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Abstract: We propose a sequential Monte Carlo-based cardinalized probability hypothesis density
(SMC-CPHD) filter with adaptive survival probability for multiple frequency tracking to enhance
the tracking performance. The survival probability of the particles in the filter is adjusted using the
pre-designed exponential function related to the distribution of the estimated particle points. In
order to ensure whether the proposed survival probability affects the stability of the filter, the error
bounds in the prediction process are analyzed. Moreover, an inverse covariance intersection-based
compensation method is added to enhance cardinality tracking performance by integrating two
types of cardinality information from the CPHD filter and data clustering process. To evaluate
the proposed method’s performance, MATLAB-based simulations are performed. As a result, the
tracking performance of the multiple frequencies has been confirmed, and the accuracy of cardinality
estimates are improved compared to the existing filters.

Keywords: multiple frequency tracking; SMC-CPHD filter; probability of survival; cardinality
compensation; inverse covariance intersection

1. Introduction

Research on multiple target tracking filters has been actively conducted in various
fields as well as in the target tracking field [1–13]. In particular, multiple target tracking
filters based on a random finite set (RFS) can be used in many applications because the
filters can track targets, even if the number of targets is unknown or if the number of targets
changes over time [14–21]. Using these characteristics, we have recently conducted research
to estimate and to finally mitigate multiple frequencies using the cardinalized probability
hypothesis density (CPHD) filter among the RFS-based filters when a global navigation
satellite system (GNSS) signal is received with multiple interference signals [22]. Studies
have also been conducted to enhance the cardinality estimate performance of the CPHD
filter, which results in increasing the performance of frequency estimates [22]. However,
the performance is still not perfect, and additional methods are needed to enhance the
estimate performance of the filter and the cardinality estimate performance in real situations,
especially when clutter is present. As part of these studies, in this paper, the adaptive
survival probability is applied to the sequential Monte Carlo-based CPHD (SMC-CPHD)
filter.

In the initial version of the RFS filters, most of the filters assumed that the probability of
survival is constant [7,8,10,23]. However, in a case with clutter in the measurements, fixing
the probability of survival to a constant value (relatively large value) prevents the survival
intensity from properly reflecting the situation and affects the estimate performance of the
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filter. Therefore, it is necessary to adaptively apply the probability of survival according
to the measurements including clutter within the specified boundary. To address this
problem, the previous paper also suggested adaptively setting the probability of survival
to the GM-PHD filter [24]. Here, the authors of [24] defined a simple survival model to
adaptively compute the survival probability of the state variable according to moving
direction and position. In the paper [25], only the probability of detection was adaptively
set. The proposed methods in previous papers were limited in the applicable systems or
performed probability adjustment based on the observation area.

Based on the existing research results, we propose an adjustment technique of adaptive
survival probability to set the appropriate value of survival probability for the multiple
frequency tracking system, where the probability of survival is changed to be inversely
proportional to the exponential function according to the Euclidean distance between the
posterior state and the particles. In order to evaluate whether or not the modified survival
probability affects the stability of the filter, the error bounds in the prediction process are
analyzed to verify the stability of the filter. In addition to adaptive survival probability, an
inverse covariance intersection (ICI)-based compensation technique is added to improve
cardinality tracking performance. The ICI method [26,27] is one of the latest methods in the
sensor fusion field. The ICI method provides more precise fusion results than those obtained
by conventional covariance intersection (CI) methods [27]. The compensation method with
ICI fused two types of cardinality information using the ICI method, which were the
cardinality information estimated from the CPHD filter and the cardinality information
additionally generated to compensate for the original cardinality estimate.

The paper is organized as follows. The processing steps of the SMC-CPHD filter are re-
viewed in Section 2. The probability of survival points in the SMC-CPHD filter is proposed
in Section 3. In addition, the convergence of the mean square estimate is proved in case the
proposed survival probability is applied in the existing SMC-CPHD filter. Subsequently,
in Section 4, cardinality compensation with the ICI method is additionally applied in the
proposed filter structure to enhance the estimate performance of the cardinality. In Section 5,
various simulations are performed to evaluate the proposed method’s performance, and it
is confirmed that the proposed method has better performance compared with conventional
filtering methods. Section 6 summarizes the conclusions.

2. Processing Steps of the SMC-CPHD Filter

The CPHD filter is used for tracking multiple frequencies and is designed with an
SMC structure [10,23]. This section presents a brief review of the SMC implementation in
the CPHD filter with the target birth density driven by measurements [23].

