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Featured Application: The macro—element formulated in the study can be implemented in any
FE-based software for the static (quasi-) and dynamic analysis of masonry structures. It assures
an attractive computational cost and accuracy level with respect to standard continuous FE mod-
els.

Abstract: A Finite Element (FE) based macro-element is described for the mechanical response of
masonry structures within different ranges of analysis. The macro-element is composed of discrete
rigid quadrilateral FE plates whose adjoining interfaces are connected through FE trusses. It allows
representing both elasticity and strength orthotropy, full material nonlinearity and damage through
a scalar-based model. The possibility of coupling with a so—called FE? (multi-scale) strategy is also
addressed. Validation of the macro—element is conducted within linear static, vibration, and cyclic
(nonlinear) problems, in which both static and dynamic ranges are explored. Results are compared
with those retrieved from traditional FE continuous models. Advantages are highlighted, as well as
its robustness to cope with convergence issues and suitability to be applied within more general
and larger—scale scenarios, such as the analysis of anisotropic materials subjected to static and dy-
namic loading. Formal details are given for its reproducibility by academics and practitioners—
eventually within other FE platforms—as the improved running times may be of utmost importance
in dynamic problems or highly nonlinear (material) quasi—static analysis.

Keywords: masonry; discrete model; macro—element; multi-scale; vibration; non-linear cyclic
analyses

1. Introduction

Masonry is a phenomenological complex material due to the elastic and strength an-
isotropies, its well-marked nonlinear response in tension, compression, and shear re-
gimes [1], and due to the potential damage—induced anisotropy. Experimentation reveals
the difficulty of predicting the mechanical response of masonry [2]. Such difficulties are
consistent with the substantial number of works developed during the last decades aim-
ing the assessment of masonry structures. These can be grouped within simplified or ad-
vanced approaches [3-5].

In the scope of structural analysis for masonry buildings, the prevailing design rules
or analytical approaches are the most useful for practitioners, despite the possible unreal-
istic or conservative outcomes [6]. Other simplified procedures, such as the story—mecha-
nism [7] and the equivalent frame-based models [8-10], can be found; in hand with the
keen development and improvement of macro—elements that constitute the geometric fea-
tures of masonry structures (such as walls, piers, and spandrels) [11-15]. The reduced
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degrees—of-freedom make these suitable for the study of large-scale and regular struc-
tures. Yet, these suffer from a macro—element discretisation bias, demand proper strength
criteria for each macro-element type, and hardly consider out—of-plane failure modes.
More suitable and yet conceptually simple procedures, such as the rigid-body approaches
[16,17] or the kinematic methods [18-22], are useful to supply closed—form solutions un-
der dynamic excitations, although are still overly complex for walls subjected to two-way
bending.

In this context, the need for more general methods encouraged the development of
advanced numerical strategies, such as the Discrete Element Method (DEM) and the Finite
Element Method (FEM) [23]. DEM presents several advantages since allows one to repre-
sent masonry as a discontinuous media, in which masonry units are considered as the
ensemble of distinct bodies connected by contact surfaces (joints). Since the first DEM
model proposed by Cundall and Hart [24], and the discontinuous deformation analysis
(DDA) introduced by Shi and Goodman [25], several studies have been introduced with
masonry as a specific target [26]. DEM is widely applied to simple blocky structures [5];
for instance, in the analysis of arches to assess the collapse load [27], the static and dy-
namic analysis of masonry walls [2,28-33], and the rocking motion of stone blocks [34].
Software dedicated to this formulation exists, see [35,36]. Although DEM unfolds inherent
advantages, the modelling of three—dimensional complex or large structures, with a high
number of block elements, can make the computational time unacceptable. Besides, sim-
plifications concerning the mesh discretisation may compromise the accuracy and, there-
fore, may be taken carefully. As stated by Lemos [26], the accuracy for the out—of—plane
study of masonry is quite dependent on the number of contact points in the thickness
direction. Regardless of the latter, DEM is still rarely applied for three-dimensional struc-
tures within a dynamic analysis.

