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Abstract: Sentiment Analysis is an essential research topic in the field of natural language processing
(NLP) and has attracted the attention of many researchers in the last few years. Recently, deep neural
network (DNN) models have been used for sentiment analysis tasks, achieving promising results.
Although these models can analyze sequences of arbitrary length, utilizing them in the feature
extraction layer of a DNN increases the dimensionality of the feature space. More recently, graph
neural networks (GNNs) have achieved a promising performance in different NLP tasks. However,
previous models cannot be transferred to a large corpus and neglect the heterogeneity of textual
graphs. To overcome these difficulties, we propose a new Transformer-based graph convolutional
network for heterogeneous graphs called Sentiment Transformer Graph Convolutional Network
(ST-GCN). To the best of our knowledge, this is the first study to model the sentiment corpus as
a heterogeneous graph and learn document and word embeddings using the proposed sentiment
graph transformer neural network. In addition, our model offers an easy mechanism to fuse node
positional information for graph datasets using Laplacian eigenvectors. Extensive experiments on
four standard datasets show that our model outperforms the existing state-of-the-art models.

Keywords: sentiment analysis; graph neural network;deep learning; NLP transformer

1. Introduction

With the rapid growth of textual content on the Internet such as social networks and
e-commerce websites, the need for contextual processing and mining of the subjective
information that text holds is increasing [1]. Sentiment analysis, also called opinion mining,
is an automatic technology to extract, process, judge, and summarize opinions, attitudes,
and emotions from opinionative data. Nowadays, text sentiment analysis has become
essential for many fields such as movie recommendation, e-commerce, and public opinion
analysis [2]. For example, sentiment analysis aims to obtain the sentiment tendency of the
person’s opinions towards products, hot events, or any specific topic, which helps human
decision-making [3]. Generally, researchers have explored three types of sentiment analy-
sis approaches dictionary-based sentiment methods, machine learning-based sentiment
methods, and deep learning-based sentiment methods.

Sentiment dictionary-based methods utilize dictionaries to determine the sentiment
words in the given text and obtain the sentiment values. Then, using the sentiment
calculation rules, the sentiment tendency is calculated [4,5]. The implementation of this
approach is easy and does not require labeling samples. However, the quality of sentiment
analysis depends on the sentiment dictionaries, which are insufficient to cover the sentiment
words and lack the domain words, leading to the low quality of the sentiment analysis.

Later, to address the problem of dictionary dependency, machine learning approaches
were proposed; such approaches utilize support vector machine SVM algorithm, naive
Bayesian algorithm, graph-based semi-supervised classification algorithms to analyze the
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text sentiment [6–8]. Despite the improvement of sentiment analysis that machine learning
made, it strongly relies on corpus quality labeled with polarity.

In recent years, deep learning models have attracted the attention of many researchers
to address the problem of feature extraction. They propose various deep learning-based
methods for sentiment analysis, which achieved promising results compared to machine
learning methods in sentiment association and sentiment classification [3,9–11]. However,
deep learning models face the difficulty of extracting more comprehensive sentimental and
emotional features since a large amount of emotional information is not utilized. As a result,
more researchers try to integrate emotional information [12] and language knowledge [13]
into the models [14–16]. Despite the great success of these models, they face the problem of
extracting more comprehensive text emotional features since such models heavily rely on
emotional resources and text information.

More recently, graph neural networks [17], or graph representation learning is a new
research field that has received much attention form researchers. The entire corpus is
represented as a graph in graph-based methods [18]. In graph embeddings, graph convolu-
tional networks have proven to be effective at tasks involving knowledge representation
and can retain the global structure information of a graph. However, most of the existing
GNNs are built to learn node representations on fixed and homogeneous graphs. When
learning representations on a misspecified graph or a heterogeneous graph with multiple
types of nodes and edges, the restrictions become increasingly severe. In this work, we
present a novel text graph transformer networks to address the GNNs issues. The text
graph transformer network contains a new graph structure that can determine the useful
connections between not directly connected nodes and learn the soft selection of edge types
and complex relations.

