of surface strain (εxx + εyy) was extracted from the FEM simulations to
analyze the wave propagation pattern, as shown in Figure 3. Figure 3a shows the wavefield
pattern in a non-cracked specimen and Figure 3b shows the wavefield pattern of an 8-mm
crack specimen. It can be found that an additional wave packet was observed due to wave
scattering at the crack tip for the case of an 8-mm crack. The AE wave generated at one
crack tip travels to the other tip and generates additional propagating waves.

Second, nodal strain responses at the location of piezoelectric wafer active sensors
(PWAS) sensor were extracted from the FEM simulation. The PWAS location is 25 mm
from the origin as shown in Figure 2. To investigate the effect of various crack lengths on
AE signals, both nodal response and PWAS response were extracted and calculated for no
crack case, 4-mm, 6-mm, and 8-mm crack length, respectively. In this study, the in-plane
strain was extracted because the PWAS senses the in-plane strain of the AE signals.

Figure 4 shows the frequency spectra of in-plane strain εxx and εyy of the AE signals
at the center node where the PWAS is located, obtained from the FEM simulation. It can
be noted that no frequency peaks were observed for the no crack case (Figure 4a). As
the crack length increases from 4 mm to 8 mm, the number of frequency peaks increases
proportionally. The nodal responses of various crack lengths have specific peaks and
valleys in frequency spectra. More specifically, the 4-mm crack (Figure 4b) gives 2 peaks,
the 6-mm crack (Figure 4c) has 3 peaks, and the 8-mm crack (Figure 4d) gives 4 peaks in
the frequency spectrum. Hence, the frequency of spectrum peaks is directly related to
crack length.

To compare the FEM simulation result with the experiment, the PWAS response was
calculated through the area integration of the in-plane nodal strain within the PWAS region.
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The PWAS responses were evaluated for the no-crack case, 4-mm crack, 6-mm crack, and
8-mm crack, respectively. The frequency spectra of numerically calculated PWAS responses
for all cases are presented in Figure 5. It can be found that the nodal response is modified
by the PWAS resonance based on the tuning curve corresponding to the dimensions of
the PWAS [37]. The high-frequency response was significantly reduced by the PWAS
tuning effect and the number of frequency peaks was also reduced compared to their nodal
responses. However, with the change in the crack length, the variation in the frequency
spectrum of PWAS response was observed, which means that characteristic frequencies
obtained from the AE signal spectrum can be directly related to crack length.
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Figure 4. FFT spectra of nodal strain responses: (a) no crack; (b) with 4-mm crack; (c) with 6-mm
crack; and (d) with 8-mm crack. The frequency of spectrum peaks is directly related to crack length.
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Figure 5. FFT spectra of 7-mm PWAS responses: (a) No crack; (b) with 4-mm crack; (c) with 6-mm
crack; and (d) with 8-mm crack.
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3. SIF-Controlled In-Situ Fatigue Experiment

To capture experimental acoustic emission signals, data is gathered from a high-cycle
fatigue (HCF) experiment done which held the stress intensity factor (SIF) approximately
constant throughout the entirety of the fatigue loading. Given that the stress intensity factor
at the tips of a growing crack varies as the crack length progresses, theoretically, one needs
to reduce the load as the fatigue crack grows to control the SIF. This SIF-controlled fatigue
loading is desired due to the fact that AE signal signatures have been observed to vary with
an increase in crack growth rate and SIF. More background details of this SIF-controlled
fatigue experimental methodology and its foundation can be found in Ref. [36].

3.1. Experimental Setup

An experimental specimen was designed to collect AE signals during fatigue crack
growth in thin metallic plates. A fatigue test coupon of a 1-mm thick aluminum 2024-T3 was
cut to a width of 103 mm and a length of 305 mm. The width of the specimen was sufficient
to allow a long crack to form. The specimen was fatigue loaded between load limits of
1.38 kN lower bound to 13.85 kN upper bound at a loading frequency of 10 Hz. This
loading generated a 4-mm crack along the centerline of the specimen after 322,000 cycles.

