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Abstract: We present a scheme of how YOLO can be improved in order to predict the absolute
distance of objects using only information from a monocular camera. It is fully integrated into the
original architecture by extending the prediction vectors, sharing the backbone’s weights with the
bounding box regressor, and updating the original loss function by a part responsible for distance
estimation. We designed two ways of handling the distance, class-agnostic and class-aware, proving
class-agnostic creates smaller prediction vectors than class-aware and achieves better results. We
demonstrate that the subtasks of object detection and distance measurement are in synergy, resulting
in the increase of the precision of the original bounding box functionality. We show that using the
KITTI dataset, the proposed scheme yields a mean relative error of 11% considering all eight classes
and the distance range within [0, 150] m, which makes the solution highly competitive with existing
approaches. Finally, we show that the inference speed is identical to the unmodified YOLO, 45 frames
per second.

Keywords: monocular camera; YOLO; distance estimation; object detection

1. Introduction

Distance estimation is an essential part of 3D scene recognition and orientation, al-
lowing various autonomous devices to move in the natural environment. These devices
can be equipped with passive capturing devices, such as RGB or IR cameras, and active
capturing devices, including lidar or sonar. Active devices are more expensive but provide
distance estimation directly as a cloud of points [1], while passive devices require complex
computer vision algorithms on top to estimate the distance [2].

In this study, we designed a computer vision algorithm for passive capturing de-
vices. The algorithm detects objects in a scene together with the information about the
absolute distance from a camera. Such an algorithm can be applied in automatic dim-
ming/brightening of cars’ headlamps to prevent the dazzling of other cars or to highlight
various obstacles on the road. For this task, a scene in front of the car is captured by an
RGB camera, the objects of interest (cars/people/animals) are localized, and a control unit
of a headlamp adjusts particular light-emitting segments in order not to dazzle the object,
or highlight it. The decision algorithm needs the location and the distance to an object to
make a correct decision. Furthermore, the processing of such data has to be able to run
in realtime on an embedded device. The usage of an RGB camera instead of an active
capturing device makes the solution significantly cheaper and extends the visibility range
because a camera can see further than a sonar or lidar [3].

Our idea is motivated by human perception, where we can recognize objects in a
scene and estimate their distance just because we can create reasoning such as ‘This is
a bicycle, and it is small, so it is approximately 40 m far’. For such reasoning, a pair
of eyes helps, but the ability is partially preserved even if we will use only one eye. In
image processing, we can estimate a distance for every pixel in a scene or per object. The
’per object’ case estimation corresponds to the mentioned human perception. This study
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discusses how an object detection and recognition algorithm can be naturally extended for
distance estimation reflecting native human perception, that is, for a system where visual
information from a monocular camera is available only. For this case, one of the fastest
one-stage object detection algorithms, YOLOv3 [4], has been selected, but the proposed
principle can be used also in YOLOv4 [5] and YOLOv5 [6], as they have the same inner
structure. The goal of the work is to propose an extension that will not lead to an increased
computational cost compared to the original algorithm, while the distance estimation
quality will be comparable to other state-of-the-art systems. This study aims to create a
method for estimating the absolute distance (instead of relative distance/depth information)
to set light beams correctly.

1.1. Related Work

The existing methods can be split into two groups, predicting relative and absolute
distance. The methods for estimating relative distance can express a particular object’s
(given by a bounding box) distance on a relative scale [7] or realize dense prediction and
produce a depth map for the entire image. The depth map can be entirely independent
between distinct images [8] or preserve the consistency [9]. We can view the depth map
as a type of disparity map, where it can be produced using a single image only [10] or via
multiple images [11].

The methods predicting absolute distance (in meters, inches, etc.) can be further
separated into those that use data from active devices, passive devices, or their combination.

Active devices are mostly represented by lidar, which has a better visibility range than
sonar. VoxelNet [12] is trained in the end-to-end scheme over the lidar raw point cloud
and can detect objects of car, cyclist, and pedestrian classes together with their precise 3D
bounding boxes and position in a 3D scene. Study [13] proposed coupling two VoxelNets,
one for region proposal and the second one for patch refinement, which led to a precision
improvement on the KITTI 3D object detection benchmark [14,15].