To summarize, our contributions are as follows:

1. We propose a novel Sentiment Transformer Graph Convolutional Network (ST-GCN)
that learns a new graph structure on a heterogeneous graph, including determining
the useful connections between nodes that are not directly connected, and learning
the soft selection of edge types and complex relations for learning node representation
for sentiment classification. To the best of our knowledge, this is the first study to
model the sentiment corpus as a heterogeneous graph and learn document and word
embeddings using the proposed text graph transformer network;

2. Inspired by the widespread use of positional encoding in NLP transformer models
and current research on node positional features in GNNs, our model offers an easy
mechanism to fuse node positional information for graph datasets using Laplacian
eigenvectors;

3. Results on several sentiment benchmark datasets demonstrate that our model outper-
forms the state-of-the-art sentiment classification methods.

2. Related Work
2.1. Sentiment Analysis

The origin of sentiment analysis refers to the sciences of psychology, sociology and an-
thropology which focus on human emotions [19–21]. Scholars have conducted extensive
related research because of its usefulness in online review monitoring and business com-
petitive intelligence. To date, several methods have been used for such analysis. They can
be classified into two broad groups: the traditional methods based on feature engineering,
which essentially use dictionaries and machine learning approaches, and modern methods
based on deep learning methods.

Early models performed sentiment analysis based on a set of rules, relying on sets
of emotion dictionaries, and a large amount of labeled data was required for feature
engineering. Liu et al. [22] defined emotion as a tuple of (holder, target, polarity, time)
where holder represents the opinion’s author, target refers to the related subject, polarity
is the category of the expressed emotion, and time means the time of the evaluation.
Another method by [23] classifies sentiments by combining the individual word-level
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sentiment. Ref. [24] introduced a generative model that jointly models emotion words,
subject words and emotion polarity in a sentence as a triple. The main drawback of this
method is the resulting high dimensional feature space. For addressing this problem,
many works have used feature selection techniques [25,26] applying various machine
learning approaches. Of the various machine learning classification methods used to
classify users’ sentiments from a text, decision tree, LDA, Naive Bayes, Support Vector
Machine (SVM), and artificial neural networks are the most common and have achieved a
higher performance [9,22,27,28]. However, these methods need massive training data and
are often slow. To approach these problems, unsupervised lexicon-based methods were
proposed, making use of both supervised and lexicon-based approaches [29,30]. Following
this idea, many other methods [31,32] have been introduced.

In recent years, many researchers have applied deep neural networks for classifying
sentiment. Unlike traditional machine learning methods, they can automatically complete
the feature generation step and learn more extensive representation. Ref. [33] used a
convolutional neural network (CNN) based model and connected a max-pooling layer after
each convolution to extract features from the text. The emotion polarity is determined after
inputting the fully connected layer. Ref. [34] adopted a dynamic max-pooling to capture
fine-gained features. The authors learn the embedding of text regions by applying CNNs
to high-dimensional text data. Later, Ref. [35] used the CNN model based on letter-level
features, combining six convolutional layers and three fully connected layers for large-
scale text classification datasets. Although CNN models are faster than RNNs because of
parallelization, they can only extract the local features in the filter region. A memory unit
is introduced with recurrent neural networks (RNNs) to make the network have memory
ability. Hence, RNN can consider the long-distance dependency within texts. However,
original RNNs suffer from gradient dispersion and gradient disappearance, which affect
the learning process [3]. To solve this problem, the long short term memory (LSTM) model
has been used [36]. LSTMs use a gate mechanism which can keep the connection within
instances and capture the relationship between words. Recently, attention-based sentiment
analysis models have been used and outperform previous methods. Yang et al. [37]
propose an attention-based model that mirrors the hierarchical structure of documents
before applying two attention mechanism layers at the sentence and word level.

More recently, graph neural networks (GNNs) have become a powerful approach for
industries and academies. GNNs have been widely used in NLP tasks [38–40]. Ref. [18]
proposed Text-GCN, which uses a heterogeneous graph where nodes are documents and
words appear in documents. An edge between two words means the words appear in
the same text and an edge between a text and a word means the word appears in the
text. Edge weight is calculated using TF-IDF for words-text edge and positive point-wise
mutual information (PPMI) for a word–word edge. Next, the data graph representation
is learned using a convolutional graph network. The task, which can be seen as node
classification, suffers from memory problems because they have to build a single graph
for a whole dataset. Moreover, the graph is built ignoring the order information of words.
To overcome the former drawback, Huang et al. [41] proposed another GNN-based method
for text classification using a text-level graph for each input text. Thus, they perform graph
classification instead of node classification. However, they ignore the rich word positional
information, which is critical in sentiment analysis. To address the problems above, we
propose a transformer-based Graph Convolutional Network, following up on [18] and
adding word positional information encoding to word features, and propose a new batching
mechanism to alleviate the memory problem.