To what concerns FEM, its overall use deserves wide acceptance from the scientific
community [4]. FE-based models have a broad range of applications because they can be
employed either in simple or complex geometric structural configurations, and either
within static or dynamic problems. These are typically classified according to the followed
modelling strategy, namely: (i) direct numerical simulation or micro-modelling approach;
(if) macro-modelling approach; and (iii) multi-scale computational approach. In the di-
rect numerical simulation, both masonry components (units and mortar joints) are explic-
itly represented. Both in— and out-of—plane orthotropic nonlinear behaviour can be repro-
duced, but long processing times are expected, hence being only recommended for limited
size structural problems [26,37-45]. Macro-modelling approaches tend to be adopted in
the study of large-scale structures [46,47]. Masonry is modelled as an equivalent homo-
geneous media and damage is smeared out over a mesh region (the so—called localisation
band), which goes against how it is generally found in masonries, i.e., concentrated or
distributed following clear failure patterns [5,19]. Multi-scale FE approaches (usually
two-scale or FE?) are in—between the latter modelling schemes. Different scales of analysis
are directly employed to describe the mechanical behaviour of the media, often provided
by a homogenisation-based procedure [45,48-52] at the foregoing scale. Although very
promising, the use of full-continuum FE strategies at both scales is computationally pro-
hibitive when material nonlinearity is accounted [53]. In-depth (formulation) assump-
tions that allow decreasing such cost with acceptable accuracy are certainly of interest, as
recently proposed in [54-56].

The strong literature background makes FE models a popular built-in method for
structural analysis. Furthermore, the increase of computational processing power —notic-
ing the upcoming quantum computing—may allow its scalability to larger and larger
scales. Nonetheless, the computational cost in the dynamic range is still prohibitive and
both numerical instabilities and convergence issues are contentious in the quasi-static
range, as when modelling laminar structures composed of materials with highly nonlinear
behaviour. Similarly, assumptions that offer the possibility of using simplified (still accu-
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rate) FE models are important as they allow lessening the required complexity of prob-
lems. From a logical extent, the inherent advantages will be fully explored if the coarser
scale of analysis is adopted, i.e., the so—called macro—modelling. The study of structures
with larger dimensions may allow the representation of the material using a broader do-
main that, in some cases, can be enough to catch the phenomenological features of interest.
The underlying assumption is that the interaction between brick units and mortar joints
can be neglected for the global structural behaviour, hence valid if the difference between
macro— and meso-scales is sufficiently large. It is usually referred that a ratio (character-
istic lengths) between 10 to 100 is questionable for periodic masonry [57]. The hetero-
genous masonry media is then replaced by an equivalent homogeneous material, in which
the constitutive relation is taken as an average one. This requires complex phenomeno-
logical formulations to reproduce material orthotropy and to follow the damage onset and
propagation. In this endeavour, continuous FE-based macroscopic strategies are the most
spread in the literature, in which two frameworks have arisen to catch failure: using dis-
continuities for the explicit modelling of cracks through the so—called cohesive zones [58-
60], or in a continuous way using classical or enriched (with crack-tracking algorithms)
smeared—cracking models [61-65]. Although damage representation may lack detail at the
crack level, it is known that these numerical models are still adequate for the study of
concrete, concrete-like, and masonry materials at a structural level. In such a scope, the
riddle lies in the definition of the most suitable modelling approach, by considering its
dimensions, study purpose, and that a trade-off between accuracy and practicability is
evaluated (also in terms of computational time). If the latter is respected, i.e., the charac-
teristic length at the macro-level holds, then macro—models are suitable. Therefore, sim-
plified FE macro-modelling approaches can be followed, such as those based on limit
analysis [66—70] or on discontinuous or discrete FE-models [70-77].

In this regard, the study tries to give a formal description of an improved macro-
element that originally stems from [78]. It allows retrieving the mechanical response of
masonry structures adopting a macro-modelling approach and within attractive compu-
tational costs. The main goal is to foster its reproducibility, aiming at the use by academics
and practitioners when performing seismic assessment (or related) studies. First, the kin-
ematics of the macro—element is presented for both in—plane and out-of-plane modes,
together with essential steps to scale and regularise the material constitutive relationships.
Then, formal validation of the macro—element is performed within linear static, vibration,
and cyclic (uni- and bi—directional) problems. At last, computational features that are con-
sidered relevant are stated.

