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Abstract: Most neural machine translation models are implemented as a conditional language
model framework composed of encoder and decoder models. This framework learns complex and
long-distant dependencies, but its deep structure causes inefficiency in training. Matching vector
representations of source and target sentences improves the inefficiency by shortening the depth
from parameters to costs and generalizes NMTs with a different perspective to cross-entropy loss.
In this paper, we propose matching methods to derive the cost based on constant word-embedding
vectors of source and target sentences. To find the best method, we analyze the impact of the methods
with varying structures, distance metrics, and model capacity in a French to English translation
task. An optimally configured method is applied to English translation tasks from and to French,
Spanish, and German. In the tasks, the method showed performance improvement by 3.23 BLEU at
maximum, with an improvement of 0.71 on average. We evaluated the robustness of this method to
various embedding distributions and models, such as conventional gated structures and transformer
networks, and empirical results showed that it has a higher chance to improve performance in
those models.

Keywords: recurrent neural network; machine translation; similarity; sentence representation; guiding
pressure

1. Introduction

Most decoders of neural machine translation (NMT) are conditional language models,
which sequentially generate target words in the condition of a given source sentence.
This approach is a greedy algorithm, so the dependency between sequentially selected
target words may restrict the selection of the best target word composition. Beam search
is a promising method to approximate the correct compositions. However, inversely,
the promising results imply that NMTs are still weak regarding learning the dependency
between output words in the model. This limitation in training is a fundamental barrier
in learning in an end-to-end NMT model while not relying on an additional model or
algorithm in inference, as proposed in various approaches [1,2]. An effective method to
relax the limit is to penalize the cross-entropy by adding a sentence-level score [2–4] using
various information generated from a decoder. Beyond the improvement of prediction
quality in the works, mapping between two sentence representations has more fundamental
meaning because it can provide useful information about the unseen difficulty of training
in the typical NMT.

In this paper, we propose a sentence representation matching method to apply the
direct mapping of sentence-level semantics to existing NMT frameworks. This method is
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designed for guiding training of a model with constant word vectors. To obtain a more
optimized structure and deeper understanding about the guiding pressure generated by
the method, we analyze its impact in the framework with varying structures, distance
metrics, and model capacity determined by layer dimensions. The best model derived
from the analysis is applied to practical translation tasks of English from and to the French,
Spanish, German languages. Then, we analyze its robustness to various embedding
distributions and model structures as long-short term memory in recurrent neural networks
and transformer networks.

The contributions of this paper are that it:

• proposes a sentence representation matching method and loss functions for training;
• provides the impact analysis of structural factors to control guiding pressure;
• provides a good-performing setting in many models, embeddings and translation

tasks.

Section 2 shows related and background works first, then Section 3 explains motiva-
tions and details of the proposed method and proposes the factors that affect the guiding
pressure to test variants of the method. Section 4 shows the experimental setting on
data and model for analysis. Section 5 describes their results and provides a discussion.
Sections 6 and 7 present the conclusion and discuss future work.

2. Background

Since 2014, there has been a surge of applying recurrent neural networks with long
short term memory (LSTM) [5] to machine translation after the possibility of a learning
end-to-end translation model was reported [6]. After intensive development across more
than two years, this approach became the state-of-the-art of machine translation and was
called NMT. The remarkable research which improved the performance of NMT included
the bidirectional LSTM using both forward and backward sequences [6–8], attention model
to learn explicit alignment models [9,10], rare word modeling to estimate unknown words
by an explicit model and alignment model [11], and argumentation methods to overcome a
lack of data [12,13].

Those works have been made more rigorous by adopting many advanced methods
such as batch normalization [14], ensemble, beam search, input feature specialization,
and input feeding. Those techniques are aggregated in Google’s NMT report [15].

In 2017, transformer, a feed-forward model with a self-attention mechanism, was
suggested and had a remarkable performance which was better than LSTM [16]. More
recently, the very deep transformer model demonstrated higher performance than the
vanilla transformer [17], and the pre-trained model also demonstrated remarkable perfor-
mance [18–20].

Direct mapping of semantic vectors between two languages has been studied in
various research directions, but the vector distribution is complex in translation tasks,
so simple and successful direct mapping models have not been proposed so far. Using
recently used complex NMT frameworks, the model-based approach was able to manage
most of the complex relations between words. However, the direct mapping approach
is still useful to understand the macroscopic similarity between two concepts. In word-
level mapping models [21–23], the similarity between semantic vectors has been used as a
dictionary to determine the most semantically related words, even though the mapping is
still ambiguous for words used for various purposes. The direct mapping models can be
understood as an extremely regularized model for translation, compared to current NMT
frameworks, which are particularly difficult to regularize because of the high sensitivity of
the parameters in the recurrent networks [24]. In this paper, we propose a safe method to
use the macroscopic information to guide current NMT frameworks.

A pointer generator network is a model which uses sentence-level semantic match-
ing [25]; it refines the probability vector to select a class from the information of the
distributed representation. This network has shown promising improvement, but it is
designed only for enhancing performance rather than guiding the internal hypotheses
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of NMT to a more natural translation model. In this paper, we focus on injecting the
information of the direct mapping model involving knowledge of regularizing and also
guiding the NMT.