Suppose at time k there are nk targets with states xk,1, . . . , xk,nk
in a state space, X ⊆ Rnx ,

and mk measurements, zk,1, . . . , zk,mk
, in an observation space, Z ⊆ Rnz . Then, a multi-

ple target state and a multiple target observation are, respectively, defined as the finite
sets: Xk =

{
xk,1, . . . , xk,nk

}
∈ F(X) and Zk =

{
zk,1, . . . , zk,mk

}
∈ F(Z). The state vector,

x = (y, β), consists of the usual kinematic components denoted by y and a label β, which
distinguishes between a newborn target (β = 1) and a persistent target (β = 0) [23].
The PHD intensity function, Dk|k(x|Z1:k ) , Dk|k(x), is referred to as

∫
δx(x) fk|k(x|Z1:k )δX.

ρk|k(n|Z1:n ) , ρk|k(n) is the cardinality distribution at time k and ρΓ,k|k−1(n) , ρΓ(n) is the
cardinality distribution of new targets at time k. The CPHD filter jointly propagates Dk|k(x)
and ρk|k(n). In this Algorithm 1, as the adaptive survival probability is not applied, the
assumption is that the survival probability is constant, pS(x) = pS.

At time k = 0, it is assumed that ρ0|0(n) = 1 if n = 0, and ρ0|0(n) = 0 if n = 1, 2, . . . , nmax
(nmax denotes the targets’ maximum anticipated number), and D0|0(y, 0) = D0|0(y, 1) = 0.
The intensity function, Dk|k(x), is approximated by using the random particles. At time
k− 1:

Dk−1|k−1(y, 0) ≈
Np

k−1

∑
n=1

w(n)
k−1,pδ

y(n)k−1,p
(y) (1)
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Dk−1|k−1(y, 1) ≈
Nb

k−1

∑
n=1

w(n)
k−1,bδ

y(n)k−1,b
(y) (2)

where δy0
(y) represents the Dirac delta function [8]

{(
w(n)

k−1,p, y(n)
k−1,p

)}Np
k−1

n=1
and{(

w(n)
k−1,b, y(n)

k−1,b

)}Nb
k−1

n=1
denote the weighted particle sets for persistent targets and newborn

targets. Np
k−1 and Nb

k−1 define the number of persistent target particles and newborn target
particles.

The predicted cardinality distribution, ρk|k−1(n), can be expressed by a convolu-
tion [10]:

ρk|k−1(n) =
n

∑
j=0

ρS,k|k−1(j)ρΓ(n− j) (3)

ρS,k|k−1(j) =
∞

∑
l=j

l!
j!(l − j)!

pj
S(1− pS)

l−jρk−1|k−1(l) (4)

For the predicted intensity function, the summation of Dk−1|k−1(y, 0) and Dk−1|k−1(y, 1)
is preferentially conducted and can be presented by the union of two particle sets as follows:

{(
w(n)

k−1, y(n)
k−1

)}Nk−1

n=1
=
{(

w(n)
k−1,p, y(n)

k−1,p

)}Np
k−1

n=1
∪
{(

w(n)
k−1,b, y(n)

k−1,b

)}Nb
k−1

n=1
(5)

The predicted intensity function, Dk|k−1(y, 0), can be approximately calculated by the
particle set:

Dk|k−1(y, 0) ≈
Nk−1

∑
n=1

w(n)
k|k−1,pδ

y(n)k|k−1,p
(y) (6)

y(n)
k|k−1,p ∼ qk

(
·
∣∣∣y(n)

k−1, Zk

)
(7)

w(n)
k|k−1,p =

pS

(
y(n)

k−1

)
πk|k−1

(
y(n)

k|k−1,p

∣∣∣y(n)
k−1

)
w(n)

k−1

qk

(
y(n)

k|k−1,p

∣∣∣y(n)
k−1, Zk

) (8)

For simplicity, the importance density is adopted as qk

(
·
∣∣∣y(n)k−1, Zk

)
= πk|k−1

(
·
∣∣∣y(n)k−1

)
[25].

For β = 1, the predicted intensity function, Dk|k−1(y, 1), is approximated as:

Dk|k−1(y, 1) ≈
Nb

k−1

∑
n=1

w(n)
k|k−1,bδ

y(n)k|k−1,b
(y) (9)

y(n)
k|k−1,b ∼ bk(· |z ) (10)

w(n)
k|k−1,b =

vb
k|k−1

Nb
k

(11)

where bk(· |z ) denotes the newborn target density and depends on gk(z |y ) and prior
knowledge. Nb

k = Mb ·mk defines the total number of newborn target particles and Mb
refers to the number of particles per newborn target.