Regarding the combination of both types of devices, we can find models trained using
lidar and visual data but perform inference using visual information only. Saxena et al. [16]
separated an RGB image into small patches and by applying a probabilistic model produced
a depth map close to the output of a 3D scanner. Generally, such approaches search for
optimal mapping from the visual domain into a depth map, which is ideal for deep
neural networks based on autoencoders [17]. Analysis [18] demonstrated that object-
specific distance estimation using a monocular camera was not flawless, so they segmented
Velodyne point clouds and fused them with features from a model to precisely predict
the distance.

Regarding passive devices, Zhang et al. [3] used three cameras with a small field
of view and using a disparity calculation produced a dense depth map with reasonable
results even for an object with distance higher than 200 m. The crucial point is to deal with
pseudo-rectification and ambiguity removal.

Hu et al. [19] used a monocular camera and performed object detection and tracking,
where the distance of an object was identified as valuable information for the tracker. The
idea was based on Faster R-CNN enhanced by distance and angle estimation. Study [20]
aimed at 3D box detection and an angle estimation network, which provided attitude angle
information, and using the camera projection principle over this information, the distance
was precisely determined. Natanael et al. [21] utilized YOLOv3 to detect bounding boxes
together with coordinates, and from them, computed distances analytically. DisNet [2,22]
combined YOLOv3 that produced bounding box (BB) coordinates and a fully connected
neural network that produced distances. The fully connected network was trained sepa-
rately on predictions taken from YOLO. Chen et al. [23] used YOLOv3 and coupled it with
Monodepth [24], i.e., a model trained on visual information from two cameras to produce
a disparity map on a single camera during inference. The distance was estimated from
Monodepth’s output and injected into YOLO’s predicted boxes. Strbac et al. [25] used two
cameras and two YOLOv3 detectors, where the distance was measured with a stereoscopic
principle over the detected boxes. The disadvantages were the doubled computation time
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due to the two detectors and the impossibility of determining the distance when only
one detector found an object. Mauri et al. [26] integrated into YOLOv3 a 3D regression
module that took the detected boxes together with feature maps and utilized additional
convolution layers to produce the orientation, dimension, and distance of each of the boxes.
Because the 3D regression module works on the produced bounding box coordinates, it
turned the original one-stage YOLO principle into a two-stage one, which is different from
our proposal.

To date, no solution fully integrates distance estimation into the YOLO architecture to
measure distance using a monocular camera. Such a solution is the aim of this study.

1.2. The Motivation and Our Idea in Brief

Our long-term goal is to create a system capturing a scene in front of a car and
providing information about the detected objects together with their absolute distances. The
system has to be inexpensive; therefore, it does not rely on lidar, and the object detector
runs on a low-powered embedded device, Jetson Nano. The proposed system is a part of a
project controlling LED segments in a car’s headlamps to highlight detected objects. To set
up the light beam precisely, absolute distance information is necessary, so it is not feasible
to use methods providing relative distance, e.g., dense depth map [7,9].

We use a monocular RGB camera. The motivation to omit two cameras and compute
a disparity map for distance estimation is that according to [27] “A single-pixel error in
disparity implies only a 0.1m error in depth at a depth of 5 m, but a 5.8 m error at a depth
of 50 m” on a KITTI dataset [14], and the current object detectors have a more significant
pixel error. Moreover, we are restricted to a monocular camera because the usage of two
cameras increases the price of the solution.

Our intuition is that YOLO performs regression on BB coordinates, so it can be trained
to solve the regression problem of absolute distance estimation as well. The assumption is
that the network can use the same inner features for BB coordinates and distance estimation,
leading to synergy. It motivates us to integrate the part responsible for distance estimation
into the YOLO architecture and train the model in an end-to-end manner. The assumption
will be confirmed when a model trained for distance estimation leads to higher BB precision
than the baseline YOLO.