After the crack was initiated and grown to 4 mm, the specimen was removed from the
MTS machine and AE instrumentation was applied. Two PWAS sensors, two S9225 sensors,
and a clay non-reflective boundary were applied to the specimen. The sensors were bonded
in a linear configuration at 5 mm and 25 mm from the crack on both sides. The non-
reflective boundary was applied to the edges of the specimen to damp out reflecting waves
from plate boundaries. The PWAS sensors were bonded using M-Bond AE-15, a two-part
epoxy system with a resin and curing agent. This adhesive system was chosen because
of its resilience to debonding during excessive fatigue loading. The electromechanical
impedance spectrum (EMIS) of the PWAS sensors was measured periodically to ensure
no defects or bonding deterioration [37]. The S9225 sensors were bonded using hot glue.
Figure 6 shows the setup of this AE test specimen loaded into the MTS machine and ready
for AE monitoring.
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Figure 6. A 1-mm aluminum 2024 test specimen with AE instrumentation applied: Two PWAS, two
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After AE instrumentation was applied, the test specimen with a 4-mm crack was
loaded back into the MTS machine (shown in Figure 6) for further fatigue loading with
simultaneous AE monitoring. The system of hardware used in the data acquisition is
shown in Figure 7. The Omicron Lab Bode 100 Vector Network Analyzer was used to
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analyze the EMIS of the bonded PWAS. The PWAS sensors were connected to the MISTRAS
AEWinTM computer through an acoustic preamplifier, which is a bandpass filter that filters
signals between 30 kHz and 700 kHz. In this experiment, 40 dB of gain was selected on
the preamplifier from options of 20 dB, 40 dB, or 60 dB. In the data acquisition software
in the AEWinTM system, a sampling frequency of 10 MHz was selected to capture the
AE signals from the PWAS. The timing parameters set for the MISTRAS system were
peak definition time (PDT) = 200 µs, hit definition time (HDT) = 800 µs, and hit lockout
time (HLT) = 1000 µs. Figure 8 also shows the experimental setup and other auxiliary
experimental equipment, including the camera and eddy current equipment, which were
used to track crack growth continuously. The camera was continuously capturing video
of the crack tips with adjacent measurement tape adhered to the test specimen, while an
eddy current probe from Eddyfi Technologies® was used periodically to track the growth
of the crack.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 18 
 

 
Figure 7. Experimental setup of the test specimen and data acquisition hardware. (MTS: material 
testing system; EMIS: electromechanical impedance spectroscopy) 

 
Figure 8. Experimental setup of fatigue specimen loaded into MTS machine with auxiliary experi-
mental equipment. 

3.2. Processing of Experimental Data 
With all the AE equipment applied to the specimen, fatigue loading began again at 

loading bounds of 1.38 kN and 13.85 kN and a loading frequency of 2 Hz. AE events were 
simultaneously recorded by the AE system shown in Figure 7. Figure 9 shows the overall 
process flow that the AE data goes through to be analyzed and used in the ensuing novel 
artificial intelligence system. The process begins with the microcrack growth event which 
emits strain wave energy that propagates from the tips of the crack (“step 1”). This event 
is then sensed by the PWAS and picked up within the AEWinTM system (“step 2”). The 
raw time-domain waveform is stored in the system and then recovered for further pro-
cessing and analysis (“step 3”). In this processing and analysis of the raw signal, a noise 
cancellation algorithm is applied to eliminate internal system noise captured with the sig-
nal. This cleans up (and removes any noise-related frequencies) the time domain signal as 
seen in the upper plot of “step 4” in Figure 9. The fast Fourier transform of the signal is 
then performed to acquire the frequency domain information of the AE wave, as shown 

Figure 7. Experimental setup of the test specimen and data acquisition hardware. (MTS: material
testing system; EMIS: electromechanical impedance spectroscopy).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 18 
 

 
Figure 7. Experimental setup of the test specimen and data acquisition hardware. (MTS: material 
testing system; EMIS: electromechanical impedance spectroscopy) 

 
Figure 8. Experimental setup of fatigue specimen loaded into MTS machine with auxiliary experi-
mental equipment. 