The updated cardinality distribution, ρk|k(n), is calculated by:

ρk|k(n) =
Υ0

k

[
Dk|k−1; Zk

]
(n)ρk|k−1(n)〈

Υ0
k

[
Dk|k−1; Zk

]
, ρk|k−1

〉 (12)
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Υu
k

[
Dk|k−1, Z

]
(n) =

min(|Z|,n)
∑

j=0
(|Z| − j)!ρκ,k(|Z| − j)Pn

j+u

×〈1−pD(·),Dk|k−1(·,0)〉u−(j+u)

〈1,Dk|k−1(·,1)+Dk|k−1(·,0)〉n

×ej

(
Ξk

(
Dk|k−1, Z

)) (13)

Ξk

(
Dk|k−1, Z

)
=

{
〈1, κk〉
κk(z)

〈
Dk|k−1(·, 1) + pD(·)Dk|k−1(·, 0), g(z|· )

〉
: z ∈ Z

}
(14)

ej(Z) = ∑
W⊆Z,|W|=j

(
∏

ζ∈W
ζ

)
(15)

where 〈g, f 〉 =
∫

f (x)g(x)dx, κk(z) defines the PHD of clutter, pD,k(x) , pD(x) refers to
the detection probability, and gk(z |x ) represents the measurement likelihood at time k.
ej(Z) denotes the elementary symmetric function of order j for a finite set, Z [8].

The updated intensity function, Dk|k(y, 0) and Dk|k(y, 1), can be respectively calculated
by:

Dk|k(y, 0) ≈
Nk−1

∑
n=1

w(n)
k|k,pδ

y(n)k|k−1,p
(y) (16)

w(n)
k|k,p =

(
1− pD

(
y(n)

k|k−1,p

))
w(n)

k|k−1,p + ∑
z∈Zk

pD

(
y(n)

k|k−1,p

)
gk

(
z
∣∣∣y(n)

k|k−1,p

)
w(n)

k|k−1,p

θ(z)
(17)

Dk|k(y, 1) ≈
Nb

k

∑
n=1

w(n)
k|k,bδ

y(n)k|k−1,b
(y) (18)

w(n)
k|k,b = ∑

z∈Zk

w(n)
k|k−1,b

θ(z)
(19)

θ(z) = κk(z) +
Nb

k

∑
n=1

w(n)
k|k−1,b +

Nk−1

∑
n=1

pD

(
y(n)

k|k−1,p

)
gk

(
z
∣∣∣y(n)

k|k−1,p

)
w(n)

k|k−1,p (20)

For resampling steps, the estimated number of persistent targets, v̂p
k = ∑

Nk−1
n=1 w(n)

k|k,p,

and the expected number of newborn targets, v̂b
k = ∑

Nb
k

n=1 w(n)
k|k,b, are respectively calculated.

The number of particles, Np
k , is selected by

[
Mpv̂p

k

]
, where [·] denotes the nearest integer

and Mp is the number of particles per persistent targets. Two intensity functions of (16)
and (18) are respectively resampled Np

k and Nb
k times to eliminate the particles with small

weights and multiply the particles with large weights.
After resampling steps, the intensity function, Dk|k(y, 0) and Dk|k(y, 1), can be respec-

tively approximated by:

Dk|k(y, 0) ≈
Np

k

∑
n=1

w(n)
k,p δ

y(n)k,p
(y) (21)

Dk|k(y, 1) ≈
Nb

k

∑
n=1

w(n)
k,b δ

y(n)k,b
(y) (22)

where w(n)
k,p = v̂p

k /Np
k and w(n)

k,b = v̂b
k/Nb

k .
The whole process of the SMC-CPHD filter is presented in detail in [23], and the

SMC-CPHD filter’s pseudocode at time k is as shown below [23]:
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Algorithm 1: SMC-CPHD filter

Inputs: cardinality distribution: ρk−1|k−1(n),

intensity function (case β = 0) : Dk−1|k−1(y, 0):
{(

w(n)
k−1,p, y(n)k−1,p

)}Np
k−1

n=1
, Equation (1)

intensity function (case β = 1) : Dk−1|k−1(y, 1):
{(

w(n)
k−1,b, y(n)k−1,b

)}Nb
k−1

n=1
, Equation (2)

measurement set: Zk =
{

zk,1, . . . , zk,mk

}
(mk = |Zk|)

predicted cardinality distribution: ρk|k−1(n), Equation (3)

input particle sets:
{(

w(n)
k−1, y(n)k−1

)}Nk−1

n=1
, Equation (5)

predicted intensity function (case β = 0) : Dk|k−1(y, 0), Equation (6)

