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Abstract: The aim of this study was to evaluate the potential use of remote and proximal sensing
techniques to identify homogeneous zones in a high density irrigated olive (Olea europaea L.) orchard
subjected to three irrigation regimes (full irrigation, deficit irrigation and rainfed conditions). An
unmanned aerial vehicle equipped with a multispectral camera was used to measure the canopy NDVI
and two different proximal soil sensors to map soil spatial variability at high resolution. We identified
two clusters of trees showing differences in fruit yield (17.259 and 14.003 kg per tree in Cluster 1 and 2,
respectively) and annual TCSA increment (0.26 and 0.24 dm2, respectively). The higher tree productivity
measured in Cluster 1 also resulted in a higher water use efficiency for fruit (WUEf of 0.90 g dry
weight L−1 H2O) and oil (WUEo of 0.32 g oil L−1 H2O) compared to Cluster 2 (0.67 and 0.27 for WUEf

and WUEo, respectively). Remote and proximal sensing technologies allowed to determine that: (i) the
effect of different irrigation regimes on tree performance and WUE depended on the location within the
orchard; (ii) tree vigour played a major role in determining the final fruit yield under optimal soil water
availability, whereas soil features prevailed under rainfed conditions.

Keywords: NDVI; Olea europaea L.; precision orchard management; soil apparent electrical conductivity;
tree water status; unmanned aerial vehicle; water use efficiency

1. Introduction

Water availability is the main limiting factor for the growth and yield of crops in the
Mediterranean region, which is expected to undergo dramatic changes in temperature
and precipitation due to climate change [1,2]. Climate change will also likely increase the
frequency of heat waves and prolonged periods of drought [3,4], inducing uncertainties
about the potential productivity of crops. Irrigation can help to mitigate the impact of
climate change on perennial crops, including olive trees. Although olive trees are drought
tolerant, many studies showed the beneficial effects of irrigation on vegetative growth,
yield components, and oil quality [5–10].

An important aspect in irrigation management is to understand the multiple interac-
tions between water availability and soil properties or canopy vigour, which may potentially
cause variations in yield and vegetative growth. In this respect, site-specific management
of inputs, such as fertilizers and irrigation water, requires the understanding of the spatial
distribution of soil characteristics, tree vigour, and productivity. Homogenous zones within
the orchard for tree vigour and soil properties can be identified by soil sampling protocols
and by monitoring parameters of vegetative growth (e.g., canopy volume increment, trunk
growth rate), albeit at a high cost of money and labor [11,12]. Recently, Moral et al. [13]
developed a predictive model based on soil features to identify homogeneous zones within
olive orchards, but the precision and the accuracy of these maps were strictly related to the
number of soil samples analysed. The use of remote and proximal sensing technologies
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for estimating field variability is becoming more and more common in precision agri-
culture due to their relatively lower cost and the non-invasive approach with respect to
conventional methods [14–16].

Among proximal soil sensing (PSS) technologies, electromagnetic induction (EMI) has
been the most commonly used for the last 20 years [17,18]. Several authors used EMI sensors
to map soil features and homogeneous zones in vineyards and orchards [19–21]. These
sensors measure the apparent electrical conductivity (ECa), which is closely related to soil
texture, coarse fragments, salinity, and moisture [17]. Mobile gamma-ray spectroradiometry
is an additional promising PSS technique for precision agriculture [22–24]. Gamma-ray
spectroradiometry measures natural γ-emissions from the main radionuclides (40 K, 238 U,
and 232 Th) and the total emissions from all elements in the soil depth of the first 0.3–0.4 m.
The concentrations of these γ-rays emitters are strongly related to the mineral composition
of the parent material, but also to clay percentage and superficial stoniness [22]. In the
absence of soil salinity, ECa responds primarily to the amount of clay, moisture, and bulk
density, while gamma-ray spectroradiometry is more influenced by the variation in parent
material mineralogy [14].

Homogeneous zones for precision orchard management can also be identified based
on geometrical and spectral canopy information derived from aerial images. Remote
sensing techniques have recently been shown to be effective in estimating tree vigour and
canopy geometry as an alternative to the on-ground field measurements in orchards and
vineyards [25–29]. In previous studies aerial images and spectral indices were used to
determine the canopy projection in the olive orchard and to derive relationships with soil
and tree structures to be applied in site-specific management [30,31]. Recent studies also
focused on predicting yield based on geometrical and spectral canopy characteristics [32,33].