3. Sentence Representation Matching
3.1. Motivation

Beam search is a promising method for NMTs by overcoming the problem of greedy
searches in sequential target word generation. On the other hand, the impact of beam
search inversely implies that the sequential decisions by the model are likely to be incorrect
to select the best sentences in many cases. There are many possible causes for the inaccurate
prediction of the composition of target words, such as inaccurate model representation,
complex parameter landscapes, and noisy data.

A possible cause is the simple representation of the correctness of target words. In
current NMTs, cross-entropy is the most popular cost function and is composed of proba-
bilities of selecting each correct word of a target sequence. Therefore, only one variable is
responsible for representing whether the selected target word is correct. Using only one
variable may be risky because the second probable word and its highly probable following
sequences may give higher cross-entropy than any sequences derived from the correct
word selection. This case is a deceptive example of restricting accurate word composition
in decoders.

Another cause is the slow parameter update in NMT structures. In LSTMs, the gradient
vanishing [26] which occurs over time steps and over stacks in the vertical direction
of the structures is resolved, respectively, by using memory cells and input feeding or
multidimensional memories [15,27]. They are applied to the encoder and decoder, but the
interface part is often a feedforward layer suffering from gradient vanishing. This vanishing
limits the achievable translation quality in general and may restrict the learning of the
correct composition.

Using a different type of cost function is an effective method to solve this problem.
In our preliminary work [4], we evaluated the performance of applying a matching method
for an English to French translation task with 1.5 million sentences and confirmed its
improvement. We extended the work for more rigorous analysis to learn about how to
control the hyper-parameters with respect to their impact on training.

3.2. Methods

The sentence representation matching proposed in this paper is composed of two ideas.
First, this method use the output vector generated from the encoder model and passes it
to the matching layer to derive the cost function. This idea reduces the distance from the
cost function to an encoder model so that it can reduce the potential negative effects of
gradient vanishing. Second, the cost is directly connected to the target word vectors, which
is expected to induce an effective guide for the training of the encoder model.

To implement the two ideas as a single neural network added to existing NMTs, we
introduce sentence representation matching, where we will call the sentence representation
a concept implying the semantics of source or target sentences. An expected role of
this approach is to guide NMTs not to train obviously wrong sentences in explicit direct
mapping models.

The method illustrated in Figure 1 is the simplest, which will be extended in the
following sections.

We newly propose the following three parts compared to NMT frameworks.

3.2.1. Vector Representation of Sentences

The proposed method matches two vector representations to evaluate the semantics of
source and target sentences. The sentence representation of the source sentence is generated
from the output vectors of an encoder model to induce a guiding effect to the model. The
representation of the target sentence uses fixed-word vector sequences. The common
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assumption in building the representations is to use fixed word vectors of an imported
external dictionary or using one-hot representation.

S1 S2 S3 S4 S5

Encoder

<s> T1 T2 T3 T4

T1 T2 T3 T4 <eos>

Decoder

Matching Layer

Figure 1. Sentence representation matching method plugged in to typical neural machine translation
(red and dashed line: typical model).

The method used in this paper is defined according to the following equations, where
the representations rS of a source sentence S and rT of a target sentence T are defined as

rS =
|S|

∑
t=1

ht (1)

rT =
|T|

∑
t=1

wt (2)

where ht is the hidden vector generated from the top LSTM stacks at time step t in a NMT
encoder and wt is the word vector at time t in a decoder. This representation extraction
is not neccessarily the addition of word or output vectors over times. It can be also easily
extended to general encoder-decoder models. For example, in bidirectional models, ht is
replaced by h f

t ‖h
b
t . In bidirectional attention models, interface vectors are transformed

vectors of ht with the alignment model and target word, but we can still use h f
t ‖h

b
t .

3.2.2. Matching Layer

In matching representations, the biggest risk is the conflict of gradients to change
the vector distribution of ht between the cross-entropy and the distance, which generates
bad local optima. If the scale of distance is dominated by the cross-entropy, the optima
distribution will be similar to an original NMT, but otherwise, the negative phenomenon
will happen. To reduce the negative effect of conflict, we added an additional linear
combination layer for more flexible mapping, which can be extended to more general
neural network layers.

vS = WrrS + br (3)

vT = rT (4)

The matching layer is composed of parameters Wr and br for the representation
matching. The generated source-side representation vS is mapped to the target-side repre-
sentation vT .
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3.2.3. Cost Function

In sentence-level translation using representation matching, the underlying assump-
tion is that the semantics of a source sentence and its translation are represented as the same
vector in the space for representing general semantics. In the assumption, reducing the
distance of the representations is exactly the same goal as cross-entropy in NMTs. For this
reason, we believe that the cost function will not generate serious side-effects in training,
but will induce some positive effects, such as providing a training guide and regularization,
by providing information about correct translation in different perspectives. To use the
information, we set a cost function as the following equation, given model parameter θ and
training set D.

Ltotal = Lcost + Ldistance(vS, vT) (5)

This method adds cost and distance without any scaling factors because the matching
layer implicitly adapts its scale in updates. In early stages of the updates, the layer gives a
large distance for all vectors by random initialization. but the long distance loss dominates
updates and makes NMTs rapidly converge to a model to generate small distances over
all vectors. Then, the impact of cross-entropy increases, and the model moves to the true
optimal determined by the entropy. Therefore, if the optimal distance is sufficiently small,
then this method will guide the training in early updates and preserve the true optima with
respect to cross-entropy with the restriction of generating negative sentences.