2. Macroscopic Unit-Cell
2.1. Theoretical Scope

The macro-element has a theoretical background on the works of Kawai [79-81] and
was implemented in the ABAQUS software. The strategy is especially suited for the study
of planar elements, i.e., for a three-dimensional body, Q S R3, with one dimension
much smaller than the other two. Such an assumption is also postulated when studying a
given structure with a plate or flat shell FE’s. Therefore, the modelling using the macro-
element tries to describe the structure using the mid-surface of the body, Q. Given the
cartesian space and for the undeformed configuration, it is assumed that the thickness ¢
of the structure develops in the z—direction (z = [-t/2,+t/2]) and that the two planar
coordinates are defined through global x and y coordinates (see Figure 1). Such an as-
sumption is important to recall bearing the integration with a multi-scale framework, as
it should be linked with the Cartesian system adopted at a meso/micro—scale. A uniform-
isation between the allowable macro-deformation modes and the respective meso—scale
ones is convenient when material orthotropy exists.
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Out-of-Plane (OOP) system

The macroscopic unit—cell is composed of the assemblage of discrete quadrilateral
rigid plate elements connected through a set of rigid and deformable FE trusses in its in-
terfaces. Rigid plates are modelled as four linear quadrilateral elements within a finite—
membrane strain formulation (54 element in ABAQUS). Full integration is adopted to pre-
vent hourglass modes. The rigid linear elements are defined as three-dimensional Timo-
shenko FE beams (B31 in ABAQUS). In this scope, the deformation and damage of the
structure are restricted to three-dimensional two-node FE trusses (T3D2 in ABAQUS).
These are comparable with spring elements since they have just one DOF and are directly
integrated. Their stiffness matrix is defined only by axial stiffness terms, given by
diag(=,
axial length. The macro—deformation is thus governed by the trusses, in which in- and
out-of-plane failure modes are considered within a decoupled approach.

EA, . . . O . ..
T)’ in which E is the Young’s modulus, A is its cross—section area and L is its
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Figure 1. Macro-unit cell and kinematics of the macro—element. (a) Out—of-plane. (b) In—plane.

The FE trusses incorporate the material information, in which both orthotropy and
full softening behaviour can be provided by defining the properties of the different inter-
face sides. Regarding the out-of-plane (OOP) behaviour, the macroscopic cell is com-
posed of a set of four flexural and torsional trusses. The flexural trusses are placed at the
mid—centre of each interface and the torsional trusses are placed at each node of the
squared rigid plate. Mid-span hinges on interfaces allow the fixing of the axis of rotation
for torsion movements without compromising the deformed shape. Regarding the in-
plane (IP) modes, trusses have been assumed for axial and shear behaviours. For the for-
mer, a total of three axial trusses are placed per—interface (two in the edges and one in the
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centre), and for the latter, a total of two shear trusses (defining the shear for each half-
length of the interface) have been placed per interface.

Inertial forces can be either modelled via a direct lumped or consistent mass matrix
strategy. The former requires the computation of the representative mass for each rigid
plate and its introduction through nodal mass elements on each rigid plate node. The lat-
ter allows it to be more straightforward, as the mass of the system is embodied by the
quadrilateral rigid plates using an equivalent material density. By following a linear dis-
placement interpolation assumption, one achieves a consistent mass matrix. Still, a com-
parison between both strategies will be given in Section 3.1.2. The computation of the sys-
tem density pgysiem 1S given as preq.t/teq, t being the real thickness of the structural ele-
ment, pr.q the real density of the material, and t,, the thickness attributed to the rigid
plates (defined as 10 mm).

At last, it may be noticed that since the macro—element has been implemented using
an FE software, a stiffness matrix [K] € R™™ (n is the number of DOFs) has to be assem-
bled for a given structure to compute the displacements vector [u] € R", with respect to
the action of a vector of external forces [f] € R" through the weak—form [K][u] = [f]. In
this scope, the plates are enforced to be rigid (for both the axial and bending cases) by
defining a high Young’s modulus given by 10'° MPa (and a thickness of 10 mm). Like-
wise, the rigid linear elements are defined to have a high Young’s modulus given by 10*?
MPa (and a section area of 0.1 mm?). The definition of the latter values may be questiona-
ble, as flexible elements of the system become connected with disproportionately stiffer
ones and can turn [K] ill-conditioned [82]. Nonetheless, authors report that such values
have been properly defined as having in mind such issues and that, for the stiffness values
typically associated with concrete-like materials, these can be used with no further con-
cern.