Our contributions to the problem are as follows:

1. We define a novel architecture, Dist-YOLO, where prediction vectors produced by
heads are extended by information about distance and coupled with a proper distance
loss function.

2. We show that Dist-YOLO detects bounding boxes more accurately than the original
YOLO while having the same backbone’s capacity.

3. We demonstrate that a monocular camera with Dist-YOLO can precisely estimate the
distance of an object.

2. Dist-YOLO

YOLO is used to detect an object’s bounding box and classify the object into one of the
predefined classes. By default, it cannot estimate the distance of the object. Our primary
goal is to add this ability to YOLO to create Dist-YOLO, while preserving the original
properties. To achieve this capability, three basic steps must be followed:

(a) Enrich the labels in the training dataset with information about distances.
(b) Extend the prediction in each cell to produce the distance of an object.
(c) Update the YOLOv3 loss function used for training to take into account the distance

of an object.

2.1. Preliminaries-YOLOv3

YOLO—You Only Look Once—is a one-stage, multi-scale, anchor-based object detector
utilizing a fully convolutional architecture, DarkNet-53. Initially introduced by Joseph
Redmon [28] and evolved by them into the second and third version [4,29], where the first
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version utilized single scale detection and lightweight architecture. Currently, the fourth [5]
and fifth versions have been introduced by independent groups. The performance boost of
the fourth and fifth versions is achieved mainly by new data augmentation and minor archi-
tecture changes; the main principle remains the same [5]. The newest version, YOLOX [30]
is based on YOLOv3 and modifies it into an anchor-free algorithm which allows use of
decoupled heads, leading to a slightly higher accuracy of detection. Furthermore, YOLO
has been extended in several ways to improve its precision and capabilities. Namely,
object segmentation based on object polygon detection, Poly-YOLO, was introduced in [31],
where the original YOLO prediction vector was extended to predict a set of polygon points
together with their confidence for every detected object. Furthermore, an approach mo-
tivated by a Mask R-CNN × Faster R-CNN relation, YOLACT, was introduced in [32]
to provide the ability for mask instance segmentation with comparable results to stan-
dard two-staged segmentation approaches, but improving their computational demands.
Later, this approach was extended into YOLACT++ [33] with additional performance and
precision boost.

In contrast to two-staged detectors [34], YOLO does not use a region proposal network
but integrates the whole process into a single architecture. It is split into encoder and
decoder parts. The encoder serves as a feature extractor. It is represented by the Darknet-53
backbone, but an arbitrary backbone can be used. The features are decoded on three
succeeding scales into three output grids. Each grid consists of cells, where each cell is
responsible for detecting objects whose center lies inside the cell. By detecting, we mean
the regression on the bounding box coordinates together with class and confidence. In
YOLOv3, each cell can detect three objects, where so-called anchors are used for suppress-
ing the problem of detecting three identical objects. By anchor, we mean a prototypical
bounding box extracted from training data during preprocessing using k-means algorithm.
During training and inference, a cell is assigned three anchors and detects an object in
the output position where the intersect over union (IoU) over the box and the anchor
is maximized. Compared to two-stage detectors, YOLO is much faster but yields lower
precision of detection.

The success of the YOLO algorithm family can be illustrated on a wide range of
tasks where it was applied, such as face mask wearing detection [35], identification of
plant diseases [36], pedestrian detection [37], forest fire detection [38], or safety helmet
detection [39]. Currently, YOLO based approaches are used for popular social distancing
estimation [40,41], also combined with mask detection [42].

2.2. Updating the Predictions Vector

A prediction vector p of cell and anchor at a certain scale is given as p = (b, c, o), where
b = (x, y, w, h) are coordinates produced by a bounding box regressor, c = (c1, c2, . . . , cn)
that addresses the confidence of being a certain class up to n classes, and o expresses
objectness, i.e., confidence that p captures a real object. In total, each prediction vector
consists of 5 + n values, and we have 3× 3× r prediction vectors, where r is the number of
all cells in the three output layers. Typically, r = 14,157.

