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Abstract: We present the design and experimental measurement of tellurium oxide-clad silicon
microring resonators with internal Q factors of up to 1.5 × 106, corresponding to a propagation loss
of 0.42 dB/cm at wavelengths around 1550 nm. This compares to a propagation loss of 3.4 dB/cm for
unclad waveguides and 0.97 dB/cm for waveguides clad with SiO2. We compared our experimental
results with the Payne–Lacey model describing propagation dominated by sidewall scattering. We
conclude that the relative increase in the refractive index of TeO2 reduces scattering sufficiently
to account for the low propagation loss. These results, in combination with the promising optical
properties of TeO2, provide a further step towards realizing compact, monolithic, and low-loss passive,
nonlinear, and rare-earth-doped active integrated photonic devices on a silicon photonic platform.
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1. Introduction

The impact of silicon photonics on the development of photonic integrated circuits
(PICs) is considerable, because of device compatibility with complementary metal–oxide–
semiconductor (CMOS) technology and the leveraging of decades of research stimulated by
the microelectronics industry [1]. The miniaturization of photonic waveguides has emerged
as one of the most prominent technology platforms for PICs in recent decades [2].

The reduction in propagation loss associated with silicon waveguides is an ongoing
research area because loss is a key parameter for link budget management in on-chip
optical networks and many important micro-photonic devices, as well as passive and active
systems including sensors, filters, delay lines, and light sources [3–6]. One device structure
for which propagation loss is particularly critical is the microring resonator (MRR). MRRs
provide an efficient cavity which has a compact size, wavelength selectivity, tunability,
scalability, and functional versatility [7], making them a prominent candidate for a variety
of applications including lasers [8,9], optical sensors [10], nonlinear optics [11,12], quantum
optics [13], (de-)multiplexing systems [14], optical filters [15], and optical modulators [16].
The loss in MRRs can be quantified by the cavity Q factor, which is typically limited to
values on the order of 105 in standard 220 nm-high single-mode silicon MRRs around
1550 nm.

Several approaches have been explored for enhancing the Q factor in silicon MRRs,
including minimizing light scattering at roughened sidewalls via shallow-etched or multi-
mode waveguide designs and alternative fabrication methods based on selective oxidation,
e-beam lithography, reactive ion plasma etching, inductively coupled plasma (ICP) etching,
or low-pressure chemical vapor deposition (LPCVD). High-Q factor silicon MRRs fabricated
using a selective oxidation process have been shown with intrinsic Q factors of 5.1× 105 [17]
and 7.6 × 105 [18], although challenges remain in the control of the fabrication process [19].
A silicon microring resonator with a Q factor of 1.7 × 106 was demonstrated using a large
cross-section multi-mode waveguide with a severely limited free spectral range (FSR)
of 17.1 pm [20]. With a similar approach, a silicon microring resonator with a high Q of
1.3 × 106 and larger FSR was proposed in [21], with a bend radius of 450 µm. A silicon MRR
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with an internal Q factor of 1.1 × 106 and FSR of 0.208 nm and utilizing a multi-mode ridge
waveguide was fabricated using a standard CMOS-compatible silicon-on-insulator (SOI)
process [22]. A multi-mode ultrahigh quality factor racetrack resonator with a 1.6 µm width
was proposed using a standard single-etching process with a quality factor of 2.3 × 106

provided by a multi-project wafer foundry [23]. An internal quality factor of 2.2 × 107,
corresponding to a 2.7 dB/m propagation loss, was achieved in a silicon microring resonator
with a radius of 2.45 mm cladded with silicon oxide [24] by oxidizing the wafer surface
in a steam oxidation process and using a reflowing photoresist strategy. An intrinsic Q
factor of 1.57 × 106, corresponding to a waveguide loss of 0.35 dB/cm, was realized in a
silicon MRR with a radius of 150 µm and an FSR of 0.845 nm using e-beam lithography
with a top cladding of a glass-like compound from hydrogen silsequioxane (HSQ) covered
with a silicon oxide layer [25]. Low-loss submicron silicon-on-insulator strip waveguides
were reported with a 0.5 dB/cm loss at 1310 nm and a 30 µm bend radius, cladded with
silicon oxide [26] using H2 plasma post-lithography treatment and H2 thermal annealing
after silicon etching. More generally, propagation losses lower than 0.4 dB/cm for the
C-band and 0.8 dB/cm for the O-band of silicon wire waveguides have been reported for
waveguides with a 440 nm core width, 220 nm core height, and 2 µm-thick SiO2 cladding
layer defined by a high-resolution immersion lithography process [27]. While all of these
approaches to improving Q factors in silicon MRRs are promising for different applications,
they either suffer from performance trade-offs (e.g., multi-mode operation, larger footprint,
and/or significantly reduced FSR) or add fabrication cost and complexity.