Despite the advantages provided by the above-mentioned technologies for soil and
crop sensing, different authors suggest a combined use of remote and proximal sensing
data as a much more reliable approach to identify homogeneous zones in orchards and
vineyards [34–36]. Cluster analysis of maps obtained both by soil survey, such as proximal
soil sensing, and by plant water status, such as NDVI, allowed to identify functional homo-
geneous zones (fHZs), corresponding to areas where soil and plant performance showed
limited variability [37,38]. Soil and crop indices have been mainly tested in vineyards in
experiments focused on zoning and precision irrigation management [19,38–42] while few
studies have been conducted in orchards [43–45]. To our knowledge, there is only one study
in which the use of proximal and remote sensing techniques was used to separate manage-
ment zones within an irrigated olive orchard [46]. Moreover, there is little information on
how the interaction between irrigation, tree vigour, and soil properties affects yield and
tree growth in olive. Since water status is one of the most important factors determining
plant performance, we manipulated soil water availability to better define how remote and
proximal sensing can help to manage irrigation.

The objectives of this study were: (i) to evaluate the effect of different irrigation regimes
on tree productivity and growth in different management zones identified using remote and
proximal sensing techniques; (ii) to discriminate the effect of tree vigour (NDVI) and soil
features derived by proximal sensing on fruit yield and vegetative growth under different
conditions of soil water availability.

2. Materials and Methods
2.1. Plant Material and Site

Experiments were carried out in a high density (513 trees per hectare), 17-year old,
irrigated olive orchard at the experimental farm of the University of Pisa, in Venturina
(Italy). The orchard included six cultivars, but the work was carried out only on cv. Frantoio,
which was the most abundant (61% of the total). A complete description of the plant
material and orchard management has been previously published [5,7].

Climatic conditions during the study period were monitored using an iMETOS IMT
300 weather station (Pessl Instruments GmbH, Weiz, Austria). The annual reference evapo-
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transpiration (ET0), calculated according to the Penman-Monteith equation, was 952 mm.
Annual and summer (21 June–22 September) precipitations were 809 and 39 mm, re-
spectively. Cultural practices and monitoring of phenological parameters, including the
estimation of the full bloom date (DOY 148), were performed as previously reported [5,7].

2.2. Irrigation Management and Measurements

The trees were irrigated using a subsurface drip irrigation system (2.3 L h−1 pressure-
compensated drippers spaced at 0.6 m). Irrigation volumes were calculated on the basis of
the effective evapotranspiration (ETc), using a crop coefficient (Kc) of 0.55, 0.60 and 0.65
in July, August and September, respectively. The irrigation period lasted from DOY 188
(7 July) to DOY 274 (1 October), during which fully-irrigated (FI) and deficit-irrigated (DI)
trees received a total volume of 2160 and 970 m3 ha−1, respectively, whereas the rainfed
(RF) ones received only precipitation. Fertigation was used to supply mineral nutrients in
spring before irrigation treatments started.

Tree water status was monitored at three dates (DOY 187, DOY 218 and DOY 245) by
measuring the stem water potential (SWP) on six trees per irrigation treatment (three trees
per each cluster-irrigation combination, as explained in Section 2.5). SWP was measured
after blocking transpiration of leaves inserted near the main scaffolds of the tree [47].

Vegetative growth was evaluated as the annual increment in the trunk cross-sectional
area (TCSA). The TCSA was calculated from the circumference of the trunk at 0.40 m
from the ground, measured on DOY 11 and 356. Immediately before harvest, 100 fruits
were randomly sampled from around the canopy of three trees per each cluster-irrigation
regime combination to measure mesocarp and endocarp fresh and dry weight. At harvest
(DOY 285), each tree was harvested by hand and the final fruit yield was weighed. The
oil content of the fruit mesocarp of 20 fruits per tree previously sampled for fresh weight
determinations was measured at harvest by nuclear magnetic resonance Oxford MQC-23
analyzer (Oxford Analytical Instruments Ltd., Oxford, UK). The mesocarp was cut in small
pieces (2–5 mm) and oven-dried at 70 ◦C for 48 h. The oil yield of individual trees was
calculated as previously reported [48]. Water use efficiency for fruit (WUEf) and oil (WUEo)
was calculated as the ratio between fruit yield (dry weight) or oil yield, respectively, and
annual ETc within each irrigation treatment.

2.3. Multispectral Imagery Acquisition and Analysis

Images were acquired one day before the beginning of the irrigation differentiation
(DOY 187) using a multispectral camera (Tetracam ADC-lite, Tetracam, Inc., Gainesville, FL,
USA), mounted on a S1000 UAV octocopter (DJI, Shenzhen, China) able to fly autonomously
over a predetermined waypoint. NIR-RG images were recorded in the visible red (R), green
(G), and near-infrared (NIR) domain with nominal wavelengths of 520–600, 630–690, and
760–900 nm, respectively.