3.3. Guiding Pressure

The newly introduced cost by matching sentence representations generates different
gradients to cross-entropy, and then it pushes the model to move toward other directions.
We call the gradients guiding pressure in this paper. This pressure is affected by many factors
in matching methods because the gradients may disappear before changing the parameters
of the encoder model by deep layers, large expression power of the matching layer, or loss
propagated to the other layers. To understand the impact of the guiding pressure and to
find the optimal configuration, we investigated potential factors of it and prepared the
possible methods to control its strength.

3.3.1. Structure of Matching Layers

The depth of matching layers is a probable factor to affect the guidance strength. If the
layers are deep, it causes the gradient vanishing problem, which weakens the impact of the
guidance because the layers compose a feed-forward neural network. If the layers are too
shallow, it restricts the expression power of the layers, and therefore, the strength of the
guidance may be insufficiently increased.

In addition to the depth attribute, the responsible layer for the final cost calculation
is also an attribute to affect the strength, because gradients to reduce the cost are equally
contributed from source and target sides. To analyze the impact of the variation, we tested
five structures, as shown in Figure 2 and Table 1.

Table 1. Definition of vs and vt for layer structures.

Structure vS vT

Source-side 1 layer WrrS + br (Equation (3)) rT (Equation (4))
Source-side 2 layers Wr2sigm(Wr1rS + br1) + br2 rT
Target-side 1 layer rS WrrT + br
Target-side 2 layers rS Wr2sigm(Wr1 rT + br1) + br2
Both-sides 1 layer WrrS + br WrrT + br
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Encoder

Source-side

2 layers

Source-side

1 layer

Both-side

1 layer

Target-side

1 layer

Target-side

2 layers

Source Target

distance

Encoder

Source Target

distance

Encoder

Source Target

distance

Encoder

Source Target

distance

Encoder

Source Target

distance

Figure 2. Layer structure for sentence representation matching.

3.3.2. Similarity Metrics

A metric to evaluate similarity between sentence representations also strongly affects
the guiding pressure, because it determines points located at the same distance from the
representation and gradients to move a matching representation without distance loss as
well. We selected Hamming, Euclidean, and cosine distances for the distance method in (5),
which have a rotated n-dimensional cube, n-dimensional sphere, and a line shape of the
same distance region. We selected three types of widely used basic distance metrics, as
shown in Table 2, which are defined by vs and vt of Equations (3) and (4) as follows.

normalized Hamming distance :
||vs − vt||

n
(6)

Euclidean distance : ||vs − vt||2 (7)

cosine similarity :
vsvt

||vs||||vt||
(8)

Table 2. Hyperparameters for grid search of the best sentence matching network in impact analysis.

Structure Source-side 2 layers,
Source-side 1 layer,
Target-side 2 layers,
Target-side 1 layer,
Both-sides 1 layer

Metric Hamming, Euclidean, cosine
Model capacity Hidden nodes: {10, 50, 100, 250, 500}

3.3.3. Model Capacity

A clear attribute to decide the guide strength is model capacity, also understood
as model complexity. If model complexity is low, the model can be too generalized to
represent a complex relation for matching representation. Otherwise, the model easily
finds the complex relation without propagating the pressure to the encoder model. An
optimal model capacity is determined by involved sentence representations varying by
given data, so that empirical investigation is required. From the preliminary results, we
found that the two source-side layer allows for flexibly varying the model complexity with
effective guiding, so we investigated various model capacities by changing the number
of hidden nodes of the matching layer from an extremely low dimension to a sufficiently
large dimension, not regularizing the network at all. Although the capacity depends on the
source and target dictionary size, the size and computational complexity to train occupy a
tiny portion of all.

4. Experiment Setting

In our experiments, we aim to investigate the impact of the representation matching
with various parameter conditions because of its complex relation to regularization caused
by many factors. Then, we evaluated its performance in translation of English from and to
French, Spanish, and German.
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4.1. Settings for Impact Analysis

To build a training set, we merged the Europarl parallel corpus and the Common-
crawl corpus released from WMT-14 (http://www.statmt.org/wmt14/, accessed on 18
January 2022). We applied tokenizing and lowercasing and limited the length of each
sentence to a maximum value of 40 tokens through using scripts provided by a machine
translation package, MOSES [28] (http://www.statmt.org/moses/, accessed on 18 January
2022). A starting and an ending symbol are attached to each source sentence. We used
news-commentary-v8 and newstest-2013 sets released with the training set. Data statistics
are shown in Table 3. For validation, we randomly selected 10% of the sentences of the
training set.

Table 3. Data statistics for impact analysis (train: training set; test1: newstest-2013; test2:
newscommentary-v8; validation set is a randomly selected 10% of the training set).

Type Set En Fr En Es En DE Unit

sentence train 4.1 3.0 3.6 106

test1 2623 2653 2741 100

test2 117,861 138,408 151,139 100

token train 83.8 92.2 62.9 65.6 76.4 72.6 106

test1 48.0 53.8 48.0 51.7 52.6 51.4 103

test2 2.5 2.9 3.0 3.3 3.3 3.4 106

We extracted word vectors from the training set using a language model implemented
in word2vec [29] (https://code.google.com/archive/p/word2vec/, accessed on 18 January
2022) for all language pairs. The number of tokens in each dictionary is composed of the
most frequently observed 40,000 tokens and their vector representations. In the training,
validation, and test phases of a language pair, the same dictionary is imported.