for n = 1, . . . , Nk−1 do
y(n)k|k−1,p ∼ πk|k−1

(
·
∣∣∣y(n)k−1

)
, Equation (7)

w(n)
k|k−1,p = pS

(
y(n)k−1

)
w(n)

k−1, Equation (8)

end for

number of newborn target particles: Nb
k = Mb ·mk

predicted intensity function (case β = 1) : Dk|k−1(y, 1), Equation (9)

for j = 1, . . . , mk do
for l = 1, . . . , Mb do

n = l + (j− 1)Mb

y(n)k|k−1,b ∼ bk

(
·
∣∣∣zk,j

)
, Equation (10)

w(n)
k|k−1,b = vb

k|k−1/Nb
k , Equation (11)

end for
end for

updated cardinality distribution: ρk|k(n), Equation (12)

for all z ∈ Zk do
Ξk

(
Dk|k−1, Zk\{z}

)
, Equation (14)

ej

(
Ξk

(
Dk|k−1, Zk\{z}

))
, Equations (14) and (15)

Υu
k

[
Dk|k−1, Zk\{z}

]
(n), Equation (13) (for u = 1, 0)

end for

updated intensity function: Dk|k(y, 0), Dk|k(y, 1), Equations (16) and (18)

updated weights (case β = 0) : w(n)
k|k,p, n = 1, . . . , Nk−1, Equation (17)

updated weights (case β = 1) : w(n)
k|k,b, n = 1, . . . , Nb

k , Equation (19)

estimated number of persistent and newborn targets: v̂p
k = ∑Nk−1

n=1 w(n)
k|k,p, v̂b

k = ∑
Nb

k
n=1 w(n)

k|k,b

number of particles for resampling: Np
k =

[
Mp v̂p

k

]
resample Np

k times from
{(

w(n)
k|k,p/v̂p

k , y(n)k|k−1,p

)}Nk−1

n=1
to obtain

{(
w(n)

k,p , y(n)k,p

)}Np
k

n=1

resample Nb
k times from

{(
w(n)

k|k,b/v̂b
k , y(n)k|k−1,b

)}Nb
k

n=1
to obtain

{(
w(n)

k,b , y(n)k,b

)}Nb
k

n=1
Outputs: updated cardinality distribution: ρk|k(n),

updated intensity function: Dk|k(y, 0):
{(

w(n)
k,p , y(n)k,p

)}Np
k

n=1
, Equation (21)

3. SMC-CPHD Filter with Adaptive Survival Probability

The processing steps of the SMC-CPHD filter [23] were reviewed in the previous
section. In this section, how to adaptively apply the survival probability is explained, and
the result that changing the survival probability does not affect the stability of the filter is
demonstrated through convergence analysis.
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3.1. New Adaptive Survival Probability

As mentioned previously, the existing versions of the SMC-CPHD filter employ a
predesigned value for the survival probability, which remains identical for all targets
independent of distances between their posterior estimate and particles [7,8,10,23]. Here,
we describe a simple survival model shown by pS,k|k−1

(
yi

k−1

)
, pS

(
yi

k−1

)
to adaptively

compute the survival probability of the state variable according to the distance from each
particle, i = 1, 2, · · · , Nk−1.

In the proposed algorithm, the survival model includes a set of the boundary with
their corresponding posterior estimate. The probability illustrates the survival probability
with respect to the posterior estimate, which is calculated by:

pS

(
yi

k−1

)
=



pS,max(
i f di

k−1 = 0
)

pS,max exp
(
−di

k−1/dmax

)(
i f 0 < di

k−1 < dmaxandd2
M ≤ Tg

)
pS,min = 0.3679× pS,max(

i f di
k−1 = dmaxord2

M > Tg

)
(23)

where pS represents the adaptive survival probability at time k, pS,max represents the
maximum value of pS, and exp(·) is the exponential function. pS,min indicates the mini-
mum value of pS and is equal to 0.3679× pS,max because exp(−1) = 0.3679 in the case of
di

k−1 = dmax, with dmax being the maximum distance of a particle to the prior.

di
k−1 =

∣∣∣∣yi
k−1 −

^
yk−1

∣∣∣∣ denotes the Euclidean distance between the posterior estimate,
^
yk−1,

and the i-th of each particle yi
k−1 at time k, dmax is the maximum value of the distance, di

k−1,

and
^
yk−1 is the observation location. d2

M ,
(

ε
(ij)
k

)T(
P(j)

z,k|k−1

)−1
ε
(ij)
k is the Mahalanobis

distance associated with ε
(ij)
k and d2

M ≤ Tg represents the validation gate area, which is
selected to reduce false but apparently possible target measurements in the presence of the
clutter or noise [28–32]. The other related notations are as follows: ε