Images were acquired at noon under clear sky conditions, the flight altitude was 70 m
above ground level (AGL), as reported by Caruso et al. [25]. Before the UAV flight, a set of
eight ground control points (GCPs) were placed in the orchard and georeferenced using
a Leica GS09 real-time kinematic GPS (Leica Geosystems A.G., Heerbrugg, Switzerland).
Multispectral images were first mosaicked using Autopano Giga 3.5 Software (Kolor SARL,
Challes-les-Eaux, France), then georeferenced and orthorectified using the ground reference
points (ArcGIS software, ESRI, Redlands, CA, USA) ad reported by Caruso et al. [25]. The
NDVI index [49] was calculated using the map algebra technique implemented in ArcGIS
software (ESRI, Redlands, CA, USA) using the following equation:

NDVI = (NIR − RED)/(NIR + RED)

where NIR and RED are the reflectance values in the near-infrared (630–690 nm) and red
(760–900 nm) bands, respectively.
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2.4. Proximal Soil Sensing and Soil Analysis

Two different proximal soil sensors (PSS) were used to map soil spatial variability at
high resolution. The proximal sensors used were: (i) EM38-Mk2 electromagnetic induction
sensor (Geonics Ltd., Mississauga, ON, Canada); (ii) “The Mole”, gamma-ray spectro-
radiometer (Soil Company, Groningen, The Netherlands). The EM38-Mk2 measures the
apparent electrical conductivity (ECa) of the soil at two depth ranges of about 0–0.75 (ECa1)
and 0–1.50 m (ECa2) [50]. Soil physical properties, such as texture, stoniness, bulk den-
sity [51], soil moisture and water availability [52,53], soil depth [54], as well as organic
matter [55] all affect ECa. “The Mole” spectroradiometer continuously measures the nat-
ural gamma-ray emission coming from the first 0.3–0.4 m of the soil and rocks, through
a Cesium Iodide scintillator crystal [56]. The gamma-ray spectra were analyzed by a Full
Spectrum Analysis (FSA), using “The Gamman” software (Medusa Systems, The Nether-
lands) [22]. This method identifies and deletes data outliers, as well as processes gamma-ray
spectrum for calculation of individual nuclide concentrations (40 K, 238 U, 232 Th) and total
counts (TC_gamma) in Bq·kg−1. TC_gamma depicts the total count measured by the CsI
scintillator for the whole range of energy bands. Proximal gamma-radiometrics has been
used to survey topsoil features, such as texture [57], gravel content [22], potassium [58]),
and organic carbon [59]. Both the gamma-ray spectroradiometer and EM38-Mk2 were man-
ually driven (without using a tractor or ATV), since the size of the experimental field was
relatively small. The sensors were supplied with GPS and rugged PC for data-logging. Soil
sensing was performed continuously along each tree row, with the sensors at 0.2 m height
above the soil surface, to minimize the signal attenuation. The data were interpolated across
the whole area using ordinary kriging (OK), which is widely used or the interpolation of
soil proximal sensing data [14,17,19]. The OK parameters, namely lag size, number of lags,
and maximum range were selected in order to minimize the estimation error.

Six soil profiles were dug to account for the variability across the field, in terms of
proximal soil sensing maps and irrigation management. The soil profiles were described
following the international guidelines for soil description [60] and classified according to
the Word Reference Base for Soil Resources [61]. Soil samples were collected from several
genetic horizons of each soil profile. The samples were air-dried, sieved to 2.0 mm, and
analysed for physical and chemical properties using standard laboratory methods. In
particular, soil texture was determined by the Micromeritics Sedigraph analyser [62], total
organic C (TOC) and total N (TN) were measured by dry combustion with a ThermoFlash
2000 CN soil analyser, after removal of carbonates by HCl 10%. The total equivalent
CaCO3 content was calculated from the difference between the total C measured by dry
combustion in the untreated soil (mineral C + organic C) and in the HCl-treated soil
(organic C). Soil pH was measured potentiometrically in a 1:2.5 soil–water suspension,
whereas electrical conductivity was measured in a 1:2 soil–water filtered extract after
2 h shaking and overnight standing. Available water capacity (AWC, in cm cm−1) was
calculated for all the soil horizons using the pedotransfer function of Saxton and Rawls [63]
implemented in the software SPAW (U.S. Department of Agriculture, Washington D.C.,
MD, USA).

2.5. Experimental Design

The orchard consisted of 12 plots, each containing 12 trees arranged in three rows of
four trees, with the only exception of one plot of two rows [5,6]. Three plots were fully
irrigated (FI), six plots were deficit irrigated (DI), whereas the remaining three did not
receive any irrigation (RF, rainfed) (Figure 1).
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Figure 1. False colour orthophoto of the olive orchard located at the experimental farm of the
Department of Agriculture Food and Environment of the University of Pisa (43◦10′ N; 10◦36′ E). The
canopies of the olive trees cv. Frantoio are in green (Cluster 1) or light blue (Cluster 2). The trees of
other cultivars were not used in the experiment.