We built a bidirectional model and passed the h and c from the forward to backward
pass of the encoder. Then, the ht of the forward pass and h|S|−t are concatenated to derive
rs. The used attention model is equal to [9], except for additionally passing c for the
initialization of the decoder. The input word vectors are fed on to the second-shallowest
LSTM stack of the encoder. To boost converging speed, we applied batch normalization
through the weighted average of the original and normalized vectors. The weight is
decayed by multiplying 0.8 at each epoch, which becomes almost 0 after 16 epochs. The
representation matching is only applied to the training phase. Details of the model settings
are shown in Table 4.

Table 4. Model settings for impact analysis (M: million, dim.: dimension).

LSTM stacks 4 parameter
Cells per stacks 1000 encoder 3.05 M
Dim. of word 50 decoder 3.10 M
Dim. of attention 250 output 11 M
Batch size 128 interface 0.19 M

For the impact analysis of the guiding pressure, we extended this base structure with
respect to the structure, model capacity, and distance metrics in English-French translation
as shown in Table 3.

4.2. Setting for Robustness Analysis

In experiments to investigate the robustness of the model structure and embed-
ding distribution, we reproduced a NMT open-source program (https://github.com/
OpenNMT/OpenNMT-py, accessed on 18 January 2022) [30] and evaluated the per-
formance of LSTM and the transformer with random, word2vec, and Bidirectional En-

http://www.statmt.org/wmt14/
http://www.statmt.org/moses/
https://code.google.com/archive/p/word2vec/
https://github.com/OpenNMT/OpenNMT-py
https://github.com/OpenNMT/OpenNMT-py
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coder Representations from Transformers (BERT) [31] embeddings for the French to En-
glish translation task. We used the re-sized Europarl corpus for training (https://www.
statmt.org/europarl/v7/fr-en.tgz, accessed on 18 January 2022), common-test for vali-
dation (http://www.statmt.org/europarl/v1/common-test2.tgz, accessed on 18 January
2022), newstest (http://data.statmt.org/wmt17/translation-task/test.tgz, accessed on 18
January 2022) and news-commentary (http://matrix.statmt.org/test_sets/nc-test2007.tgz,
accessed on 18 January 2022) for tests. Applied preprocessing methods are equal. The num-
ber of tokens are 50,000. Special symbols, including the start, end, unknown, and blank
symbols, remained in the corpus. Data statistics for this robustness analysis are shown in
Table 5.

Table 5. Data Statistics for robustness analysis in French to English translation (train: Europarl-v7,
validation: commontest, test1: newstest-2014, test2: newscommentary-2007).

Corpus Sentence (Fr-En) Token (Fr) Token (En)

Train 1,737,355 44,201,334 40,094,199
Valid 22,960 746,023 650,469
Test1 3,003 81,191 71,114
Test2 2,007 58,682 49,690

The tested embedding methods included random generation (RE), importing em-
bedded vectors trained by word2vec (https://github.com/Andras7/word2vec-pytorch,
accessed on 18 January 2022), implemented as open-source (WV), and importing embedded
vectors of pre-trained multilingual BERT (BE). RE selects an element of an embedding
vector from a uniform distribution in [−0.1, 0.1], as shown in Table 6. WV is generated
as in other experiments through learning a language model from the parallel training
corpus with the same dictionary. BE is extracted from a pre-trained multilingual BERT [31]
model (https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-
768_A-12.zip, accessed on 18 January 2022) consisting of an embedder and a number of
encoders. RE, WV, and BE are fixed embedded vectors in every experiment.

Table 6. Statistics of embedding vectors for robustness analysis.

Element Activation
Embedding Unit Language Min Max Mean Std

WV token source −0.8674 0.8900 −0.0003 0.0641
WV token target −0.8819 0.8824 0.0018 0.0609

RE token source −0.1000 0.1000 0.0000 0.0577
RE token target −0.1000 0.1000 0.0000 0.0577

BE word source + target −0.8911 0.4352 −0.0073 0.0463
BE position source + target −0.8643 0.4100 0.0000 0.0150
BE token source + target −0.3017 0.2326 0.0004 0.0178

Euclidean Distance
Embedding Unit Language Min Max Mean Std

WV token source 0.0248 5.9327 1.0426 1.0090
WV token target 0.0243 6.3314 0.8861 1.0553

RE token source 1.1810 1.4202 1.3061 0.0259
RE token target 1.1971 1.4040 1.3061 0.0257

BE word source + target 0.6753 1.8641 1.2880 0.1630
BE position source + target 0.3509 1.3160 0.4126 0.0465
BE token source + target 0.4846 0.5031 0.4939 0.0092

To compare the effects on widely used NMT architecture, we selected LSTM [10] with
a unidirectional encoder and transformer [16]. In the transformer, the matching network

https://www.statmt.org/europarl/v7/fr-en.tgz
https://www.statmt.org/europarl/v7/fr-en.tgz
http://www.statmt.org/europarl/v1/common-test2.tgz
http://data.statmt.org/wmt17/translation-task/test.tgz
http://matrix.statmt.org/test_sets/nc-test2007.tgz
https://github.com/Andras7/word2vec-pytorch
https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip
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receives the final output vector of the encoder-transformer as its input and calculates its
distance to the sum of word-embedding vectors of the decoder-transformer. Detailed
model parameters are shown in Table 7. The setting of the matching layer is equal to the
other experiments using source-side-2-layers, 250 hidden dimensions, and normalized
hamming distance.