(ij)
k , z(i)k − h

(
y(j)

k|k−1

)
denotes the innovation vector associated with the i-th measurement, z(i)k ∈ Zk, and with

respect to that, the j-th predicted observation, P(j)
ε,k|k−1 = P(j)

z,k|k−1 = HP(j)
y,k|k−1HT + R is the

residual covariance matrix of ε
(ij)
k , R defines the measurement noise covariance matrix,

h
(

y(j)
k|k−1

)
refers to the measurement model, and Tg is the threshold of the ny-dimensional

validation gate and a design parameter.
Figure 1 shows the adaptive survival probability based on (23).
As shown in Figure 1, the closer the distance, di

k−1, the higher the probability of
survival. As mentioned previously and shown in (23), the adaptive survival probability, pS,
does not consist of constant values but varying values according to the distance within a
validation gate area, and pS,min is not zero but a value determining by pS,max. The parameter
pS,max is a design parameter and is set to 1 in our simulations. In the setting of the value of
pS,max, the value of 0.98 is often used for the fixed survival probability [23], while the value
of one is used for consideration of the attenuation of the survival probability according to
the distance [24].

However, an improvement of the proposed method is still needed. When we apply
the calculated value dmax to set the survival probability, the sample impoverishment can
occur in the worst case because the survival probability is directly affected by the distance.
Therefore, an additional method such as distance leveling for obtaining enough samples
may be necessary. Nevertheless, the proposed method is meaningful because the effect of
resampling in the SMC-CPHD filter can be present; pS has an effect on the weights of the
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particles because pS is multiplied to the weights of the particles. Simulations for verifying
the performance improvement of the proposed algorithm are shown in Section 5.
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3.2. Convergence Analysis

The bounds for the mean square error (MSE) [33,34] of the SMC-PHD filter depend on
some considerations related to the designed parameters of the model of the target system.
In order to verify the convergence of the proposed algorithm, those analysis results are
extended and applied to the proposed algorithm. In particular, the effect of the character
that changed the survival probability in Section 3.1 on the convergence of the filter is
analyzed. Some of the assumptions and considerations used in the convergence analysis
are given as follows.

If θN defines a sequence of measures that rely on the number of particles, N, then θN

converges to θ when ∀ϕ ∈ B
(

Rd
)

.

lim
N→∞

E
[(〈

θN , ϕ
〉
− 〈θ, ϕ〉

)2
]
= 0 (24)

where B
(

Rd
)

denotes the set of bounded Borel measurable function on Rd and d refers to
the dimension of the space. When the measure in the inner product, 〈., .〉, is discrete, it is
the summation inner product:

〈
DN

k|k, ϕ
〉
=

N

∑
i=1

w(i)
k ϕ

(
x(i)k

)
(25)

In order to prove convergence of the proposed algorithm, D′k|k−1 is defined as the den-

sity propagated from the previous time step, and the boundary of
∣∣∣〈DN

k|k, ϕ
〉
−
〈

D′k|k−1, ϕ
〉∣∣∣

is analyzed by the triangle inequality:∣∣∣〈DN
k|k−1, ϕ

〉
−
〈

D′k|k−1, ϕ
〉∣∣∣ ≤ ∣∣∣〈DN

k|k−1, ϕ
〉
−
〈

DN
k−1|k−1, πk|k−1 ϕ

〉∣∣∣
+
∣∣∣〈DN

k−1|k−1, πk|k−1 ϕ
〉
−
〈

Dk−1|k−1, πk|k−1 ϕ
〉∣∣∣ (26)

where πk|k−1 refers to the transition density and is bounded by the system transition, fk|k−1,
and the PHD of spawned targets, sk|k−1, as follows:

πk|k−1
(
y, yk−1

)
= pS

(
yk−1

)
fk|k−1

(
y
∣∣yk−1

)
+ sk|k−1

(
y
∣∣yk−1

)
(27)
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Let ςk−1 be the σ-algebra generated by the particles
{

y(i)
k−1

}
. Then, the first term of

the right side of (26) can be expected as:

E
[(〈

DN
k|k−1, ϕ

〉
−
〈

DN
k−1|k−1, πk|k−1 ϕ

〉)2
∣∣∣∣ςk−1

]
= E

[〈
DN

k|k−1, ϕ
〉2
]
−
〈

DN
k−1|k−1, πk|k−1 ϕ

〉2
(28)

The above equation can be expressed in sum using the independence of each particle
as follows:

E
[〈

DN
k|k−1, ϕ

〉2
]
−
〈

DN
k−1|k−1, πk|k−1 ϕ

〉2

=
(

T̂
N

)2 N
∑

i=1

(
E

[(
ϕ

(
~
y
(i)
k

)
ps
(
yk−1

))2
∣∣∣∣∣ςk−1

]
−
(

πk|k−1 ϕ
)(

y(i)
k−1

)2
) (29)

where T̂ denotes the estimated number of targets.
According to (29), the equation’s boundary can be expressed as:∣∣∣∣E[〈DN

k|k−1, ϕ
〉2
]
−
〈

DN
k−1|k−1, πk|k−1 ϕ

〉2
∣∣∣∣ ≤ T̂2

N
‖ϕ‖2

(
‖ps
(
yk−1

)
‖2

+ ‖πk|k−1‖
2
)

(30)

Using the inequality of Minkowski, (30) can be rearranged as:

E
[(〈

DN
k|k−1, ϕ

〉
−
〈

D′k|k−1, ϕ
〉)2

]1/2

≤ E
[(〈

DN
k|k−1, ϕ

〉
−
〈

DN
k−1|k−1, πk|k−1 ϕ

〉)2
]1/2

+E
[(〈

DN
k−1|k−1, πk|k−1 ϕ

〉
−
〈

Dk−1|k−1, πk|k−1 ϕ
〉)2

]1/2

(31)

If there are no newly created targets at time k, the boundary of (31) can be finally
expressed as:

E
[(〈

DN
k|k−1, ϕ

〉
−
〈

D′k|k−1, ϕ
〉)2

]1/2
≤ 1√

N
‖ϕ‖

(
T̂‖ps(xk−1)‖2 + ‖πk|k−1‖

2
)1/2

+
√

ck−1|k−1 (32)

In (32), ck−1|k−1 defines the MSE’s boundary at the previous time step, k− 1, and can
be obtained from the assumption that:

E
[(〈

DN
k−1|k−1, ϕ

〉
−
〈

Dk−1|k−1, ϕ
〉)2

]
≤ ck−1|k−1

‖ϕ‖2

N
(33)

Finally, if ‖πk|k−1‖ ≤ 1 + Tk|k−1, where Tk|k−1 denotes the number of spawned targets
at time step k:

E
[(〈

DN
k|k−1, ϕ

〉
−
〈

D′k|k−1, ϕ
〉)2

]
≤ ‖ϕ‖2

N

((
T̂‖ps

(
yk−1

)
‖2

+ ‖1 + Tk|k−1‖
2
)1/2

+
√

ck−1|k−1

)2
(34)

In the case of the proposed algorithm, we confirmed that the MSE’s convergence de-
pends on only the number of targets, T̂, including the spawned targets, Tk|k−1, the particles’
number, N, and the maximum boundary of the survival probability. Thus, if the maxi-
mum range of the survival probability is specified (ps,max), as in the previous section, the

SMC-CPHD filter will converge as ‖ϕ‖2

N

((
T̂‖ps,max‖2 + ‖1 + Tk|k−1‖

2
)1/2

+
√ck−1|k−1

)2
.

4. Cardinality Compensation with ICI

Information fusion is mainly applied to combine information using various sensors
in the sensor fusion field. Typical methods, such as CI, cross covariance, sequential CI,
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and ellipsoidal intersection methods [26,27,35–38], have been consistently studied. They
are classified as ellipsoidal methods and the ICI method [26,27], which is one of the latest
data fusion methods. A data fusion method based on the ICI is proposed to obtain less
conservative but still consistent estimates. A major advantage of the ICI method is that
its fusion results are more accurate than those of the CI method [27]. Therefore, the ICI
method is used for combining two pieces of cardinality information.

According to fusion methods, the cardinality, C f , can be determined as:

C f = αC1 + βC2 (35)

for any γ ∈ [0, 1]. The covariance of the fused cardinality and gains in (35) are set as
α = PC f ×

((
PC1

)−1 − γ
(
γPC1 + (1− γ)PC2

)−1
)

and β = PC f ×
((

PC1

)−1 − (1− γ)
(
γPC1 + (1− γ)PC2

)−1
)
.