The orchard was subdivided into two homogeneous zones (C1 and C2) by k-means
clustering, using the Hill-Climbing algorithm [64] of the SAGA-GIS software. The input
data to calculate k-means clustering were: ECa1, ECa2, TC_gamma, and NDVI. Such
homogeneous zones simulated two prescription areas for site-specific management (in
particular precision irrigation) of the olive orchard (Figure 2). The selection of only two
clusters was driven by the small surface of the experimental field and by the relatively
homogeneous soil.

2.6. Statistical Analysis

The SWP was measured in six trees per irrigation regime (three trees per cluster-
irrigation combination) and the means were separated by the least significant differences
(LSD p > 0.05) after analysis of variance (ANOVA). An exploratory correlation analysis
was performed between NDVI, soil proximal sensing (ECa1, ECa2, TC_gamma), fruit
yield, and TCSA increment, to highlight the statistical relationships between the main
parameters used for this study. Since most of them showed non-parametric distribution,
the Spearman’s ranks correlation test was used. In particular, correlation models within
the different irrigation regimes (FI, DI and RF) have been tested by linear regressions. Full
factorial ANOVA was carried out to test the effects of the irrigation regimes categorial
factors (FI, DI, RF) and homogeneous zones (C1 and C2), as well as the combinations of
these factors. Post-hoc LSD Fisher test was used to determine the significant differences
between the means of the analysis of variance. To determine the influence of PSS data and
NDVI on fruit yield and annual TCSA increment predictions, forward-stepwise multiple
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regressions were calculated for each irrigation treatment (FI, DI, RF). The independent
variables used for the regressions were ECa1, ECa2, TC_gamma, and NDVI. The selection
of variables by the forward-stepwise regression was carried out on the basis of F-to enter
of 3, to avoid a nonsignificant contribution of some variables in the regression. Statistical
analyses were performed with STATISTICA 7.0 (StatSoft Inc., Tulsa, OK, USA).
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3. Results
3.1. Proximal Soil Sensing and Profile Description

The soil apparent electrical conductivity ranged between 21.6 and 48.0 mS m−1 in the
0–0.75 m soil profile (ECa1) and between 33.5 and 55.2 mS m−1 considering a deeper soil
volume (ECa2, about 0–1.50 m) (Figure 3). The mean values of ECa1 and ECa2 for the entire
field were 32.7 and 41.6 mS m−1, respectively. Higher values of ECa were measured on the
South and East side of the field.

Low variation of gamma total counts (TC_gamma) was measured by gamma-ray spec-
troscopy. The values ranged between 376 and 442 Bq kg−1 and indicated a homogeneous
mineralogy of the soil parent material. These TC_gamma values were similar to those
measured in other soils developed in mixed fluvial deposits of Central Italy [22]. The same
study measured values around 250–300 Bq kg−1 in soils developed on calcareous rocks and
550–600 Bq kg−1 in soils on feldspathic sandstones [22].

The maps of radionuclides contribution (40 K, 232 Th, 238 U) showed low variability
of the values and a patchworked pattern, which made them unsuitable for further statistical
analysis. For this reason, the radionuclide maps were not used for the next step of data
analysis. Although the variability of the absolute TC_gamma values was low, the map
(Figure 3) showed an evident area with lower values (about 380 Bq kg−1) in the northern
part of the field due to surficial stoniness, characterized by about 10–15% of medium and
coarse gravel (1–6 cm size). Surficial stoniness was virtually absent in the rest of the orchard.

Two of the six soil profiles were described in this gravelly area (P1 and P2), and they
showed the presence of coarse fragments (from 2 to 12%) up to a depth of 0.90 m, whereas
the other profiles showed coarse fragments ≤2% only in the Ap horizons. Table 1 shows
the two extremes of the soil spatial variability, characterized by the profiles P1 (gravelly
area, lower TC_gamma, lower ECa) and P4 (not gravelly area, higher TC_gamma, higher
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ECa). As a result, the field was characterized by deep (1.5 m) and loamy soils, with a slight
increase in clay for illuviation in deep horizons (+6%). Thus, it was classified as Calcaric
Luvisol (Loamic, Profondic) according to the international WRB classification [61]. The
profiles were similar for other characteristics: loamy texture (tending to loamy-clay in deep
Bt horizons), low calcium carbonate content (from 2 to 2.5%), sub-alkaline pH (8–8.3) and
absence of salinity. The organic carbon (TOC) of the topsoil (Ap1 horizons) varied from 9
to 37 g kg−1. The TOC of the subsoil horizons varied between 6.5 (deeper Bt horizons) and
approximately 10 g kg−1, and the differences between profiles were minimal. Total nitrogen
showed the same pattern of TOC, the C/N ratio was relatively stable (approximately 10).
Although the soil texture and chemical parameters of the described profiles were quite
homogeneous, the different content of the coarse fragments influenced the modelling of
the soil available water capacity (AWC).