2.2. Transformer Convolutional Networks

NLP problems, such as language modeling and machine translation, have been solved
by recurrent neural networks (RNNs). RNN factor computation along with the positions of
elements in the input and output sequences to keep the order of the sentence in place. This
intrinsically sequential nature prevents parallel computation inside the training set and is
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non-trivial for extended length sequences computation because the memory constraints
limit batch processing between samples. To overcome this limitation, Refs. [42,43] proposed
factorization tricks, and conditional computation, respectively, notably increase the compu-
tational efficiency. However, they still make use of sequential computation. To mitigate
the effect of the sequential computation, many researchers have used attention mecha-
nisms [44,45] as they allow the modeling of dependencies regardless of their distance in the
input or output sequence. Attention mechanisms break the memory constraint problem and
have become an indispensable part of sequence modeling, but such attention was used in
conjunction with RNNs. Ref. [46] proposed a transformer model architecture, which avoids
recurrence and alternatively relies entirely on an attention mechanism to describe global
dependencies between input and output. Unlike RNNs, transformers do not necessarily
process data in order. Instead, the attention mechanism provides context for any position in
the input sequence, which can be passed in parallel. This feature allows greater paralleliza-
tion than RNNs and therefore reduces training times. Thus, only attention mechanisms
without any RNN can match the performance of RNNs with attention. In this work, we
propose a sentiment transformer graph convolutional network to predict sentiment.

3. Method

In this section, we describe the framework of the proposed model as shown in Figure 1.
First, we describe the data preprocessing step. Next, we introduce textual graph building.
We introduce the word embedding representation. Then, we introduce the transformer con-
volutional networks. Finally, we present the text graph transformer convolutional network.

Start

Text dataset

data pre-processing

build word level  nodes build text level nodes 

Build edge e(i,j)

if e(i,j) represents
word-word edge

edge weight =
PPMI(i,j)

Yes
edge weight = TF-

IDF(i,j)

Build Heterogenous
graph

BERT Pre-trained model

ST-GCN Sentiment  

End

Position encoding

No

Figure 1. The methodology flowchart.

3.1. Data Preprocessing

In this section, we describe the data preprocessing step. First, we remove the irrelevant
data from reviews. For example, punctuation, URLs, mentions, numbers, and non-English
words have been removed from the reviews using the regular expression library in Python.
Secondly, we define our stop words list, which contains words that do not hold emotional
and systematical feelings, such as the articles and determiners, because the commonly used
stop word lists (e.g., NLTK stop words (https://www.nltk.org/nltk_data/ accessed on 14
October 2021)) contain words that have a sentiment role. Then, we remove the defined stop
words from the long review datasets. We use the white space to tokenize text into words.

https://www.nltk.org/nltk_data/
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All upper words are changed into lowercase. The output tokenized words will be used to
build the text graph.

3.2. Textual Graph Building

In this section, we construct the text graph from the corpus. Let G = (N, E), be a graph
where N is the node-set and E is the edge set. We represent the textual graph as follows:

3.2.1. Node Assignment

Each review and a unique keyword are represented as nodes in the text graph.
The number of nodes in the textual graph is the number of reviews D plus the number of
the unique keywords in V in the entire corpus.

3.2.2. Edging

Two types of edges are built between nodes. Term frequency-inverse document
frequency (TF-IDF) is used to build the edges between a review node ri and keyword
nodes rj, and point-wise mutual information (PMI) is used to build the edges between two
keyword node pairs within a fixed window. We build an adjacency matrix that represents
the edge weights. Those weights determine the relationship strength between two nodes.