2.2. In—Plane kinematics

The variational principle of energy conservation and the principle of virtual displace-
ment were followed to achieve the discrete macro—element elastic stiffnesses. Figure 2
presents the two directions of the in-plane system, i.e., the x— and y—directions, with both
the tributary areas of each in—plane FE truss and the associated deformation modes (kin-
ematics).

Let us consider that Ej; is the elastic modulus of the equivalent homogeneous mate-
rial ( is the average operator as it is generally defined to represent a composite or in-
trinsically homogeneous material), i is the corresponding axis x or y, G_xy the shear mod-
ulus of the media, V the volume of the region under study, and A a displacement incre-
ment under the studied direction. For the in—plane case, the total strain energy density is
generically given by Equation (1):

1
U= 3 JV {(ZY'{E}-av (1)

where {Z}7 ={Zxx Zyy Zy} and {E} ={Exx E,, Ex} are the stress and strain
quantities of the media constitutive relationship, respectively, ideally obtained experi-
mentally or via a homogenisation procedure. For the mode-], the calibrated elastic stiff-
ness of each in—plane truss is derived by imposing that the stored strain energy in volume
V of both the discrete UJ2%¢;! and the continuum homogenised media UZS%¢!  are

equal.

o¢& EiiEZ _ H.t.Eii AZ

in—plane axial truss 2
yupodest =y %8 b E 2 ©)

discrete 2 2 e



Appl. Sci. 2022, 12, 1248 6 of 26

If both energies are equated, the Young’s modulus of the in—plane axial trusses of a
macro-unit cell for each plane direction (if orthotropy is considered) are derived and

reads as:
. . E e
E}l{?)l( plane axial truss — xx (4)
4L + 2e
Ein—plane axial truss — Eyye (5)
yy 2(H +e)

The same methodology is followed for the mode-II trusses, namely the in—plane
shear trusses. The stored strain energies of the continuum and discrete model are:

5 2
U = ©
4 2L+e
in—plane shear truss , 2

mode—11 _ & t.Eyy A %

discrete H

Consequently, the Young’s modulus of the in-plane shear trusses are given by:
Ein—plane shear truss — GX}’HZ (8)
xy 4e(2L + e)

For more details regarding the IP formulation, the reader is referred to [83,84].
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Figure 2. In—plane unit cell: a tributary area for each truss and kinematics of each allowable (admis-
sible) deformation mode.

2.3. Out—of-Plane Kinematics

The variational principles of energy conservation and virtual displacements were fol-
lowed to compute the elastic stiffnesses of the out-of-plane FE trusses; as provided for



Appl. Sci. 2022, 12, 1248 7 of 26

the in—plane case. Figure 3 depicts the out-of-plane basic cell of the macro—element. The
geometrical parameters and the respective tributary areas for flexural and torsional FE
trusses are given. Additionally, the kinematics of each allowable deformation mode is as-
sociated with a moment quantity defined in the input, or by integrating the in—plane
stress—strain curves in the thickness direction.

Bending truss (BT4) XX

Bending
truss (BT2) YY
e
ABT) 2 H
Tag— / L
+ H
X .
Torsional
Torque truss T3 Moment
M
Xy
Torsional . le ist angl
Moment .“‘ wist angle
M ™
yX
’ "TA®
Torsional twist angle Torsional
Moment 9 : Torqueleuss T4 Moment
AT4:7L

twist angle

Figure 3. Out—of-plane unit cell: the tributary area for each truss and kinematics of each allowable
deformation mode.

bending
discrete

) plate media is postulated to retrieve the latter expressions.
of a continuous FE plate subjected to bending is derived

Equivalence between the bending energies of the discrete (U ) macro-element
Ubending
continuum

In such regard, the UZenamd
from Equation (9):

and a continuum (

U= 1.[ M dl 9)
~2), EI
and given by:
: 1 B He?
bending  _ _ ii
Ucontinuum = 7 (EuDx*(H +e) = m(ff +e) (10)