Table 7. Model settings for robustness analysis (M: million, voca.: vocabulary).

LSTM Transformer

parameter RE & WV BE RE & WV BE

layers 4 4 6 2
number of heads - - 8 8
dimension of

layer output 1000 1000 - -
embedding 512 768 512 768
attention 1000 1000 1000 1000
model [16] - - 512 768
feed forward [16] - - 2048 2048

total parameters 168 M 373 M 120 M 303 M

batch size 64 32 64 32
voca. of encoder 50,002 119,547 50,002 119,547
voca. of decoder 50,004 119,547 50,004 119,547

5. Results and Discussions

To evaluate the impact on performance, we investigated token-level precision and
BLEU scores [32]. In addition to these scores, we evaluated layer-wise statistics of a
neural network to understand the impact on model complexity according to the following
definition:

µL =
1
|L| ∑l∈L

||W(l)
lin×lout

||
linlout

(9)

σL =
1
|L| ∑l∈L

√√√√ ||W(l)
lin×lout

||22
linlout

− µ2
l (10)

where L is a neural network layer and W(l)
lin×lout

is its weight parameter matrix with lin and
lout dimensions. The metrics µL and σL are the layer-wise mean and standard deviation
of the network, and µl is the mean for the specific layer l. These two metrics are expected
to show a degree of dispersion of hyperplanes represented by a layer in Cartesian and
polar coordinates. Compared to the gradient, the change of the metrics is more focused on
evaluating model complexity at each update step rather than the shape of movement of a
model in optimization.

5.1. Impact Analysis
5.1.1. Structure

In Figure 3, the token-level precision results of each structure are shown. One-layer
structures have a point in the graph because of the fixed dimension for the distance
calculation. Two-layer structures are evaluated over varying hidden layer dimensions. The
use of 1 or 2 layers showed no significant difference in source- and target-side structures.
The both-sides structure showed less precision than the source-side structure.
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Figure 3. Token-level precision by dimensions of hidden layer for structure types.

Figure 4 shows the layer-wise mean and standard deviation of absolute weight param-
eters of encoder and decoder models in training. In the cases of the mean, the difference
between structures is small because of the very large number of parameters. Thus, the small
change may be induced by significantly large changes of some parameters. In the zoomed
boxes of the subgraph (a), the mean values of the source-side layers were higher than the
no-matching case and the target-side layers in the early epochs, although they were lower
after sufficient training. In the subgraph (b), source-side layers maintained the mean value
of the decoder models, but target-side layers showed significantly larger values. Subgraph
(c) and (d) showed the similar superiority of source-side layers as the mean cases.
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Figure 4. Layer-wise statistics µL and σL of weight parameters for a matching layer structure in
training (cosine distance was used and the results were averaged over all hidden dimension settings).

In the overall results, source-side layers provided higher pressure at the early stage,
but caused less conflict at the final stage of training compared to target-side layers. In the
early stage, the gradient for the matching cost is split into the encoder and the matching
layer in target-side layers, while source-side layers use the full gradient for training the
encoder and increase training speed. In the final stage, the matching mechanism restricts
the training of the correct output vector distribution of the encoder, so that the decoder
models need to train more information and therefore increase the model complexity. In
this stage, source-side layers are more flexible regarding changing the output distribution,
because a neural network layer is a many-to-one mapping between the input and output.
Any movement of the output distribution is regarded as the change of the input in the
source-side layers, but it pushes the output vectors of the matching layer in target-side
layers. Thus, target-side layers are more reluctant to change and restrict the encoder to
move toward the correct distribution for minimizing the translation cost. In sum,

• Source-side layers have a higher impact on improving performance;
• Source-side layers have stronger pressure and less conflict.
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5.1.2. Similarity Metrics

We evaluated the impact of similarity metrics in the source-side two layers case, as in
Figure 5.
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Figure 5. Token-level precision by dimensions of hidden layers for distance metrics.

In the results of Figure 5, the Hamming distance was slightly better than the cosine
distance, and Euclidean distance showed much worse performance than the others. In
Figure 6, the Hamming distance showed larger mean and STD than the cosine distance
in all models and epochs. The case of Euclidean distance is excluded by extremely large
values unfit to the scale to show the difference of other distance results. In the results, the
impact of Euclidean distance on the pressure is the largest, but it seems to be stronger than
the required pressure, as it restricts the performance. The Hamming and cosine distances
are more stable, generating relatively weak pressure to preserve the model obtained by
cross-entropy. The Hamming distance has stronger pressure than the cosine distance.
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Figure 6. Layer-wise statistics µL and σL of weight parameters for distance types in training (cosine
distance was used, and the results were averaged over all hidden dimension settings).

5.1.3. Model Capacity

The impact of the model capacity is shown in Figure 3, which includes the precision
results of source, target, and both-sides 2 layers by changing the dimension of hidden layers.