Figure 3. The maps obtained by the soil proximal sensing, and the location of the soil profiles
(P1–P6, black dots). The left and central maps showed the apparent electrical conductivity (ECa) at
two reference depths, about 0–0.75 (ECa1) and 0–1.50 m (ECa2). The map on the right showed the
gamma-ray total counts (TC_gamma) of the topsoil, about 0–0.30 m. The lower values of TC_gamma
in the northern part of the field correspond to the area with higher surficial stoniness.

According to the pedotransfer function of Saxton and Rawls [63], coarse fragments
have a negative coefficient, and therefore tend to decrease AWC. For this reason, soil profiles
with 10–15% of gravels showed lower AWC (115 mm m−1, for both the profiles) than the
other profiles with gravels ≤2% (AWC from 130 to 141 mm m−1). The soil profiles also
differed in redoximorphic features, which indicated the depth of temporary waterlogging
due to the slow deep drainage (stagnic properties). In particular, the soils of the northern
part of the field, characterized by slightly lower ECa and TC_gamma (P1 and P2) showed
stagnic properties starting at 1.15 or 1.30 m deep. In contrast, the soils characterized
by higher ECa and lower TC, in particular in the southern side of the field, showed
stagnic properties starting around 0.90–1.00 m deep. Although the difference of 0.15–0.40 m
regarding stagnic properties depth is apparently similar, it could influence the water
availability for plants. Water saturation at a depth of 0.9–1.0 m for a certain period of the
year does not negatively affect root oxygenation but can provide water for plants for a
slightly longer time than soil with deeper stagnic properties.
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Table 1. Description of the benchmark profiles which defined the two areas of the field, gravelly
(P1) and not gravelly (P4). Legend: Ap1, surface horizon subjected to ploughing; Ap2, sub-surface
horizon interested by deep ploughing; Bt, B horizon with clay illuviation process; Btg, B horizon
with clay illuviation process and redoximorphic mottles due to temporary waterlogging (stagnic
properties); CF, Coarse fragments; SOC, Soil Organic Carbon; TN, Total nitrogen; AWC, Available
Water Capacity.

Cluster 1
(Profile 1)

Soil Horizons

Ap1 Ap2 Bt Btg

Depth (m) 0.8 0.40 1.00 1.50
Clay (dag kg−1) 13.9 22.5 17.7 22.1
Silt (dag kg−1) 45.5 33.2 44.4 39.3

Sand (dag kg−1) 40.6 44.3 37.9 38.6
CF (%vol) 2 2 0 0

CaCO3 tot (dag kg−1) 2.4 2.5 2.3 2.1
SOC (dag kg−1) 31.4 11.0 9.0 7.2

TN (g kg−1) 24.4 9.8 9.7 7.7
AWC (mm) 12 45 84 70

Cluster 2 Soil Horizons

(Profile 4) Ap1 Ap2 Bt Btg

Depth (m) 0.10 0.35 0.90 1.15
Clay (dag kg−1) 18.4 16.1 16.8 24.7
Silt (dag kg−1) 37.3 35.4 36.9 35.6

Sand (dag kg−1) 44.3 48.5 46.3 39.7
CF (%vol) 12 12 5 0

CaCO3 tot (dag kg−1) 2.4 2.3 2.3 2.3
SOC (dag kg−1) 9.0 13.1 9.0 6.8

TN (g kg−1) 9.1 13.0 8.9 7.5
AWC (mm) 11 28 66 33

3.2. Irrigation and Cluster Effect on Tree Water Status, Yield and Vegetative Growth

One day after the beginning of the irrigation period (DOY 187) the tree water status was
the same across all irrigation regimes and clusters, whereas significant differences in SWP
between irrigation treatments were measured at DOY 219 (−1.49, −2.49 and −3.65 MPa in
FI, DI and RF trees, respectively) and DOY 259 (−1.57, −2.65 and −3.89 MPa, respectively)
(Table 2). Similar trends were measured in both clusters without any significant interaction
between irrigation treatment and cluster on tree water status (data not shown).

The fruit yield per tree and the TCSA increment were affected by irrigation, canopy
NDVI, and soil ECa1. Irrigation affected both fruit yield (23.890, 15.745 and 8.040 kg per
tree in FI, DI, and RF trees, respectively) and the TCSA increment (0.37, 0.23 and 0.16 dm2,
respectively) (Figure 4). The two clusters obtained using both remote (NDVI) and proximal
(ECa1) sensed indices showed differences in fruit yield (17.259 and 14.003 kg per tree in
Cluster 1 and 2, respectively) and annual TCSA increment (0.26 and 0.24 dm2, respectively)
(Figure 4). The effect of irrigation on tree productivity and vegetative growth was different
between the two clusters. The trees under deficit irrigation grown in the orchard area
associated to Cluster 1 showed yields similar to those measured in fully irrigated trees of
Cluster 2. Similarly, rainfed trees in Cluster 1 had yields similar to those of trees under
deficit irrigation in Cluster 2. The vegetative growth showed significant differences between
all the irrigation-cluster combinations (Figure 4).
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Table 2. Stem water potential measured on olive trees grown in different orchard zones identified
as Cluster 1 (C1), and Cluster 2 (C2) and subjected to full irrigation, deficit irrigation and rainfed
conditions. Values are means± standard deviation of six trees per irrigation treatment and three trees
per each cluster-irrigation regime combination. Different letters indicate significant differences within
each cluster after ANOVA (p < 0.05). DOY 187: one day before the beginning of the differentiation of
the irrigation treatments.