We build the adjacency matrix A (the edge weights) as follows:

A(i, j) =


PMI(i,j) i,j are keywords; PMI(i,j) > 0

TF-IDF(i, j) i is a review and j is a keyword
1 i == j
0 otherwise.

(1)

The PMI for keyword pair is calculated as follows:

PMI(i, j) = log
p(i, j)

p(i)p(j)
. (2)

Given a sliding window #W for the entire review corpus, the sliding windows in
which keyword i and j appear together #W(i, j), and the sliding window in which the
keyword i occur #W(i) the p(i, j) and p(i) is calculated as:

P(i, j) =
#W(i, j)

#W
(3)

P(i) =
#W(i)

#W
. (4)

3.3. Embedding (Word Representation)

In most natural language processing applications, words are used as features. The most
popular word vector representations are distributed representation and one-hot represen-
tation [27,47]. However, the one-hot representation has various problems, such as the
too-large vector dimension, the sparsity of the word vector, and ignoring the word se-
mantic association. Although the distributed representation has addressed the problem
of one-hot representation, the need to improve the accuracy of the word vector and the
training speed is still crucial [48]. Recently, different word vectors have been applied to
sentiment analysis [49–51]. However, the current word representation used in sentiment
analysis does not take into account the sentiment information contained in words. In our
work, we address the above problems by using a pre-trained BERT (Bidirectional Encoder
Representations from Transformers) model [52], which makes use of the transformers to
learn the contextual information from the corpora, to obtain the review node embedding in
the textual graph. To the best of our knowledge, this is the first study that utilizes the Bert
model for document node embeddings in sentiment analysis tasks.
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3.4. Graph Transformer Convolutional Networks

The Figure 2 shows the architecture of the proposed model. The model consists of a
stack of functions of operator including positional encoding, feature transform, sampling,
message computing, multi-head, and aggregation.
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Figure 2. The ST-GCN architecture.

3.4.1. The Positional Encoding

The positional encoding consists of encoding positional information for each word of
a sentence, which is difficult to apply to a graph because the presence of symmetries in the
graph makes it non-trivial to get the canonical position of nodes. Meanwhile, words in the
text need disambiguation, that is, words with the same spelling, but different meanings
need to be differentiated. Ideally, each node of a graph should have unique PE, and nodes
that are close in the graph should have similar PE whereas nodes that are far from each
other should have different positional encoding. Node position embedding has been
explored in recent GNN works [53–56] to learn both positional and structural features of
nodes in graphs. We leverage the success of the recent works on positional information
in GNNs [54,56] and use pre-computed Laplacian eigenvectors as Positional Encodings,
which allow us to differentiate isomorphic nodes. Eigenvectors are defined using the
factorization of the graph Laplacian matrix:

∆ = I − D−
1
2 AD−

1
2 = νTΛν, (5)

where A is n× n adjacency matrix, D is the degree matrix, and ν,Λ are the eigenvectors
and eigenvalues, respectively. We use pre-computed Laplacian eigenvectors to add into the
feature of the nodes, which are used as input for the first layer.

3.4.2. Feature Transform Operator

We input the node and edge features described above into the graph transformer.
The input node and edge feature are d−dimensional hidden feature h0

i and e0
i , respectively.

Then we embed the pre-computed node PE of dimension k using a linear projection. It
should be noticed that we add the Laplacian positional encoding only to the node feature
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for the first layer uniquely. Basically, for a graph G with node feature Xu ∈ R1×d for each
node vi and edge feature Xe

ij ∈ R1×de for each node between nodes vi et vj where d and
de denote the node feature size and edge feature size respectively, the input node features
xu and edge features eij are passed via a linear projection to embed these to d dimensional
hidden features h0

i and e0
ij.

ĥ0
i = A0Xi + a0 + λ0

i ; e0
ij = B0eij + b0, (6)

where A0 ∈ Rd×dn , B0 ∈ Rd×de and a0, b0 ∈ Rd are parameters of the linear projection layer.
λ0

i represents the pre-computed node positional encoding of dimension k.