Regarding distance, we extend the prediction vector into form p = (b, c, o, d), where
we have two options of how to define d. Firstly, d = (d) if the distance is class-agnostic
and secondly, d = (d1, d2, . . . , dn) if the distance is class-aware. The prediction vector is
produced by 1× 1 convolutional filters, where each of the filters produces a single value
representing a certain variable, e.g., x coordinate of the first object, class of the second
object, etc. Therefore, when we add additional information (distance), it is necessary to
increase the total number of these filters. Each filter includes one trainable parameter,
because architectures implementing batch normalization [43], including YOLO, do not use
bias. If we consider a typical r and, e.g., n = 7, class-agnostic distance increases the number
of trainable parameters in the output layers by 8%, and class-aware distance increases them
by 58%. The illustration scheme of the Dist-YOLO architecture is shown in Figure 1.
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Figure 1. The figure illustrates how the YOLO architecture is modified to estimate the distance
of objects. The part enriching YOLO by distance estimation is visualized by the black box in the
prediction vector (marked by orange color).

2.3. Updating the YOLOv3 Loss Function

Dist-YOLO extends the original YOLOv3 loss function ` of a certain scale into the
form [31]:

` =
GwGh

∑
i=0

na

∑
j=0

qi,j

[
`1(i, j) + `2(i, j) + `3(i, j) + `5(i, j)

]
+ `4(i, j),

where `1(i, j) is a loss of bounding box center prediction, `2(i, j) is a box dimensions
loss, `3(i, j) is the confidence loss, `4(i, j) is the class prediction loss, and `5(i, j) is the
distance loss. Finally, qi,j ∈ {0, 1} is a constant indicating whether the i-th cell and the j-th
anchor contains an object or not. The loss iterates over GwGh grid cells and na anchors.
The parts `1, . . . , `4 are taken from YOLOv3. Part `5 is new and extends YOLOv3 with
the functionality of distance estimation. In the following formulas, we use ·̂ to denote
predictions of the network. The parts of the loss function are, according to [31], defined
as follows:

`1(i, j) = zi,j

[
H(cx

i,j, ĉx
i,j) + H(cy

i,j, ĉy
i,j)
]
,

where cx
i,j and cy

i,j are coordinates of the center of a box, H(·, ·) is the binary cross-entropy,
and zi,j = 2− wi,jhi,j serves for a relative weighting of (i, j)-th box size according to its
width wi,j and height hi,j.

`2(i, j) = 0.5zi,j

[(
log

(
wi,j

aw
j

)
− ŵi,j

)2

+

(
log

(
hi,j

ah
j

)
− ĥi,j

)2]
,

where aw
j and ah

j are the width and height of the j-th anchor.

`3(i, j) = qi,j H(qi,j, q̂i,j) + (1− qi,j)H(qi,j, q̂i,j)Ii,j,

where q̂i,j is the predicted confidence, and Ii,j is a mask, which excludes the part of a loss
for the i-th cell if qi,j = 0, but its prediction has IoU > 0.5.

`4(i, j) =
c

∑
k=0

H(Ci,j,k − Ĉi,j,k),

where Ci,j,k is k-th class probability in i-th cell. The distance loss is defined as

`5(i, j) = ω(d̂i,j − di,j)
2
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for the class-agnostic version and

`5(i, j) = ω
c

∑
k=0

Ci,j,k(d̂i,j,k − di,j,k)
2

for the class-aware version, where ω is a weighting constant preventing the distance loss
being preferable than the other losses. In our experiment, we set ω = 1× 10−2.

2.4. Updating YOLOv3 Training Data

The distances enriching the data can be taken using lidar information in datasets such
as KITTI [14], Waymo Open Dataset [44], Berkeley DeepDrive Dataset [45], or nuScenes [46],
etc. Adding distance into the prediction vector means that it uses the same features as
the bounding box regressor, and the features can also be trained to minimize the loss of
distance estimation. That is the difference from other modifications of YOLO, which build
distance estimation on predictions taken from the already trained model.