C1 is the estimated cardinality using the CPHD filter, and PC1 is the variance of C1. C2
is the additionally generated cardinality by iterative clustering to compensate for the
original cardinality estimate, C1. The iterative clustering algorithm [39] repeatedly performs
fuzzy c-means (FCM) clustering using the resampled particles obtained from the CPHD
filter. The clustering number that maximizes the clustering evaluation index among the
candidates of the clustering number is selected as cardinality information, C2. PC2 defines
the quality information and represents the variance of C2. Finally, the covariance of the
fused cardinality can be calculated by:(

PC f

)−1
=
(

PC1

)−1
+
(

PC2

)−1 −
(
γPC1 + (1− γ)PC2

)−1 (36)

The compensation method using the ICI method does not always guarantee good
performance before fusing. A certain condition is required to continuously obtain the
well-fused results and is analyzed by an inequality equation. Because the cardinality is a
scalar value, Equation (36) can be expressed as:

1
PC f

− 1
PC1

=
1

PC2

− 1
γPC1 + (1− γ)PC2

(37)

If the difference in Equation (37) is positive, the fused result using the ICI method
always has better estimated results compared with those of the CPHD filter. Therefore,
to always make the above equation positive, the γPC1 + (1− γ)PC2 term guarantees the
positive condition or is equal to zero. The term is multiplied in both sides of (37) and is
then rewritten as follows:(

1
PC f
− 1

PC1

)
×
(
γPC1 + (1− γ)PC2

)
=

(
1

PC2
− 1

γPC1
+(1−γ)PC2

)
×
(
γPC1 + (1− γ)PC2

)
= γ

( PC1
PC2
− 1
) (38)

where γ ∈ [0, 1]. In addition, if PC1 ≥ PC2 , γ
( PC1

PC2
− 1
)
≥ 0. This means that the fused

result with the ICI method has a lower estimated error compared with the original CPHD
filter. Finally, the estimated cardinality is only used in the PC1 ≥ PC2 case when performing
the ICI-based cardinality compensation process.

5. Simulations

Simulations were performed to verify the performance of the proposed algorithm.
This paper aims to track multiple frequencies using the CPHD filter to remove GNSS
interference when GNSS signals are received with multiple GNSS interference signals.

In each simulation, GNSS data were generated by a SatGen simulator. The frequencies
of received GNSS interference signals were designed as the combination of a constant
frequency and a linear changed frequency in the time-frequency domain. We simulated two
cases, and the true values of trajectory including the cardinality of each case are shown in
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Figures 2 and 3. In Figures 2a and 3a, the solid red line indicates the true trajectory, and the
gray crosses show the frequency measurement, including the clutter of the CPHD filter. In
both cases, the clutter conditions were set differently, as shown in Figure 2c, to confirm how
resistant the proposed method is to the clutter. The jamming to signal ratio was set to 30 dB,
the power of the received GNSS signal was set to −130 dBm, and the overall noise floor
was set to −114 dB/MHz. In addition, the chirp rate was set to 3.65× 1012Hz/s [40,41].
The initial digital frequency was set to 0.25 in case 1 and was respectively set to 0 and 0.5
in case 2. The intermediate frequency was 9.548 MHz, and the sampling frequency was
38.192 MHz.
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The A_CPHD was compared with the following methods: The first method is “C_CPHD”,
which is a conventional CPHD filter with k-means clustering. The second method is
“FCM_CPHD”, which is a conventional CPHD filter applying FCM clustering so that it is
robust in the presence of heavy noise and clutter. The last method is “CC_CPHD”, which is
the FCM_CPHD applying cardinality compensation [22] with the ICI method and iterative
clustering, which was recently proposed.

In the first and second cases, the tracking and cardinality estimate results from each
method are presented as shown in Figures 4–11. The top panel of each figure indicates
the frequency tracking result, and the bottom panel of each figure shows the cardinality
estimate result. In each top graph, the true trajectory is indicated by the solid red line, the
measurements with the clutter are shown by the gray crosses, and the black dots present
the estimation results. In each bottom graph, the estimation result of cardinality is shown
in the solid black line, and the true value of cardinality is presented by the solid black line.
As shown in Figure 2c, the distribution of clutter varies with time. The clutter had the
Poisson distribution property. Here, the Poisson average rate value (λ) in the frequency
measurement was changed over a total of 300 simulation runs.
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In Figure 4, the C_CPHD was used. As shown in this figure, tracking loss partially
occurs, and the cardinality error was also severe. The results of FCM_CPHD are shown
in Figure 5. Through these results, we confirmed that the tracking performance of the
FCM_CPHD was a little better than that of the C_CPHD due to the robustness of the
clustering method when there is a lot of noise in the measurement.

However, there was still tracking loss, and estimated errors of cardinality still re-
mained even though FCM clustering was used. Therefore, we proposed the cardinality
compensation method to improve the tracking performance. According to Figure 6, the
performance of the frequency tracking and the cardinality estimate were ameliorated when
the CC_CPHD was used.