3.4.3. Message Computation Operator

Based on attention mechanisms, the message computation operator makes it possible
to focus on the most relevant neighboring nodes to improve information aggregation.
Our message computation operator aims to learn an importance weight wij for each edge
relationship eij between the two corresponding nodes vi and vj. We better utilize edge
attributes information by designing an attention layer with edge feature (see Figure 2).
We maintain a node-symmetric edge feature representation pipeline for propagating edge
features. The update equation for a layer l is defined as follows:

ĥl+1
i = Ol

h Hk=1( ∑
j∈Ni

wk,l
ij Vk,lhl

j) (7)

êl+1
i = Ol

eHk=1(ŵ
k,l
i,j ), where (8)

wk,l
ij = so f tmaxj(ŵ

k,l
i,j ) (9)

ŵk,l
i,j = (

Qk,lhl
i · Kk,lhl

j√
dk

) · Ek,lel
i,j, (10)

with Qk,l , Kk,l , Vk,l , Ek,l ∈ Rdk, Ol
h, Ol

e ∈ Rd×d, k ∈ {1, 2, . . . , H} represents the number of
attention head, and where Ol

h ∈ Rd×d , Vk,l ∈ Rdk×d, H denotes the number of heads, L
the number of layers, d is the hidden dimension and dk is the dimension of a head d

H = dk.
Note that hl

i is the i− th node’s feature at the l − th layer.

3.4.4. Multi-Head Operator

For stabilizing the learning process, we follow up on [46] and perform multiple
attentions independently. The multiple representation outputs by multi-head attention for
each node vi are then concatenated or averaged to generate the final representation hi

3.4.5. Aggregation Operator

For combining features from multiple neighbors to obtain the representation hi, an ag-
gregation function is required. We use max formulated as :

ak
v = MAX(RELU(W.hk−1

u ), ∀u ∈ N(v)). (11)

4. Experiments
4.1. Baselines

The proposed model is compared with multiple state-of-the-art sentiment analysis
models as follows:

• RGWE: Unsupervised methods, in particular neural network-based approaches, ex-
ploit unstructured data to generate and retrieve hidden sentiment information by
identifying the constraints of conjunctions on the positive or negative semantic orien-
tations [57];
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• Seninfo+TF-IDF: an improved word representation method, which integrated the
contribution of sentiment information into the traditional TF-IDF algorithm and
generated weighted word vectors [58];

• Re(Glove): a word vector refinement model to refine pre-trained word vectors using
sentiment intensity scores provided by sentiment lexicons, which improved each word
vector and performed better in Sentiment Analysis [59];

• CHIM: a model in which the author represents attributes as chunk-wise important
weight metrics. The authors consider four locations to inject attributes (i.e., encoding,
embedding, classifier, and attention) with simple BiLSTM [60]. In our comparison,
we compare with the embedding location inject since it achieved the highest accu-
racy score;

• HCSC: a model that combines BiLSTM and CNN as the base model and incorporates
attributes by the bias-attention method, and considers the existence of cold start
entities [61];

• CMA: a model that incorporates attributes using the bias-attention method with the
baseline LSTM and hierarchical attention classifier [62];

• Single-layered BiLSTM: a single-layered BiLSTM model with a global pooling mech-
anism in which the number of parameters is reduced, leading to looser computa-
tion [63];

• LSTM/BiLSTM: Long short-term memory network and Bidirectional long short-term
memory network;

• SAMF-BiLSTM: a bidirectional model with the self-attention technique and multi-
channel features for sentiment classification [64];

• SMART: a robust computation framework that fine-tunes large-scale pre-trained natu-
ral language models in a principled manner. we report the usage of BERTBASE and
the RoBERTaLARGE as the pre-trained models [65];

• RCNN: a model that combines RNN and CNN for text sentiment classification [66];
• BERT-pair-TextCNN: a representation framework called Bert-pair-Networks (p-BERTs)

in which BERT is used to encode sentences for sentiment classification to classify a
single sentence utilizing, on the top, the auxiliary sentence and feature extraction [67].

4.2. Datasets

We select four classical public datasets to evaluate the proposed TGTCN model.
The statistics of the datasets are shown in Table 1. For the datasets that have standard
train/valid/test such as SemEval [68] and SST-B [36], we have conducted our experiments
according to the standard split. For those datasets that do not have a standard split, we
split the datasets with 7:1:2 to obtain the corresponding train/valid/test. We also made
sure that the intersection of the training and test sets was not empty to avoid technical
terms influencing Sentiment Analysis.