In this paper, we demonstrate a silicon MRR with a Q factor of 1.5 × 106 at 1550 nm,
corresponding to a propagation loss of 0.42 dB/cm, fabricated with a standard foundry pro-
cess, plus a low-temperature post-process deposition of a TeO2 cladding layer. In addition
to enabling a straightforward and monolithic low-loss hybrid waveguide structure, TeO2
has promising optical properties for new functionalities in silicon photonic microsystems.
TeO2 has been shown to be thermally and chemically stable, possess high nonlinearity,
and low optical attenuation from visible to mid-infrared wavelengths (0.4~5 µm), and
have a high refractive index (2.1 at 1550 nm) and low dispersion [28]. Furthermore, the
unique site variability in the TeO2 glass matrix enables high rare-earth dopant solubility
and leads to large emission bandwidths, motivating its application in integrated optical
amplifiers and lasers [29–31], including the recent demonstration of a hybrid rare-earth
laser directly on silicon with an internal quality factor of 5.6 × 105 [32]. This low-loss
platform has significant potential for linear, nonlinear, and active optical applications in
silicon photonics.

2. Microring Resonator Fabrication and Design

The microring resonator structure used in this work is displayed in Figure 1. It consists
of an integrated silicon microring and bus waveguide coated with a thin film of tellurium
oxide (TeO2). The silicon structure was fabricated in a silicon photonics foundry on a
wafer-scale SOI platform with a 220 nm silicon layer thickness and consists of a 30 µm-
radius silicon microring constructed using a 0.5 µm-wide waveguide. The bus waveguide
is 0.4 µm wide, and the point coupling gap is 1.0 µm. The structure was cladded with SiO2,
and subsequently, a window on top of the microring resonator was etched to the silicon
layer for use in the post-processing TeO2 deposition or unclad device experiments. A set of
devices with identical dimensions but without the SiO2 cladding etched was also fabricated
for comparison. Deep etching was used for end-facet preparation and wafer dicing. For the
TeO2-clad devices, the structure was coated with a 270 nm-thick TeO2 film deposited using
a room-temperature reactive RF co-sputtering post-processing step with 145 W of tellurium
target sputtering power, 2.8 mTorr chamber pressure, and 12 and 7.6 sccm of argon and
oxygen flow, respectively. The substrate temperature was set at 20 ◦C. A top-view scanning
electron microscope (SEM) image and the cross-section diagram of the TeO2-coated Si
microring resonator are displayed in Figure 1a,b, respectively. Figure 1c,d show the image
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of the experimental setup and a microscopic image of the microring resonator with an open
window structure.
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Figure 1. (a) Cross-section profile of the TeO2-coated Si microring showing the microring structure.
(b) Top-view SEM image of a TeO2-coated Si microring resonator. (c) Photograph of the coupling
setup during measurement showing the SOI chip with window opening for TeO2 post-processing
deposition. (d) Microscopic image of the open window microring resonator structure.