Cluster Irrigation
Stem Water Potential (MPa)

DOY 187 DOY 219 DOY 259

C1 + C2 Full −1.43 ± 0.07 −1.49 ± 0.06 a −1.57 ± 0.06 a
Deficit −1.39 ± 0.09 −2.49 ± 0.13 b −2.65 ± 0.07 b

Rainfed −1.46 ± 0.07 −3.65 ± 0.09 c −3.89 ± 0.11 c

C1 Full −1.43 ± 0.08 −1.50 ± 0.09 a −1.58 ± 0.09 a
Deficit −1.43 ± 0.10 −2.55 ± 0.05 b −2.64 ± 0.11 b

Rainfed −1.42 ± 0.08 −3.60 ± 0.05 c -3.88 ± 0.08 c

C2 Full −1.42 ± 0.08 −1.48 ± 0.03 a −1.56 ± 0.03 a
Deficit −1.38 ± 0.12 −2.45 ± 0.13 b −2.63 ± 0.00 b

Rainfed −1.50 ± 0.05 −3.70 ± 0.10 c −3.90 ± 0.15 c

Figure 4. Fruit yield and trunk cross sectional area (TCSA) increment in olive trees subjected to
different irrigation regimes (Full irrigation, FI; deficit irrigation, DI; rainfed conditions, RF) and
located in different orchard zones (Cluster 1, C1; Cluster 2, C2). Histograms represent the average
of 18 (FI), 40 (DI), 15 (RF), 33 (C1), 39 (C2), 7 (FI-C1), 11 (FI-C2), 17 (DI-C1), 23 (DI-C2), 9 (RF-C1),
6 (RF-C2) trees per each irrigation treatment and cluster combination. Different letters indicate
significant differences of LSD test after ANOVA (p < 0.05).

The highest values of WUEf and WUEo were measured in DI trees in Cluster 1, whereas
in Cluster 2 the WUE (both fruit and oil) increased with the amount of water used by the
tree (Table 3). Differences in WUE between clusters emerged within each irrigation regime
and became increasingly evident as the level of water deficit increased (Table 3).
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Table 3. Water use efficiency of fruit (WUEf) and oil (WUEo) production measured in olive trees
grown in different orchard zones (Cluster 1, C1, and Cluster 2, C2) and subjected to full irrigation
(FI), deficit irrigation (DI) and rainfed conditions (RF). WUEf and WUEo are the ratio between fruit
(dry weight) or oil yield, and annual crop evapotranspiration (ETc).

Irrigation
WUEf (g Dry Weight L−1 H2O) WUEo (g Oil L−1 H2O)

C1 + C2 C1 C2 C1 + C2 C1 C2

FI 0.91 0.95 0.88 0.36 0.38 0.35
DI 0.97 1.15 0.78 0.42 0.49 0.34
RF 0.66 0.82 0.50 0.27 0.34 0.19

3.3. Comparing Proximal and Remote Sensing Indices against Tree Performances

Significant correlations were evident between NDVI and fruit yield (r = 0.54) and
between NDVI and the annual TCSA increment (r = 0.33) when the trees from all irrigation
treatments were considered together (Figure 5). Among the soil indices derived from soil
sensors, only ECa2 showed a significant, albeit lower, correlation with fruit yield (r = 0.29).
Within each irrigation treatment, the highest yield was measured in the most vigorous
trees (highest canopy NDVI values) grown in areas with the highest soil ECa1 values, even
though a different impact of NDVI and soil ECa1 was observed according to the irrigation
treatment (Figure 6).

Figure 5. Nonparametric correlation coefficients (Spearman’s ranks) between NDVI, tree parameters
(fruit yield and annual TCSA increment) and soil indices (ECa1, ECa2 and TC_gamma) derived by
proximal sensing sensors at the experimental site. In bold, the coefficient significant for p < 0.01
(n = 75, all irrigation treatments).