Table 1. Detailed statistics of the evaluation datasets.

Dataset Train Valid Test Total #Labels Labels Balance

SemEval 9684 1654 3813 15,151 3 positive/negative/neutral No
SST2 6920 872 1821 9613 2 positive/negative No

IMDB 40,000 5000 5000 5000 2 positive/negative Yes

Yelp 2014 (Restuarant) 3072 384 384 3840 5 very positive/positive/ Yesneutral/negative/very negative

4.3. Experiments Settings

SGTN is implemented using PyTorch and is optimized with an Adam optimizer.
Training and experiments are done using an NVIDIA GeForce GTX 1080 Ti graphics
card. We select the optimal values of learning parameters when the model achieves the
highest accuracy for the validation samples. The optimal value of the learning rate α is
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set to 0.0005. L2 regularization is set to 10−6, and the dropout rate is set to 0.3 for the best
performance. For learning SGTN, the model is trained for 100 epochs with the early-stop
strategy. For baseline models, we either run the codes provided by the authors using the
same parameters described in the papers or the results reported in the previous work [57].

4.4. Evaluation Criteria

To evaluate the performance of the proposed SGTN model, we use the two main
evaluation criteria, namely Accuracy (Acc) and F1 measure (F1). These criteria have
been used extensively in text classification, and sentiment analysis tasks [69], which are
computed as follows:

Acc =
TP + TN

TP + FP + TN + FN
. (12)

To calculate the F1 measure, we first compute the Precision (Pr) and Recall (Re) as
follows.

Pr =
TP

TP + FP
, (13)

Re =
TP

TP + FN
. (14)

Then the F1 is calculated as follows:

F1 =
2× Pr× Re

Pr + Re
, (15)

where TN, TP, FN and FP are true negative, true positive, false negative, and false positive,
respectively [69].

4.5. Comparison Results

The optimal parameters that achieved the best results in our model are shown in
Table 2. The proposed model is compared with 12 models on four public datasets. The main
results are reported in Tables 3 and 4.

Table 2. The optimal hyper-parameters on datasets.

Hyperparameter SST-B IMDB SemEval Yelp

Epochs 200 200 200 200
learning rate 0.2 0.05 0.001 0.05
Optimization function Mini-Batch Gradient Desent
loss function Cross Entropy Loss function
Dropout 0.6 0.5 0.6 0.5
Batch Size 512 512 512 512
Weight Decay 0.0005 0.00005 0.00001 0.00001
Hidden layer unit 32 32 64 16

From the result in Table 3, we noticed that the proposed model has achieved better
classification accuracy than the baseline state-of-the-art models over all datasets. For ex-
ample, the classification performance is improved by 2.63%, 0.43% over SMARTRoBERTa
and BERT_pair_RCNN. On SST-B, the classification accuracy rate of the proposed model
reached 95.43%, on the IMDB, the accuracy rate reached 94.95%, on the Yelp dataset,
the accuracy rate reached 72.7%.

We also report the F1-score of the proposed model compared with five state-of-the-art
models. From the results in Table 4, it is noticed that our model outperforms the baseline
model over the four datasets. For example, our model achieved 74.12% on the Semeval
dataset, 95.11 on SST-B, 93.52 on IMDB, and 50.2 on the Yelp dataset. The F1-score is
improved by 1.23% and 3.95% over RCNN and BiLSTM on SST-B, respectively.
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For more in-depth analysis, the Bert-based models have achieved better classification
results than the conventional deep learning models. We can also see that the neural network
models have better results compared with the machine learning methods.

Table 3. The sentiment classification accuracy of different models over datasets. The best score on
each task produced by a single model is in bold and “–” denotes the missed result.

Method SST-B IMDB Yelp 2014

CHIM – 54.2 –
HCSC – 56.4 69.2
CMA – 54.0 67.6
Single-layered BiLSTM 85.78 90.585 –
SAMF-BiLSTM-D 89.7 48.9 –
LSTM 84.9 37.8 53.9
BiLSTM 91.24 83.02 –
RCNN 93.96 84.70 –
BERT_pair_RCNN 95.00 – –
Bert 90.9 – –
SMART_BERT 90.0 – –
SMART_RoBERTa 92.8 – –

SGTN (ours) 95.43 94.94 72.7

Table 4. The F1-score of different models over datasets. The best score on each task produced by a
single model is in bold and “–” denotes the missed result.