Both-sides layers showed little change by increasing the dimension. The results of
source-side layers slightly decreased the precision, but the target-side layers increased.
In Figure 7, detailed results of the degree of dispersion are shown for all distance types
with various dimensions. In the overall results, no simple correlation between hidden
dimensions and the degrees of dispersion is found.
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Figure 7. Layer-wise STD σL of 2 source-side layers by hidden dimension settings.

5.1.4. Performance of Best Matching Layer

In the French to English task used for the impact analysis, the grid search results
are shown in the highlighted table and are drawn in Figure 8. The table shows the most
achievable performance for validation and test sets, which are not affected by model
selection based on validation performance. The best case in the table is that of the source-
side 2 layer, 250 hidden dimension, and Hamming distance. We applied this setting for
other translation tasks as an extension because of the large cost of the grid search.

From the impact investigation, we found the best settings to use included batch
normalization, 2 source-side layers, 250 dimensions of hidden layers, and Hamming
distance. With these settings, we performed translation tasks for three language pairs as
shown in Table 8. In this table, we evaluated two different performances to show the robust
result of the model selection process. One is the best performance in each data set evaluated
at every epoch without a model selection process. The other is the best performance in each
data set evaluated with the selected best validation model. The expected performance for all
metrics and data sets using the matching method improves performance. In a more detailed
view, the method improves the translation quality for the English to French, Spanish, and
German pairs and the French to English pair. A notable point is that the precision in the
training set is improved together when validation and test results are improved in the best
validation model.

The result implies that the matching method is effective to improve the translation
quality. It is more effective in improving the quality from relatively simpler language to
more complex language in terms of tense and gender. A probable reason for the improve-
ment is that the probability of generating the target sentences in those pairs is ambiguous
in some cases, so the additional information given by the matching method clarifies the
tokens to select. The performance improvement in the training and test sets of the best
validation models is distinguished compared to the usual regularization methods, which
increase the test accuracy by reducing the training accuracy.
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capacity distance valid test1 test2

prec. BLEU prec. BLEU prec. BLEU

s1 50 cosine 19.97 28.15 19.47 24.47 16.19 24.79 

t1 50 cosine 17.84 22.00 16.57 17.12 13.66 16.90 

s2 10 cosine 19.98 28.09 19.29 24.03 16.16 24.57 

s2 50 cosine 19.88 28.16 19.29 24.51 16.12 24.57 

s2 100 cosine 19.96 28.27 19.34 24.45 16.09 24.63 

s2 250 cosine 19.98 28.21 19.10 24.69 16.02 24.74 

s2 500 cosine 19.74 27.92 19.01 24.15 15.98 24.39 

t2 10 cosine 17.82 22.10 16.69 17.23 13.70 17.03 

t2 50 cosine 17.38 21.67 15.95 16.49 13.29 16.69 

t2 100 cosine 17.40 21.44 16.26 16.45 13.42 16.38 

t2 250 cosine 19.61 27.64 18.55 23.40 15.38 23.81 

t2 500 cosine 18.89 26.37 17.65 21.99 14.88 22.19 

b1 10 cosine 19.86 28.09 19.29 24.36 16.04 24.57 

b1 50 cosine 19.95 28.08 19.37 24.70 16.26 24.55 

b1 100 cosine 19.79 27.93 18.71 24.26 15.83 24.38 

b1 250 cosine 19.35 27.67 18.24 23.86 15.26 23.83 

b1 500 cosine 19.38 27.63 18.25 23.57 15.39 23.63 

s2 10 Hamming 20.16 28.31 19.65 24.54 16.22 24.77 

s2 50 Hamming 20.12 28.21 19.66 24.26 16.10 24.60 

s2 100 Hamming 19.88 28.16 19.32 24.51 15.99 24.58 

s2 250 Hamming 20.09 28.31 19.62 24.83 16.20 24.74 

s2 500 Hamming 19.80 28.11 18.63 23.95 16.07 24.63 

s2 10 Euclidean 18.57 26.95 18.06 23.12 14.94 23.36 

s2 50 Euclidean 18.61 27.05 18.46 23.28 15.27 23.51 

s2 100 Euclidean 18.46 26.78 17.92 23.20 14.77 23.00 

s2 250 Euclidean 15.02 24.10 14.71 20.58 11.72 20.35 

s2 500 Euclidean 19.69 27.46 19.01 23.51 15.80 23.66 

no matching 19.25 27.65 18.45 23.74 15.57 24.08 

structure

Figure 8. Grid search results of best achievable performance for French to English translation (red:
maximum, blue: minimum, white: mean, s1: source-side 1 layer, s2: source-side 2 layers, t1: target-
side 1 layer, t2: target-side 2 layers, b1: both-sides 1 layer).

Table 8. Performance changes after sentence representation matching for various language pairs (δ:
performance of models using the matching cost subtracted by original cost).