3. Benchmark and Results

We conducted the experiment on the KITTI dataset [14], namely the KITTI 3D Object
Detection Evaluation 2017, which contains 7481 training and 7518 test images. Because
groundtruth labels are available only for training data, we split the original training set into
the training part consisting of 5241 images and the testing part consisting of 2240 images,
converted to a fixed resolution of 1216× 366 pixels. The categories were pedestrian, car,
van, truck, sitting person, cyclist, and tram. Each label contained information about its
location in the image, distance, and rotation with respect to the camera. We used only
the first two pieces of information. The distance was expressed in meters. The lowest
distances were in the negative range for objects passing the camera, and we clipped such
distances to zero. The largest distances rarely exceeded 150 m; we clipped them into 150
max. Only a few objects exceeded the distance of 90 m. The distances were normalized into
[0, 1] for training. The distribution of the distances is shown in Figure 2. We measured the
correlation between the object’s height and the observed distance for the class car in the
testing dataset. It was −0.74, which means the distance could not be precisely estimated
only using the object’s size. That is why approaches using size information only, such as
DisNet [2], cannot reach state-of-the-art results.

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

0

1,000

2,000

3,000

Groundtruth distance in meters

N
um

be
r

of
bo

xe
s

Training dataset
Testing dataset

Figure 2. The distribution of object distances in training and testing datasets. The graph is clipped to
the maximum distance of 90 m to increase visibility.

In the benchmark, all models were trained using the following settings: The input of
YOLO was a downscaled image with the resolution of 608× 192 pixels (used for both train-
ing/testing scenarios), the optimizer was Adam with α = 1× 10−3 and ’reduce learning rate
on a plateau’ functionality with patience 10 and factor 0.5. The data were online modified
by augmentation consisting of padding, scaling, flipping, and brightness/contrast/color
adjustments to prevent overfitting. The batch size was set to 24. The training ran for
100 epochs and was evaluated on a validation dataset after each epoch; the best model was
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saved. The evaluation dataset was 10% of training samples. Finally, the best model was
evaluated on the test set.

The text below marks class-agnostic distance YOLO as ’Dist-YOLOv3 G’ and class-
aware distance YOLO as ’Dist-YOLOv3 W’.

3.1. Evaluation Criteria

For the evaluation of the box detection ability, the mAP (mean average precision)
index following the COCO standard [47,48] was used.

Regarding the quality of distance estimation, we defined εA and εR metrics expressing
the mean absolute and relative distance estimation error. The mean absolute distance error
(MAE) is defined as

εA =
1
n

n

∑
i=1
|di − d̂i|,

and the mean relative distance error as

εR =
1
n

n

∑
i=1

|di − d̂i|
max(di, 1)

,

where n is the number of found bounding boxes. Further, d, d̂ represents the paired vectors
of the groundtruth and predictions, respectively.

3.2. Preserving YOLO Performance

The first experiment was aimed to verify our motivation, namely, the assumption that
the network could use the same inner features for BB coordinates and distance estimation,
leading to synergy. To verify it, we trained three models: the original YOLOv3, Dist-
YOLOv3 with class-agnostic distance, and Dist-YOLOv3 with class-aware distance. All
three models were trained with the same setting and had the same backbone.

The numerical results are presented in Table 1 and supported our assumptions. For
both types of Dist-YOLOv3, the mAP value increased. Focusing on mAP.5:.95, the class-
agnostic Dist-YOLOv3 yielded a performance 108% of the original YOLOv3 and class-aware
Dist-YOLOv3 yielded 118%. The justification lies in a technique called Auxiliary task. It has
been proven [49,50] that the correct choice of an appropriate auxiliary task may lead to the
performance improvement of the primary task.

Table 1. Measurement of bounding box precision detection. ‘YOLOv3’ represents result for the
original YOLOv3 implementation. ‘Dist-YOLOv3 G’ is the result for our class-agnostic approach, and
‘Dist-YOLOv3 W’ is the result for our class-aware approach.