3.2. Processing of Experimental Data 
With all the AE equipment applied to the specimen, fatigue loading began again at 

loading bounds of 1.38 kN and 13.85 kN and a loading frequency of 2 Hz. AE events were 
simultaneously recorded by the AE system shown in Figure 7. Figure 9 shows the overall 
process flow that the AE data goes through to be analyzed and used in the ensuing novel 
artificial intelligence system. The process begins with the microcrack growth event which 
emits strain wave energy that propagates from the tips of the crack (“step 1”). This event 
is then sensed by the PWAS and picked up within the AEWinTM system (“step 2”). The 
raw time-domain waveform is stored in the system and then recovered for further pro-
cessing and analysis (“step 3”). In this processing and analysis of the raw signal, a noise 
cancellation algorithm is applied to eliminate internal system noise captured with the sig-
nal. This cleans up (and removes any noise-related frequencies) the time domain signal as 
seen in the upper plot of “step 4” in Figure 9. The fast Fourier transform of the signal is 
then performed to acquire the frequency domain information of the AE wave, as shown 

Figure 8. Experimental setup of fatigue specimen loaded into MTS machine with auxiliary experi-
mental equipment.



Appl. Sci. 2022, 12, 1372 9 of 17

3.2. Processing of Experimental Data

With all the AE equipment applied to the specimen, fatigue loading began again at
loading bounds of 1.38 kN and 13.85 kN and a loading frequency of 2 Hz. AE events
were simultaneously recorded by the AE system shown in Figure 7. Figure 9 shows the
overall process flow that the AE data goes through to be analyzed and used in the ensuing
novel artificial intelligence system. The process begins with the microcrack growth event
which emits strain wave energy that propagates from the tips of the crack (“step 1”). This
event is then sensed by the PWAS and picked up within the AEWinTM system (“step 2”).
The raw time-domain waveform is stored in the system and then recovered for further
processing and analysis (“step 3”). In this processing and analysis of the raw signal, a
noise cancellation algorithm is applied to eliminate internal system noise captured with
the signal. This cleans up (and removes any noise-related frequencies) the time domain
signal as seen in the upper plot of “step 4” in Figure 9. The fast Fourier transform of the
signal is then performed to acquire the frequency domain information of the AE wave,
as shown in the lower plot of “step 4” in Figure 9. Finally, the Choi–Williams transform
(CWT) is performed on the wave (“step 5”). The Choi–Williams distribution (CWD) is a
time-frequency transform that is a Cohen class member, which is related to parameters
such as the instantaneous median frequency and the instantaneous power (integral over
all frequencies at each time) [38,39]. This CWT is a type of wavelet transform that yields
an intensity plot that gives information of both the time and frequency domain of the AE
wave simultaneously. This CWT result will be the crucial liaison point between the raw
signal captured and the application of a convolutional neural network (CNN) for artificial
intelligence processing of the AE signals.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 18 
 

in the lower plot of “step 4” in Figure 9. Finally, the Choi–Williams transform (CWT) is 
performed on the wave (“step 5”). The Choi–Williams distribution (CWD) is a time-fre-
quency transform that is a Cohen class member, which is related to parameters such as 
the instantaneous median frequency and the instantaneous power (integral over all fre-
quencies at each time) [38,39]. This CWT is a type of wavelet transform that yields an 
intensity plot that gives information of both the time and frequency domain of the AE 
wave simultaneously. This CWT result will be the crucial liaison point between the raw 
signal captured and the application of a convolutional neural network (CNN) for artificial 
intelligence processing of the AE signals. 

 
Figure 9. Flowchart of acoustic emission signal processing from microcrack growth event to the 
time-frequency intensity plot of Choi–Williams transform. 

Continuous fatigue loading may cause disbonding of the PWAS from the specimen. 
This would result in the capturing of false AE signals. Throughout fatigue loading, the 
bonding of the PWAS sensor to the specimen was tested using electromechanical imped-
ance spectroscopy (EMIS). The results of this periodic EMIS monitoring are shown in Fig-
ure 10, where a good bonding is observed throughout the entirety of the experiment, en-
suring no erroneous AE signals. 

Figure 9. Flowchart of acoustic emission signal processing from microcrack growth event to the
time-frequency intensity plot of Choi–Williams transform.