Best Performance in Each Set
Valid Test1 Test2

Data Model Prec. BLEU Prec. BLEU Prec. BLEU

E[δ] 0.32 0.33 0.23 0.32 0.05 0.30

En→ Fr NMT implementation of [9] 19.25 27.65 18.45 23.74 15.57 24.08
NMT + matching 20.09 28.31 19.62 24.83 16.20 24.74

Fr→ En NMT implementation of [9] 28.36 27.97 22.96 22.40 21.14 23.03
NMT + matching 28.25 28.47 22.88 22.80 21.32 23.53

En→ Es NMT implementation of [9] 26.55 31.14 20.48 22.43 24.21 30.55
NMT + matching 27.06 31.24 20.30 22.30 23.13 30.28

Es→ En NMT implementation of [9] 30.41 32.37 23.24 22.39 25.09 30.31
NMT + matching 29.98 32.32 22.84 22.49 25.82 30.60

En→ De NMT implementation of [9] 22.78 17.73 18.55 13.86 16.69 14.82
NMT + matching 24.32 19.22 20.53 15.17 17.92 16.31

De→ En NMT implementation of [9] 23.33 23.59 20.05 18.31 18.44 20.31
NMT + matching 22.88 22.86 18.93 17.44 17.03 19.43
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Table 8. Cont.

Performance of Best Validation Model
Train Test1 Test2

Data Model Prec. Prec. BLEU Prec. BLEU

E[δ] 0.99 0.25 0.72 0.27 0.69

En→ Fr NMT implementation of [9] 65.89 17.99 22.88 15.26 23.64
NMT + matching 64.09 19.62 24.41 16.20 24.74

Fr→ En NMT implementation of [9] 63.22 22.56 21.68 17.98 21.94
NMT + matching 65.04 22.48 22.51 17.94 22.59

En→ Es NMT implementation of [9] 63.21 19.66 20.96 21.27 28.41
NMT + matching 65.63 20.16 22.09 22.50 29.96

Es→ En NMT implementation of [9] 65.42 22.23 21.47 22.42 28.62
NMT + matching 63.83 20.18 20.24 20.39 27.24

En→ De NMT implementation of [9] 54.85 17.46 12.07 13.61 12.58
NMT + matching 61.24 20.53 14.87 17.00 15.81

De→ En NMT implementation of [9] 60.75 19.88 17.59 17.18 19.68
NMT + matching 59.46 18.31 16.84 15.28 18.68

5.2. Robustness Analysis

Table 9 shows the change in performance which occurred by applying the matching
method. The bold scores indicate the cases that showed improvement. In the overall
embedding and model settings, at least half of the test cases increased the scores. Precision
and BLEU were improved up to 0.99 and 0.94. Transformer showed better performance than
LSTM, but LSTM showed more cases that improved their performance. In the comparison
of results between embedding methods, BE showed critically lower performance than RE
and WV embedding.

In the observation, we could confirm that the matching method has more of a chance to
cause positive effects in various models and embedding methods. The better performance
of transformer compared to LSTM is consistently observed in current NMT literature.
The benefit of the matching method is likely to be less positive in the transformer. This
difference may be caused by different densities of information in the sentence representation
generated by the encoder-transformer. The performance of the BE method is seriously
worse than the others, but it is because of the big difference in the unknown word rate.
The rate of commonly used tokens is a maximum of 9.36% in BE, while the others showed
values as high as 48.32%, as shown in Table 10. The scale difference of input elements in
embedded vectors was not a cause, as shown in Table 6.

Figure 9 shows three examples of robust analysis tests. Most translations are seman-
tically almost correct translations in comparison to their reference sentence. However,
the styles of models before and after applying matching are distinguished as red and blue-
colored texts. Even if the semantic meaning is almost equivalent, the matching method
more strongly follows the translation of the reference sentence. This is because the matching
method has the role of restricting the translation to not generate a completely syntactic
form in addition to the original translation models.
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Table 9. Performance in robustness analysis (French to English translation, newstest: newstest-2014,
nc-test:newscommentary-2007).

Best Performance in Each Set
Common-Test Newstest Nc-Test

Embedding Networks prec. BLEU prec. BLEU prec. BLEU

Random LSTM 5.72 10.96 14.08 21.30 16.73 27.29
Embedding LSTM + matching 5.82 11.10 14.25 21.30 16.19 26.74
(RE) Transformer 6.09 11.67 16.24 25.81 17.44 29.19

Transformer + matching 6.09 11.61 16.28 24.96 18.13 29.32

Word2Vec LSTM 5.77 11.12 14.55 21.75 16.67 26.57
(WV) LSTM + matching 5.95 11.45 14.73 21.48 15.82 26.78

Transformer 6.12 11.44 16.30 23.50 17.76 28.25
Transformer + matching 6.10 11.33 16.07 24.60 18.70 28.46

BERT LSTM 4.55 7.54 10.40 12.62 10.90 14.21
Embedding LSTM + matching 4.66 7.62 11.01 12.87 11.06 14.41
(BE) Transformer 2.86 2.49 5.26 2.64 6.19 3.54

Transformer + matching 3.30 1.86 6.25 2.36 6.97 2.74

Table 10. Overlapping rate of sords and tokens between imported embedding dictionary and data
sets for robustness analysis.