Model Params mAP.5 mAP.5:.95

YOLOv3 42.56 M 74.3 28.3
Dist-YOLOv3 G 42.57 M 76.2 30.7
Dist-YOLOv3 W 42.60 M 77.1 33.5

3.3. Measure the Error of Distance Estimation

We have proven Dist-YOLO outperforms the standard YOLO regarding the accuracy
of box detection. The second experiment validated the ability of Dist-YOLO to estimate the
objects’ distance precisely. The distance was evaluated using the defined εA and εR metrics.
The metrics could be evaluated only for detected boxes; it was pointless to evaluate the
distance of an object that was not detected. To distinguish what was detected, we used the
IoU threshold of 0.5; objects detected with IoU lower than the threshold were discarded.

The results for Dist-YOLOv3 are shown in Table 2. We express the number of detected
boxes for a certain class, the minimum and maximum distance error, and the mean distance
error for completeness. The mean error was not computed from absolute values; therefore,
it should be zero when no bias in the predictions is included. Contrary to the previous
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experiment, class-agnostic Dist-YOLO yielded better results than class-aware, which can
even be marked as not working adequately due to the high values of εA, εR and high
positive bias.

Table 2. Measurement of distance error in meters for Dist-YOLOv3 G/W. The values in columns Min,
Mean, and Max, εA are expressed in meters. The value of column εR is relative, where εR = 1 equals
to 100%.

Class
Dist-YOLOv3 G Dist-YOLOv3 W

# Min Mean Max εA εR # Min Mean Max εA εR

Pedestrian 1150 −16.81 −0.54 7.73 1.75 0.11 1117 −8.93 3.83 39.48 4.87 0.41
Car 7682 −24.87 −0.81 14.47 2.49 0.11 7798 −13.24 8.75 42.10 10.68 0.44
Van 749 −20.49 0.46 18.00 3.55 0.15 751 −26.88 13.94 42.25 14.17 0.64

Truck 318 −34.36 1.16 15.93 4.63 0.14 319 −27.33 4.51 26.30 6.49 0.21
Person sitting 57 −7.09 −0.59 4.74 1.84 0.22 56 −2.27 4.35 16.15 4.64 0.64

Cyclist 406 −17.79 −1.25 14.66 2.37 0.11 409 −4.16 14.32 46.80 14.38 0.85
Tram 135 −26.66 1.85 19.57 4.72 0.19 132 −22.37 −2.65 11.36 4.41 0.17

All 10,497 −34.36 −0.61 19.57 2.57 0.11 10,582 −27.33 8.52 46.80 10.22 0.46

3.4. Comparison with the Other Methods

A direct comparison is not straightforward as there is no standard, and different
authors report their results using various settings; therefore, the following numbers are
mainly illustrative. Zhu et al. [18] achieved εR = 0.25 on their KITTI validation dataset.
Ali et al. [51] tested only nonoverlapping cars with the maximum distance of 70 m and
achieved εR = 0.29; they also reported that DORN [52] yielded εR = 0.11 using the
same setting. Mauri et al. [26] evaluated KITTI for three classes: car, person, and cyclist.
Considering the test scenario, the achieved εR for these three classes was 0.16, 0.42, and
1.04, which shows the reasonableness of our scheme.

3.5. Ablation Study

Firstly, we investigated the dependency of the distance error on the object’s real
distance. Because class-aware Dist-YOLO showed a poor result in the previous experiment,
we considered only class-agnostic Dist-YOLO. The absolute and relative distance errors
are visualized in Figures 3 and 4, respectively. Concerning Figure 3, we can claim that
the absolute error grows according to a polynomial curve until distances higher than 80,
where the trend is broken. The reason is that few objects lie in this interval and, therefore,
the measured value was not computed from a statistically significant number of samples.
Similar behavior is also reflected in Figure 4. Here, we can see that the relative error was
almost constant for all distances except one meter. That is caused by the fact that even
a 30 cm distance error on such a distance yields an error of 0.3, which makes the task
extremely difficult and is probably also affected by the inaccuracy of the distance capturing
process itself.