Continuous fatigue loading may cause disbonding of the PWAS from the specimen.
This would result in the capturing of false AE signals. Throughout fatigue loading, the
bonding of the PWAS sensor to the specimen was tested using electromechanical impedance
spectroscopy (EMIS). The results of this periodic EMIS monitoring are shown in Figure 10,
where a good bonding is observed throughout the entirety of the experiment, ensuring no
erroneous AE signals.
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Figure 10. Periodic EMIS measurement of 172 kcycles of fatigue loading taken at (a) PWAS 1 and
(b) PWAS 2.

3.3. Experimental Results

When an acoustic emission is released from the crack, the continuous AE monitoring
system senses a hit according to the process depicted in Figure 9. As the crack length
grew, the number of acoustic emission hits sensed by the system increased. This is due
to favorable crack surfaces for friction engagement, which has been understood to be the
main cause of acoustic emissions in a fatigue crack scenario [40]. When the crack was at
8 mm in length, a generous number of signals were captured for analysis.

A sample set of experimental AE signals captured when the crack was 8 mm long is
presented in Figure 11. The four signals presented in Figure 11 were representative of the
whole set of signals received at this crack length, with similar frequency peaks occurring in
all the signals. It is observed from these signals that two common frequency peaks occurred
in all of the signals near 123.7 kHz and 410.8 kHz, on average. This trend in the peak-valley
pattern, as predicted by the FEM simulations in Section 2, may yield information related to
crack length.
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Figure 11. Experimental acoustic emission signals captured at a crack length of 8 mm: (a) #532,
44-48 kcycles, (b) #652, 44-48 kcycles, (c) #494, 44-48 kcycles, and (d) #446, 44-48 kcycles.

3.4. Comparison to FEM Simulation

As observed in the FEM simulations presented in Section 2, a relationship between
the length of a fatigue crack which releases an AE signal and the frequency domain peaks
of that signal is predicted. As a primary example of the comparison of the experimental
signals to the FEM simulated signals, AE hit #455 from fatigue cycle range 44–48 kcycles,
as presented in Figure 12, along with its corresponding CWT intensity plot. This signal
is representative of all of the signals in the data set, which show similar characteristics.
The CWT is a method of summarizing the time and frequency domain information into an
intensity plot, which becomes convenient when building artificial intelligence capabilities
for signal analysis. In the CWT of signal #455, we see the frequency peaks at 409.1 kHz and
127.8 kHz manifest in colormap intensity peaks at those frequency values. These frequency
peaks match well with the FEM simulations of an 8-mm crack AE signal, which predicts
frequency peaks at 127.5 kHz and 410 kHz, as seen in Figure 12.
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Figure 12. Time domain, frequency domain, and Choi-William transform of experimental signal #455,
44-48 kcycles (approx. 8 mm) compared to the FEM simulation of an 8-mm crack length AE signal.

These results are very encouraging for both the experimental work done and the pa-
rameters involved in creating an accurate finite element model. Ultimately, the good match
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observed between the FEM simulation and experimental signals mean the FEM results may
be utilized to further crack the length prediction efforts of artificial intelligence techniques.

4. Artificial Intelligence Approach for Crack Length Prediction

As the practical application mode of AE-based SHM research is developed, the ne-
cessity for applied computing capabilities cultivates. Advanced computing capabilities
provide a significant improvement in the development of a comprehensive AE system,
where large-scale datasets can be processed efficiently. In the case of the AE approach, an
artificial intelligence (AI) system that can serve the role of analyzing the signal waveforms
captured to assess details about their origin would prove to be immensely beneficial.

4.1. Introduction to Methodology

In the work presented herein, the AlexNet convolutional neural network (CNN) was
used to develop a crack length prediction capability from AE signals. AlexNet is an
image classification deep neural network trained on the millions of images contained in
ImageNet [41]. The proposed method is not limited to AlexNet; it is simply a generic
example. Existing or to-be-developed neural network architectures can also be used to
achieve the crack length estimation with system accuracy being the affected result. The
general concept of the neural networks follows the standard multilayer perception model
which involves appropriately training its neural connections by a backpropagating error
and adjusting connection weights following the standard steepest gradient descent [42].
Figure 13 shows the model of a deep neural network, which includes multiple hidden layers
of nodes, each connected to the nodes of previous and ensuing layers by weighting factors.
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Figure 13. Schematic of the multilayer perception artificial deep neural network.