Dataset Sentence
RE & WV (50,000 Tokens) BE (119,547 Tokens)

Word Token Word Token
Fr En Fr En Fr En Fr En

Europarl 1,737,355 38.95 48.32 99.71 99.84 7.01 9.35 78.03 89.40
common-test 22,960 87.53 89.49 99.51 99.63 17.88 31.85 79.40 89.86
newstest 3003 81.80 82.39 95.92 96.08 30.44 45.33 74.87 83.07
nc-test 2007 92.17 92.87 98.67 98.65 31.89 48.34 75.26 84.05

5.3. Performance on State-of-the-Art Model

Table 11 shows the BLEU score on the BiBERT model with and without our matching
method. We downloaded the IWSLT’14 De↔ En data from Pytorch (https://github.com/
pytorch/fairseq/blob/main/examples/translation/prepare-iwslt14.sh, accessed on 18
January 2022) and the code from BiBERT github link (https://github.com/fe1ixxu/BiBERT,
accessed on 18 January 2022). Only the matching method was added, and all other progress
of training were the same as baseline. The improvement of performance is observed in
every condition, including the one-way, dual training, and fine-tuning conditions, except
En −→ De with one-way training.

Table 11. Comparison of dual-directional and ordinary (one-way) translation models in [20] including
stochastic layer selection (K = 8) with and without sentence representation mapping on IWSLT’14
De↔ En.

Method
De −→ En En −→ De

Baseline [20] + Matching Baseline [20] + Matching

One-Way (vocab size = 12 K) 37.69 38.13 30.00 29.93
Dual-Directional Training 38.37 38.42 30.30 30.50
+ Fine-Tuning 38.61 38.70 30.45 30.53

https://github.com/pytorch/fairseq/blob/main/examples/translation/prepare-iwslt14.sh
https://github.com/pytorch/fairseq/blob/main/examples/translation/prepare-iwslt14.sh
https://github.com/fe1ixxu/BiBERT
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case sentence BLEU

source No.1 mais ces valeurs sont profondément enracinées en europe et elles doivent être déracinées de nouveau .

1-reference but these values are deeply ingrained in europe , and should be brought out again .

RE+LSTM however , these values are deeply rooted in europe and must be restored . 20.82

RE+LSTM+matching but these values are deeply rooted in europe and must be revived . 28.87

RE+transformer however , these values are deeply rooted in europe and must be further excluded . 20.80

RE+transformer+matching but these values are deeply rooted in europe and they have to be broken again . 30.86

WV+LSTM however , these values are deeply rooted in europe and must be once again . 22.52

WV+LSTM+matching but these values are deeply rooted in europe and they must be once again uprooted . 29.48

WV+transformer however , these values are deeply rooted in europe and must be brought back . 22.52

WV+transformer+matching but these values are deeply rooted in europe and they must be further uprooted . 28.94

source No.2 tout semblait avoir suffisamment bien commencé .

1-reference everything seemed to have started well enough .

RE+LSTM it seems to have got off to a good start . 19.04

RE+LSTM+matching everything seemed well enough to start . 28.22

RE+transformer everything seemed to have begun well enough . 50.00

RE+transformer+matching everything seemed to have started well enough . 100.00

WV+LSTM it all seemed quite well done . 22.72

WV+LSTM+matching everything seemed to be too good . 24.93

WV+transformer everything seemed to have started sufficiently well . 56.23

WV+transformer+matching everything seemed to have started well enough . 100.00

source No.3 taiwan n&apos; a pas bénéficié de subventions étrangères ni d&apos; accès privilégié à certains marchés .

1-reference taiwan did not receive foreign aid or preferential market access .

RE+LSTM taiwan has not benefited from foreign subsidies or privileged access to certain markets . 26.69

RE+LSTM+matching taiwan did not benefit from foreign subsidies or privileged access to certain markets . 19.02

RE+transformer taiwan has not been granted foreign subsidies or privileged access to certain markets . 29.69

RE+transformer+matching taiwan has not had foreign subsidies or privileged access to some markets . 29.91

WV+LSTM taiwan has not received any foreign subsidies or privileged access to certain markets . 29.69

WV+LSTM+matching taiwan has not received foreign subsidies or privileged access to certain markets . 29.91

WV+transformer taiwan has not been receiving foreign subsidies or privileged access to certain markets . 29.69

WV+transformer+matching taiwan did not receive foreign subsidies or privileged access to certain markets . 32.52

Figure 9. Examples of translation from French to English in robustness analysis.

6. Conclusions

In this paper, we raised the issue of inefficiency in training the encoder of NMTs
implemented as a conditional language model. To relax the limit, we introduced sentence
representation matching to force the representations of a source and its corresponding
target sentence to be closely located by adding their distance to a loss function. The impact
analysis showed that source-side layers are more effective in training with lower conflict,
and Hamming distance has stronger pressure than cosine distance. In the grid search, a
2-layer source-side structure with 250 hidden dimensions and Hamming distance showed
the best performance in French to English translation. When translating language pairs
between English, Spanish and German, this setting slightly improved translation quality.
In a more generalized environment using transformer and the various embedding method,
importing constant vectors from explicit resources, the matching method was slightly but
more likely to increase translation performance. Sentence representation matching has
specific patterns with respect to structure, distance, and capacity, but the best setting was in
somewhat intermediate states. For this reason, it requires grid search to apply this method
for more general applications, and the best setting found in this paper can provide a good
initial point to search.

7. Future Work

The simplest approach to control the guiding pressure is to use balancing parameters
to learn the scale of the distance. The approach can effectively change the guiding pressure,
but it is still under the limitation determined by the architectural factors discussed in this
paper. Their combination will provide more fine control of hyperparameters.
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