The next investigated aspect was the correlation between variables. Firstly, we mea-
sured the correlation between the quality of bounding box detection and the distance error.
It was −0.27 for IoU and εA and 0.05 for IoU and εR. Secondly, we measured that the
correlation between the height of an object and εA was −0.55, i.e., the lower the box is, the
larger the absolute error produced, which is consistent with the values in Figure 3. For
height and εR, it was 0.11, which is again consistent with the values in Figure 4; the positive
correlation is caused by the large error for close boxes. Note, all of these correlations are
computed for class ’car’, and IoU > 0.5 between the predictions and labels.
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Figure 3. Dependency of εA on the object’s distance.
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Figure 4. Dependency of εR on the object’s distance.

The last aspect we evaluated was the computation speed. We measured the time on
an RTX2060 SUPER graphics card, where the time represents the duration of executing the
predict() method with a batch size equal to one and without further optimization such as
conversion into TensorRT. The prediction time was equal for all three models, 22 ms per
image, i.e., it ran approx 45 frames per second. The equal processing time confirmed that
the increase in parameters in the output prediction vectors was negligible compared to the
complexity of the rest of the model.

3.6. Examples

Finally , examples of detections are provided in Figure 5. We present four scenes with
objects representing various classes and distances. Every detected object is encapsulated
in the bounding box. The color and the title of the box refer to the detected class. The
two numbers in the label refer to the distance of the object-the first value represents the
detected distance, the one after the slash represents the ground-truth distance. Both values
are in meters.

Figure 5. Cont.
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Figure 5. The figure shows bounding box prediction and distance estimation on the test set using
Dist-YOLO. The distance (in meters) is in the format d̂/d, where d̂ is the prediction itself, and d
represents the groundtruth label.

4. Discussion, Open Issues, and Future Work

Training with distance estimation limits used data augmentation techniques. Spatial
transformations such as mosaicing [5] or strong resize can distort the visual size of objects
and confuse the network. On the other hand, reducing augmentation can increase over-
fitting. Therefore, the suitable way to train Dist-YOLO is to use curriculum learning [53].
Firstly, the model was trained with data augmentation and we froze (set to zero) the part of
the loss responsible for distance estimation to train bounding box detection only. Then, the
complete loss was used, and only the not-distort-object-size augmentations were used.

From Figure 4, it is obvious that the percentage relative error of the distance was
for most cases below 10%. The outlier was the distance of one meter, where the relative
error was 45%. That behavior is caused by the current form of the loss function, where the
squared distance is computed. We experimented with the relative distance loss function,
which would force the network to predict a distance with similar relative error for all
distances, including one meter. Such a loss function for the class-agnostic version is:
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`5(i, j) = ω
|di,j − d̂i,j|+ σ

di,j + σ
,

where σ ∈ [0, 1] is a positive smoothing factor to avoid instability for the cases when di,j ≈ 0.
However, we were unable to train the model with this loss function due to high loss, even
for bounding boxes.

Because the new versions of YOLO, namely v4 [5] and v5, use the same principles as
YOLOv3, the proposed scheme of monocular distance estimation can be integrated into
these new variants. This realization remains a future work.

5. Summary

We started with YOLOv3, a fast one-stage object detector. In the literature overview,
we showed that there were approaches modifying YOLOv3 to monocular absolute distance
estimation, but no one fully integrated the distance estimation functionality into YOLO’s
architecture. To achieve that, we extended the output prediction vector, modified the loss
function by the part responsible for absolute distance estimation, and described how to
modify the training data. In the benchmark, we verified that distance estimation was
complementary to bounding box estimation and, therefore, increasds the bounding box
detection precision compared to the standard YOLOv3. We evaluated two versions of
the designed Dist-YOLO, namely class-agnostic and class-aware, with the finding that
only class-agnostic yielded satisfactory results. Benchmarking the KITTI dataset, the mean
absolute distance error was 2.5 m, and the mean relative error was 11%, which support
the claim that the full integration of distance estimation into YOLO’s functionality can
reach a significantly better result compared to solutions that build distance estimation
on the top of the model’s output. Finally, we reported that the computation speed was
identical for both YOLOv3 and Dist-YOLOv3. The implementation is available at https:
//gitlab.com/EnginCZ/yolo-with-distance (accessed on 8 October 2021).
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