The electric field profiles of the transverse-electric (TE)-polarized fundamental modes
calculated using a finite element method (FEM) modesolver for the (cladding–core) TeO2–Si,
SiO2–Si, and air–Si waveguides at a 1550 nm wavelength are displayed in Figure 2a–c,
respectively. We also summarize the calculated optical properties of the TeO2–Si, SiO2–Si,
and air–Si microring resonator structures in Figure 2d. The microring resonators and the bus
waveguides were designed to achieve single-mode waveguide conditions at 1.55 to 2 µm
wavelengths. The ring waveguide structure supports the TE-polarized and TM-polarized
modes, and it has a low bending radiation loss at 1550 nm for TE only. The effective index
of the TeO2-coated resonator is 2.8, which is almost 7.7 and 12% higher than that of the air-
and SiO2-clad devices. For the TeO2-coated Si microring resonator, 21.7% of the optical
power is confined in the TeO2 coating layer, while 65.0% is confined in the silicon layer. The
rest of the optical power is confined in the lower SiO2 cladding. Slightly lower cladding
confinement of 15.8 and 17.2%, respectively, is observed in the air- and SiO2-clad cases. The
effective area is slightly larger in the TeO2-coated Si microring resonator than SiO2-coated
and uncoated silicon microring resonators, although the mode is pulled upward more into
the cladding, both of which can influence the ring–bus waveguide coupling.
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Figure 2. Calculated electric field profile of the fundamental transverse-electric (TE)-polarized mode
for (a) unclad, (b) SiO2-clad, and (c) TeO2-clad silicon microring resonators. (d) Calculated fractional
optical intensity overlap factors and effective mode areas for the fundamental TE microring mode at
1550 nm wavelength.

The TeO2-coated resonator has a higher mode area of approximately 0.20 µm2 at
1.55 µm. The effective index increases for the TeO2 film cladding as the resonant mode
becomes more confined in the TeO2 layer. The expansion of the optical mode at longer
wavelengths decreases the effective index. The results show that approximately 60% of the
mode power is confined in the Si region and 26% in the TeO2-cladded layer for the TeO2
cladding at a wavelength of 1.55 µm.

3. Microring Resonator Characterization

We used a fiber–chip edge coupling setup, a tunable Agilent 81640A 1510–1640 nm
laser, and a fiber probe station to characterize the passive transmission properties of the
silicon microring resonators. TE-polarized light from a 1550 nm tunable laser was launched
into the chip through the polarization controller and lensed fiber, and the transmitted light
across the chip was launched to the output lensed fiber connected to the Agilent power
sensor. We observed TE single-mode resonances supported by the microring resonator,
as shown in Figure 3a–c. For the TeO2-coated silicon microring resonator, we measured
a free spectral range (FSR) of 3.7 nm at a wavelength of 1573 nm. The air- and SiO2-clad
devices were under-coupled over the measured transmission range, while the TeO2-clad
MRR was under-coupled at shorter wavelengths and became critically coupled above
~1600 nm. By fitting the transmission responses of the under-coupled resonator using
a Lorentzian function (as indicated in Figure 3d–f), we obtained internal quality factors,
Qi, of 2.0 × 105 at 1542.43 nm, 6.7 × 105 at 1587.28 nm, and 1.5 × 106 at 1579.94 nm for
the uncoated, SiO2-coated, and TeO2-coated silicon MRRs, respectively, corresponding to
3.4 dB/cm, 0.97 dB/cm, and 0.42 dB/cm propagation losses in the microring [33]. The
results are summarized in Table 1, including the TeO2 film loss measured by prism coupling
on a witness sample, showing low material loss, and fitted external and internal Q factors
for the MRRs with different top claddings.
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Figure 3. Measured TE transmission spectra for (a) uncoated, (b) SiO2-coated, and (c) TeO2-coated
silicon microring resonators with a microring–waveguide gap of 1.0 µm. Close-up views of the
under-coupled resonances for the (d) uncoated, (e) SiO2-coated, and (f) TeO2-coated silicon microring
resonators showing an intrinsic quality factor, Qi, of 1.5 × 106, corresponding to 0.42 dB/cm optical
propagation loss for the TeO2-coated silicon microring resonator.

Table 1. Measured properties of silicon microring resonators with different cladding materials.