For AlexNet, an image recognition convolutional neural network, images of input size
227 × 227 pixels are required. To adopt the experimental AE signals to this criterion, the
Choi–Williams transform (CWT) of the waveforms is processed to generate an intensity
plot yielding information about the time-domain and frequency-domain of the wave, simul-
taneously. This intensity plot is then isolated from the legends and associated waveform
plots and augmented using MATLAB to conform to the 227 × 227-pixel requirement before
being used as input by the AlexNet CNN. A schematic of this process is given in Figure 14.



Appl. Sci. 2022, 12, 1372 13 of 17
Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 18 
 

 
Figure 14. Choi–Williams transform of the acoustic emission signals is isolated and augmented to 
fit the 227 × 227-pixel criterion before being entered into the input layer of the AlexNet convolutional 
neural network architecture. 

4.2. Network Training 
To build the related CNN for crack length prediction, AE signals were used from the 

experiment described in Section 3. Here, signals were obtained from the far-field PWAS2 
during the experiment when the crack was in the ranges of 3.5–4.5 mm and 7.0–8.0 mm in 
total length. As previously described in Section 3 and Ref. [22], the fundamental concept 
is that these AE signals will differ in various characteristics, specifically in the frequency 
domain. The goal is to build an artificial intelligence system capable of discerning these 
distinctions and accurately predicting the crack length from the AE signal. Figure 15 
shows a schematic of the sensing of the two distinct groups of AE signals used to build an 
example crack-length estimation CNN. A few examples of the experimental signal CWTs 
for each of the groups are shown. It is observed from the naked eye that the 7.0–8.0-mm 
crack length signals have a significant intensity peak near the 410 kHz range, as is also 
shown in Figure 12, whereas the 3.5–4.5-mm crack length signals do not. Though differ-
entiating other details of the CWT signal subsets may not be easy to the naked eye, train-
ing a CNN to do so may yield promising findings. 

Figure 14. Choi–Williams transform of the acoustic emission signals is isolated and augmented to fit
the 227 × 227-pixel criterion before being entered into the input layer of the AlexNet convolutional
neural network architecture.

4.2. Network Training

To build the related CNN for crack length prediction, AE signals were used from
the experiment described in Section 3. Here, signals were obtained from the far-field
PWAS2 during the experiment when the crack was in the ranges of 3.5–4.5 mm and
7.0–8.0 mm in total length. As previously described in Section 3 and Ref. [22], the funda-
mental concept is that these AE signals will differ in various characteristics, specifically
in the frequency domain. The goal is to build an artificial intelligence system capable of
discerning these distinctions and accurately predicting the crack length from the AE signal.
Figure 15 shows a schematic of the sensing of the two distinct groups of AE signals used
to build an example crack-length estimation CNN. A few examples of the experimental
signal CWTs for each of the groups are shown. It is observed from the naked eye that the
7.0–8.0-mm crack length signals have a significant intensity peak near the 410 kHz range,
as is also shown in Figure 12, whereas the 3.5–4.5-mm crack length signals do not. Though
differentiating other details of the CWT signal subsets may not be easy to the naked eye,
training a CNN to do so may yield promising findings.

The dataset was comprised of a total of 251 CWT figures, 30 of which came from
signals of crack lengths 3.5 mm–4.5 mm and 221 of which came from signals of crack
lengths 7.0 mm–8.0 mm (as shown in Figure 16). The significant difference in the number
of signals from the two groups was a result of more AE signals being captured while the
crack was in the 7.0–8.0 mm range due to the more favorable crack surfaces. Due to the
small overall dataset, stratified k-fold cross validation was used to partition the data for
training and evaluation of the network capability in classifying crack length.
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Figure 16. Example CWT figures for both groups used in crack length recognition AlexNet CNN.