Method SemEval SST-B IMDB Yelp 2014

Re(Glove) 68.2 89.5 89.6 46.1
Seninfo+TF-IDF 66.7 88.8 89.0 45.4
RGWE 69.1 89.68 90.1 46.9
BiLSTM – 91.16 83.05 –
RCNN – 93.88 84.72 –

SGTN (ours) 74.12 95.11 93.52 50.2

4.6. Ablation Study
4.6.1. Impact of Removing Less Frequent Words

Removing the less frequent words from tweets may affect the performance of sentiment
analysis. We conduct an ablation study to test the impact of removing the less-frequency
words. We delete the words with frequency less than five times in the entire corpus.
The result from Tables 5 and 6 show that removing the less frequent words have slightly
degraded the performance. For example, the sentiment accuracy performance decreases
by 0.21% on the SST-B dataset and by 0.42%. We also test the influence of our predefined
stop words. From the results in Tables 5 and 6, it shows that using NLTK stop words has
affected the accuracy sentiment performance.

Table 5. The impact of removing less frequent words on the accuracy performance of SGTN.

Method SST-B IMDB Yelp 2014

SGTN with less Freq words 95.24 94.53 72.3
SGTN without less Freq words 95.43 94.95 72.7
SGTN with NLTK Stopwords 93.43 93.01 71.10
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Table 6. The impact of removing less frequent words on the F1 score performance of SGTN.

Method SemEval SST-B IMDB Yelp 2014

SGTN with less Freq words 74.01 94.91 93.72 49.50
SGTN without less Freq words 74.12 95.11 93.52 50.2
SGTN with NLTK Stopwords 72.46 93.09 92.84 48.23

4.6.2. Epoch

The number of iterations in the training set are called epochs. The model’s generaliza-
tion ability improves as the number of Epochs increases. However, if the number of epochs
is too great, the over-fitting problem can easily arise, reducing the model’s generalization
capabilities. As a result, selecting the appropriate Epochs is critical. Figure 3 depicts the
model’s classification effect with different epochs.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

Ac
cu
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E p o c h
Figure 3. Relation between Epochs and accuracy score.

It is noticed from Figure 3 that with the increasing of the epoch, the classification
performance (accuracy score) of the model is gradually increasing. It tends to be stable
when epochs are 60.

4.6.3. Learning Rate

When it comes to optimizing weights and offsets, identifying the appropriate learning
rate is critical. It is easy to overshoot the extreme point if the learning rate is too high,
causing the system to become unstable. The training duration will be excessive if the
learning rate is too slow. The model’s classification impact at various learning rates is
depicted in Figure 4.
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Figure 4. Relation between learning rate and accuracy score.

5. Conclusions and Future Work

In this research, we propose a convolutional network of transformer-based graphs for
sentiment analysis. We represented the problem as a node classification task and learned
the representation of nodes on a heterogeneous graph through the message passing. We
show that using a transformer to aggregate local substructures with appropriate position
encoding is a very efficient node representation strategy, and the multi-head attention
allows a simple interpretation of the model. The learned graph structure leads to a more
efficient node representation, resulting in peak performance without any predefined meta-
path from domain knowledge. Comprehensive experiments illustrate the effectiveness
of the proposed model. ST-GCN outperforms previous cutting-edge models on four
real-world datasets: SemEval, SST-B, IMDB, and Yelp 2014. In addition to generalizing
the ST-GCN design to inductive parameters, some interesting future directions include
using Dynamic neighborhood aggregation operators to improve classification performance.
As several heterogeneous graph datasets have been recently studied for other network
analysis tasks, such as link prediction and graph classification, applying ST-GCN to the
other tasks can be interesting future directions.
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Abbreviations
The following abbreviations are used in this manuscript:

NLP natural language processing
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SVM support vector machine
RNN ecurrent neural network
LSTM long short term memory
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