In particular, the relationship between NDVI and fruit yield and between NDVI and
the annual TCSA increment in fully-irrigated trees produced r values of 0.71 and 0.77,
respectively, whereas ECa1 showed lower, but still significant correlations (r = 0.62 for
both fruit yield and annual TCSA increment) (data not shown). Different results were
obtained under rainfed conditions, where the ECa1 showed a higher level of correlation
(r = 0.67) with fruit yield than that obtained for the relationship between NDVI and fruit
yield (r = 0.54) (data not shown).
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Figure 6. The relationship between soil ECa1 and the NDVI of trees grown in the soil area under full
irrigation (A,D), deficit irrigation (B,E), and rainfed conditions (C,F). Each point represents one tree
(and the respective allocated soil area). Coefficients of determination were calculated within each irri-
gation treatment. Regression equations: NDVI = 0.42 + 0.005 ECa1 (A,D); NDVI = 0.44 + 0.004 ECa1

(B,F); NDVI = 0.44 + 0.003 ECa1 (C,F).

A stepwise regression analysis was used to highlight the impact of NDVI, ECa1, ECa2,
and TC_gamma on fruit yield and TCSA increment prediction within each irrigation regime
(Table 4; Table 5). The regression results show that, under full irrigation, the only variable
predictive of yield and TCSA increment was NDVI. Under deficit irrigation, soil spatial
variability, determined by ECa maps, also played an important role on yield and TCSA
increment, although NDVI remained the most important variable for the prediction of
these olive tree parameters. Under rainfed conditions, NDVI was not useful to predict
yield, whereas soil features, defined by ECa1 and TC_gamma, on yield, became significant
explanatory variables in the multiple regression. On the other hand, for the prediction of
TCSA increment, NDVI remained a significant explanatory variable, together with ECa1
and ECa2 under rainfed conditions.

Table 4. Results of forward stepwise regressions calculated for the fruit yield and the three irrigation
regimes (FI: Full irrigated; DI: Deficit irrigation; RF: Rainfed, no irrigation). Legend: B, coefficient of
the regression; p-value, value of the t-test of the coefficient, R2

adj, adjusted R2; F, F-test value of the
multiple regression and degrees of freedom; SEP, Standard Error of Prediction.

Irrigation Predictive
Variables B p-Value

(t-Test) R2
adj F (df) p-Value

(Regression)
SEP

(kg/Tree)

FI
Intercept −36.7 0.021

0.48 16.5 (16) 0.001 3.92NDVI 103.2 <0.001

DI
Intercept −48.1 <0.001

0.61 31.9 (37) <0.001 2.96NDVI 85.5 <0.001
ECa1 0.5 0.002

RF
Intercept 100.5 0.038

0.55 10.7 (14) 0.001 1.98ECa1 0.54 0.001
TC_gamma −0.26 0.035
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Table 5. Results of forward stepwise regressions calculated for the trunk cross sectional area increment
and the three irrigation regimes (FI: Full irrigated; DI: Deficit irrigation; RF: Rainfed, no irrigation).
Legend: B, coefficient of the regression; p-value, value of the t-test of the coefficient; R2

adj, adjusted R2;
F, F-test value of the multiple regression and degrees of freedom; SEP, Standard Error of Pre-diction.

Irrigation Predictive
Variables B p-Value

(t-Test) R2
adj F (df) p-Value

(Regression)
SEP

(dm2)

FI
Intercept −0.12 0.250

0.57 23.8 (16) <0.001 0.027NDVI 0.85 <0.001

DI
Intercept −0.15 0.017

0.49 20.1 (37) <0.001 0.018NDVI 0.51 <0.001
ECa2 0.01 0.059

RF

Intercept 0.07 0.636

0.61 9.5 (13) 0.001 0.02
NDVI 0.43 0.033
ECa1 0.01 0.016
ECa2 −0.01 0.072

4. Discussion
4.1. Irrigation and Cluster Effect on Tree Performance

Increasing volumes of irrigation increased yield and TCSA of olive trees, in agreement
with the large literature on the subject [5,7–9,48]. Differences between irrigation treatments
were significant regardless of the different soil types in the orchard, as expected. Previous
studies on field crops also reported that, although soil properties were major sources of plant
variability, water management and fertilization had greater impact on vegetative activity
than soil features [34,65]. Precision management of olive orchards aims at optimizing the
water use efficiency in terms of fruit (WUEf) and oil (WUEo) yield per liter of consumed
water. We determined the impact of the three irrigation regimes on tree productivity in the
two clusters identified by the combined use of soil proximal and vegetative remote sensing.
The values of WUEo measured in our work were much higher than those measured by
Fernandes-Silva et al. [9] in a similar experiment carried out in Portugal (WUEo of 0.19,
0.16 and 0.07 g L−1 for T2-100% ETc, T1-30% ETc and T0-rainfed, respectively), but similar
to those reported by Iniesta et al. [8] (WUEo of 0.24 and 0.30 for full and sustained deficit
irrigation, respectively). We showed differences in either WUEf or WUEo within the
orchard. The higher tree productivity measured in Cluster 1 also resulted in a higher
WUEf (0.90) and WUEo (0.32) compared to Cluster 2 (0.67 and 0.27 for WUEf and WUEo,
respectively). In particular, in Cluster 1 the WUEf and WUEo of FI trees was 0.98 and 0.39,
respectively, whereas in Cluster 2 the trees subjected to the same irrigation regime showed
values of 0.90 and 0.36 for the same parameters, respectively. Differences in WUEf and
WUEo in the two clusters were more evident under deficit irrigation (WUEf and WUEo
of 1.06 and 0.38, respectively, in Cluster 1, and 0.72 and 0.31 in Cluster 2), and rainfed
conditions (WUEf and WUEo of 0.66 and 0.21 g L−1, respectively, in Cluster 1, and 0.40
and 0.15 g L−1 in Cluster 2), indicating the increasing impact of the cluster characteristics
on tree productivity as irrigation volumes decreased. In a recent study carried out in a
high density olive orchard the two management zones identified using a similar approach
(combining proximal and remote sensing) showed significant differences in fruit yield only
in one out of three years [46]. The authors reported that the lack of differences in those two
years was due to a different irrigation management (timing and amount of the applied
water) in the two zones.