However, as shown in Figure 6b, the true value of cardinality is 2 when the time index
is 165, but the estimated value is 3. We eventually aim to eliminate the frequency of the
interference signal by using the estimation result as the notch frequency. Therefore, the
problem arises of increasing the dimension of the notch filter if the number of the frequency
to be removed is estimated to be more than the true number. In addition, as shown in
Figure 6a, a performance improvement of the algorithm is needed to prevent this situation
because this is a result of estimating the wrong frequencies, resulting in the elimination
of frequency components that should not be removed. Therefore, we have proposed the
adaptive survival probability as earlier described, and the results are shown in Figure 7.

The results in Figure 7 show that the estimated results of both frequency and cardinality
represent close to the true value. The cardinality value differs from the true value when the
time index is from 101 to 109, as seen in Figure 7b, because the distance between the two
frequencies at that time is too close, meaning that the estimate accuracy is reduced.

To evaluate the tracking performance, an optimal sub-pattern assignment (OSPA) [42],
which is a general performance index used in the multiple target tracking field, was used
as a performance index.

Table 1 shows the results from Figures 4–7 by the OSPA index, and the proposed
method with adaptive survival probability (A_CPHD) has a small OSPA index compared
to the existing methods. This means that the estimate performance of frequency and
cardinality was improved. The improvement of the computational efficiency was also
found through a smaller calculation time than the CC_CPHD without adaptive survival
probability. These results can be considered as the effect of adaptive gating due to applying
the probability by the conditions.

Table 1. The performance of tracking (case 1).

Algorithm OSPA Computation Time [sec.]

C_CPHD 16.2388 2.6815
FCM_CPHD 12.7585 2.7087

CC_CPHD (without
adaptation) 6.6667 4.7724

A_CPHD (Proposed) 6.5437 4.7032

The second simulation assumes that more complex multiple frequencies are input
than the first simulation case, as shown in Figure 3. The clutter conditions are the same
as in case 1. Figures 8–11 show the results of estimating frequency and cardinality for
case 2 using the C_CPHD, FCM_CPHD, CC_CPHD, and A_CPHD methods, respectively.
Table 2 shows the results in Figures 8–11 by the OSPA performance index. As shown in
Figures 8–11 and Table 2, the performance of the proposed algorithm for case 2, like case 1,
is superior to that of the existing methods. However, in the second scenario, the OSPA of the
FCM_CPHD is not significantly improved compared with the results of C_CPHD, unlike
the first scenario, which results from a strong tendency to unite in one when clustering by
FCM in cases where the frequencies are dense. In addition, for CC_CPHD and A_CPHD
using the iterative clustering method, the calculation time in the first scenario is twice as
much as C_CPHD and FCM_CPHD, while the second scenario is tripled. This is because
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the number of targets (frequencies) to estimate increased, and the number of candidates for
iterative clustering consequently increased, which results from increasing the calculation
time.

Table 2. The performance of tracking (case 2).

Algorithm OSPA Computation Time [sec.]

C_CPHD 17.2284 3.5796
FCM_CPHD 16.9158 3.7380

CC_CPHD (without
adaptation) 7.1634 9.8984

A_CPHD (Proposed) 6.9683 9.4285

From the simulation results for both cases, the combination of FCM and cardinality
compensation methods (CC_CPHD) shows a significant improvement in performance over
existing methods. However, depending on the scenarios and the degree of the clutter, the
estimated cardinality may be more than the actual cardinality, as in Figures 6b and 10b.
From the perspective of ultimately eliminating frequencies, as mentioned briefly previously,
the mitigation performance can be degraded because the number of frequencies to be
removed is increased; thus it is hard to respond to this situation. However, the addition of
the proposed adaptive survival probability shows more robust performance in the clutter
or scenarios.

Consequently, through the above simulation results, we confirmed that the proposed
adaptive survival probability is effective in improving performance compared to constant
survival probability under any clutter conditions. This was because survival probability
affected the weight of the particles, resulting in an adaptive gating effect. However, a
review of the resampling methods may be necessary because sample impoverishment may
occur if the adaptive boundary is incorrectly set.

6. Conclusions

We proposed an SMC-CPHD filter with adaptive survival probability for multiple fre-
quency tracking to enhance the tracking performance in the conventional SMC-CPHD filter.
The survival probability of the particles in the filter was adjusted using the pre-designed
exponential function. In order to confirm whether the proposed survival probability affects
the stability of the filter, the error bounds in the prediction process were analyzed. More-
over, the ICI based compensation technique was added to improve cardinality tracking
performance. To evaluate the proposed method’s performance, MATLAB-based simula-
tions were performed. As a result, we confirmed that the tracking performance of the
multiple frequencies and the accuracy of cardinality estimates were improved compared to
the existing filters.
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