Cladding
Material

Cladding
Thickness (nm)

Film Loss @
638 nm
(dB/cm)

Film Loss @
1550 nm
(dB/cm)

Extinction
Ratio (dB)

External Q
Factor

Internal Q
Factor

Propagation
Loss (dB/cm)

Uncladded —- —- —- 1.2 2.8 × 106 2.0 × 105 3.4
SiO2 2000 —- —- 2.8 4.2 × 106 6.7 × 105 0.97
TeO2 270 0.5 ± 0.2 0.1 ± 0.1 2.8 9.0 × 106 1.5 × 106 0.42

The total loss in the MRR can be expressed as the losses from the bulk materials,
including contributions from the Si, SiO2, and TeO2 linear absorption and Si nonlinear (two-
photon) absorption, radiation loss due to waveguide bends, and surface scattering losses
related to the waveguide surface roughness and geometry. The bulk loss includes losses
from impurities, internal defects, absorption loss due to chemical bonds, and nano- and
micro-voids. Because of the high-quality silicon-on-insulator and SiO2 foundry materials,
and low TeO2 film loss, we expected the bulk material loss contribution to be negligible.
Furthermore, nonlinear optical loss was anticipated to be low due to the low power used in
the transmission experiments.
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We calculated the theoretical radiation loss and equivalent Q factor for the TeO2-
coated silicon microring resonator structure using an FEM bent eigenmode solver, for
varying bend radii, as shown in Figure 4a. The dashed lines in Figure 4a indicate the
experimentally determined internal Q factors for the MRRs with different claddings. The
calculated radiation-limited Q factors were measured to be 3 × 108, 1 × 108, and 1.7 × 107

for the TeO2-clad, SiO2-clad, and unclad microring resonators, respectively, at a radius of
30 µm, corresponding to 0.002 dB/cm, 0.007 dB/cm, and 0.04 dB/cm propagation losses.
The results show that the radiation loss was low (Q > 107) at the selected bend radius of
30 µm.
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The surface scattering loss is the waveguide scattering loss per unit length and was
calculated using the widely used Payne–Lacey model [34]. This model has been applied
previously to 3D-SOI bent waveguides [35–37] such that

αSur f ace Scattering = 4.34
σ2

√
2k0

(
W
2

)4
n1

f .g.η (1)

where σ, k0, W, and n1 are the roughness, free-space wave vector, waveguide width, and
core index, respectively. The function f is determined by the correlation length (Lc), while g
is determined by the geometry of the waveguide and accounts for ridge-type waveguide
structures such as the SOI ridge rings investigated here. Both σ and Lc are typically
measured via atomic force microscopy or scanning electron microscopy of a waveguide.
We assumed values of 1.0 nm and 50 nm for σ and Lc, respectively, based on previous
measurements on SOI waveguides [35–38]. We also assumed the roughness of the TeO2
coating can be neglected based on previous AFM roughness measurements showing <1 nm
root mean square (RMS) surface roughness on low-loss sputtered thin films [38]. Details
of the expressions g and f can be found in the Payne–Lacey model [34]. The Payne–Lacey
model was modified for bent waveguides and rings by adding a correction factor η [35]
which allows us to accurately predict the loss of bent waveguides or resonators given
the value of the sidewall roughness. The correction factor η is defined as the ratio of the
mode overlap between bent and straight waveguides using an FEM simulation. In the
Payne–Lacey bending model, η is considered 1 in the straight waveguide. We plot the
sidewall scattering loss as a function of the wavelength in Figure 4b. The experimental
loss obtained from the quality factor measurements of the MRRs follows the same trend as
the Payne–Lacey model, which indicates that the losses in the different MRRs are largely
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influenced by the core cladding refractive index contrast and sidewall roughness [23].
These results show that the application of a high-refractive-index TeO2 top cladding can be
considered promising for low-loss passive components as well as active devices such as
monolithic amplifiers and lasers with improved performance on the SOI platform [32].

4. Conclusions

In summary, we have demonstrated a compact, single-mode TeO2–Si hybrid microring
resonator with a 1.5× 106 internal Q factor corresponding to a 0.42 dB/cm propagation loss.
The resonator was fabricated using a standard wafer-scale foundry process and a simple
post-processing TeO2 deposition step at room temperature. We propose that these results
on tellurium oxide-coated silicon microring resonators are promising for the fabrication of
integrated on-chip low-cost and high-performance rare-earth-doped active devices such as
amplifiers and lasers, as well as low-loss passive and nonlinear devices in silicon photonic
platforms, with signal processing, light generation, microwave photonics, environmental
and biological sensing, and communications applications.
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