The k value for the stratified k-fold cross validation was selected as 5, which would
partition the dataset into 5 equal subsets, each of which has proportional categorical
representation from the total dataset. For this network, which was built using the AlexNet
convolutional neural network architecture, the optimizer used is the adaptive moment
optimization (Adam). Important training options within the Adam optimizer were selected
based on experience. The gradient decay factor and squared gradient decay factor were set
to 0.9 and 0.999, respectively. The max epochs for each iteration (k = 5) was set to 15 with a
validation frequency of 3. The learning rate was an adaptive learning rate in accordance
with the Adam optimizer; the initial learning rate was set to a value of 1 × 10−4. The
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mini-batch size for the training was 128. The loss function used in this network is the
cross-entropy loss.

4.3. Results and Discussion

After each network iteration was sufficiently trained, the network’s performance was
tested by assessing its accuracy in predicting the crack length of the validation dataset,
which varied with each iteration in accordance with the stratified k-fold cross validation.
Each network training iteration involved validating a network accuracy on 20% of the
entire dataset (i.e., 50 signals for iteration 1, 2, 4, and 5; 51 signals for iteration 3). The
results of the network accuracy following the stratified k-fold cross validation are shown in
Table 3. The overall network accuracy, which was computed by taking the average of the
k = 5 iterations, was 98.4%.

Table 3. Network accuracy using stratified k-fold cross validation (k = 5).

Iteration (i) Validation Accuracy

1st
2nd
3rd
4th
5th

94%
100%
100%
100%
98%

Average 98.4%

From these results, it is observed that a convolutional neural network built using
the architecture of AlexNet (although not limited to such architecture) can be utilized
to distinguish between various AE experimental fatigue crack signals. The network can
be used to build a comprehensive AI system for monitoring fatigue-prone areas in thin
metallic sheets. This is accomplished by utilizing the capabilities of this CNN to filter out
crack-related vs. noise signals, determine the crack length of a given AE crack-related
signal picked up by the monitoring system, and give a prognosis on the remaining useful
life of the metallic component.

5. Summary, Conclusions, and Future Work
5.1. Summary

In acoustic emission (AE) structural health monitoring (SHM), post-processing and
informative assessment of AE signals is a vitally important piece of the SHM system. In
this paper, we investigated the ability to apply artificial intelligence (AI) capabilities to
optimize the efficiency of this piece of the SHM system by automating it. FEM analysis
was performed to simulate the AE wave propagation from a fatigue crack in metallic
plates. A SIF-controlled fatigue experiment was performed to capture AE signals. The
resulting experimental signals were compared to the FEM simulations. A fundamental
introduction to the principles of applicable AI techniques was shown, and a novel use case
of a convolutional neural network (CNN) was presented. The Choi–Williams transforms
of AE experimental signals received by a PWAS, which yield an intensity plot containing
simultaneous information on both the time domain and frequency domain content of an
AE wave, were used as input into the AlexNet CNN in an effort to build a network capable
of discerning fatigue crack length.

5.2. Conclusions and Future Work

AE signals captured during a fatigue crack growth experiment were analyzed and
found to match closely with the FEM simulations. AE energy generated at one crack tip
travels to the other tip and establishes a standing-wave pattern that has a characteristic
dominant frequency, which depends on the crack length. A novel approach which utilized
the robust image recognition capabilities of the AlexNet convolutional neural network and
the Choi–Williams transform of experimental AE signals was presented. This novel AI
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system proved to be effective at predicting the crack length of an AE signal in a binary
scenario at an accuracy of 98.4%. The proposed approach can be used to obtain the crack-
length estimation from every AE signal without recourse to the AE-signal history. An
invention disclosure [43] covering the developed methodology has been filed.

In future, this concept could be extrapolated to similar applications that go beyond
a binary crack length prediction. Regression models could be combined with this more
discretized application mode to increase the overall AI capabilities of such a system. As
previously mentioned, the approach presented herein is not limited to the AlexNet architec-
ture; further improvements could be explored using other CNN architectures. To expand
upon the classification capabilities, further experimentation to capture sufficient datasets
in other crack lengths will be valuable to constructing a comprehensive crack monitoring
AI system.
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