4.2. Comparing Proximal and Remote Sensing Indices against Tree Performance

The ability of proximal and remote sensing in estimating tree growth and yield has
been poorly investigated in olive growing so far. Few previous studies used UAV imagery
to estimate fruit yield and vegetative growth of olive trees [25,26,32,33]. In the current work,
we observed a general (all irrigation treatments) linear relationship between NDVI and fruit
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yield (r = 0.54), similarly to previous findings in a hedgerow olive orchard [26]. In that same
study, there was no relationship between NDVI and fruit yield in the year when abiotic
(spring frost) and biotic (olive fruit fly) factors dramatically affected final fruit yield [26]. A
specific response to location and growing season in the NDVI-fruit yield relationship also
appeared when results obtained in similar experiments were compared [32,33], highlighting
the limit of the fruit yield prediction carried out several months before harvest. A lower
level of correlation (r = 0.33) was observed between NDVI and the TCSA increment when
all the trees from the three irrigation treatments were considered together. In a previous
study carried out using the same cultivar, Caruso et al. [25] reported a combined effect of
tree water status and canopy NDVI on the final TCSA increment. Soil indices derived by
proximal sensing (ECa1, ECa2, and TC_gamma) were less able to predict fruit yield (r = 0.18,
0.29 and 0.01, respectively) and TCSA increment (0.02, 0.15 and 0.01) when all irrigation
treatments were considered together. A wide range of correlation coefficients between ECa
and fruit yield (R2 comprised between 0.01 and 0.94) was reported in previous studies
carried out on different cultivars of apple trees [44,66]. In a previous study carried out in a
commercial olive orchard, significant relationships between the soil characteristics (organic
matter, B and Ca) derived by a systematic sampling grid and the fruit yield were measured
only in one of the two experimental years [67].

To discriminate the impact of proximally (soil) and remotely (tree) determined indices
on tree parameters (yield and TCSA increment) under different irrigation regimes we
used a stepwise multiple regression analysis. Under full irrigation conditions, the NDVI
was the only variable able to describe the variability in fruit yield and vegetative growth,
whereas under rainfed conditions the soil parameters (ECa1, ECa2 and TC_gamma) were
identified as the only factors affecting yield. Interestingly, under deficit irrigation, both tree
(NDVI) and soil (ECa1 and ECa2) parameters were identified as factors contributing to the
measured yield parameters. In a similar study in an irrigated vineyard, Terrón et al. [68]
also reported high correlations between NDVI and soil ECa, but such a relationship was
strongly dependent on the growing season and the irrigation regime. Therefore, the role
of soil spatial variability was much more important as water deficit became more severe,
whereas in cases when water availability was high due to rains or irrigation, the variability
of soil characteristics played a less important role on vegetative growth. Priori et al. [69]
showed that the effects of soil features on grape and wine peculiarities were much more
evident during dry years, whereas rainy summers tended to hide this variability in a
rainfed vineyard.

5. Conclusions

We showed that remote and proximal sensing technologies allowed to determine
that the effect of different irrigation regimes on tree performance and WUE depended
on the location within the orchard (Cluster 1 and Cluster 2). The second finding of this
study concerns the major role of tree vigour in determining the final fruit yield under
optimal soil water availability, whereas soil features become the most important factors
under rainfed conditions. Since water availability in the Mediterranean climate is becoming
increasingly limited, this information may be crucial to optimize the water management
through site-specific irrigation protocols. They should be considered preliminary, as the
investigation was done over one growing season only. Furthermore, since olive trees are
subject to alternate bearing, long-term studies are needed to evaluate the stability of the
orchard zone effects on yield and tree growth in high- (“on-year”) and low- (“off-year”)
yield crop years.
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