The stored strain bending energy of the discrete system is derived through an ad-
hoc formulation. Bearing that the strain of the axial out—of-plane truss-beams is & = be/ ¢

bending . _ _.
and 8 = y(H +e), Ujieitd is given as:

bending truss
) 1 1E; Ace
bending _ ~ e 11 t* 2 11
Udiscrete - 2 M6 = 2 t 0 ( )
By equating U f:;gzﬂlm =U ggﬁ‘:‘iﬁf the correct Young’s modulus of the OOP flexural

trusses is calculated according to Equation (12):

L..+4
Ebending truss __ Eiit H

u " 24e(1 —v2)(H + e)ed, (12)
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For torsion, the same procedure is followed. Briefly, the stored strain torsional mo-
ment energies of the discrete and continuum homogeneous media are given by Equations
(13) and (14), as follows:

~ 3p2
Utors@onal — GHt 6 (13)
continuum 24‘(2L + e)
t i It 3pn2
Utorsional _ Etorsional truss 13 g (14)

discrete 16t

in which G is the homogenised shear modulus given directly by the slope of the in-plane
shear constitutive law. Thus, by respecting the energy equivalence between the systems,
the correct Young’s modulus of the torsional trusses is defined through Equation (15).

~+4
Etorsional truss __ 2Gt

" 3H2e(2L +e) (15)

2.4. Material Constitutive Law and Damage Model

A proper macro—constitutive law must be assigned to the elements that govern both
the deformation and inelastic response of the interfaces, i.e., the FE trusses. The constitu-
tive model tries to mimic the material information provided —potentially via at a forego-
ing scale through a homogenisation procedure—and, therefore, should be capable to al-
locate the mechanical information and effectively represent the elastic and inelastic be-
haviours.

Although several plasticity models can be adopted in ABAQUS, the concrete damage
plasticity (hereafter, CDP) model has been selected given the better representation of the
inelastic laws. The model combines stress—based plasticity with strain-based scalar dam-
age. It can reproduce several macroscopic properties for tension and compression re-
gimes, such as (i) different yield strengths; (ii) different stiffness degradation values; (iii)
different recovery effect terms; and (iv) rate sensitivity, which can increase the peak
strength value depending on the response strain rate. Moreover, it does consider the latter
in the presence of interfaces that are dynamic and/or cyclic loading, and is integrated us-
ing the backward Euler method (see Figure 4). A general overview of the main features of
CDP for the rate-independent model is presented next, being the reader referred to, e.g.,
[85,86] for further details.

Effective stresses govern the plastic part of these models [87] and the stress—strain
relationship is ruled, as referred, by an isotropic damage scalar affecting the elastic stiff-
ness of the material. According to Equation (16) the nominal stress tensor o reads:

o0=01-dE"(e—eP)=E:(e—eP) (16)

where Ej ! is the initial elastic stiffness of the material; d is the damage parameter, which
defines the stiffness degradation (0 for an undamaged and 1 for a fully damaged material),
and is designated as d: and d. for tension and compression regimes, respectively; ¢ is the
total strain tensor; & is the plastic strain tensor; and E is the initial elastic stiffness of the
material affected by the damage parameters (the degraded initial stiffness given by E
= (1 - d)E).

Regarding the softening variables, Equation (17) describes the law h that expresses
their evolution, in which &” ! is the plastic multiplier (assuming a non-associated potential
flow), and ## and & are the equivalent plastic strain tensor and the effective stress ten-
sor, respectively.

Pl = h(a, P)er! 17)
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Figure 4. Hysteretic curve adopted for the out-of-plane trusses (note: for the in—plane truss beams,
the tensile and compressive behaviours can have different shapes that stem from material charac-
terisation).

The CDP model uses a yield function based on the works in which a hardening var-
iable K, controls the meridian shape of the yield function. A K. =2/3 is assumed, lead-
ing to an approximation of the Mohr—Coulomb criterion. Three other dimensionless pa-
rameters need to be defined, i.e., the dilation angle, ¥, the eccentricity, e, and the viscosity
parameter. The dilation angle W is measured in the p—q plane and gives the inclination
angle of the failure surface in respect to the hydrostatic axis; from a physical standpoint,
it represents the internal friction angle of the material. Here, a value of 30 degrees has
been defined. The eccentricity parameter e modifies the flow potential rule, being a
straight line if e = 0 and a hyperbola if e = 0.1. The default value, i.e., e = 0.1, has been
assumed. The viscosity parameter is introduced to enhance the results convergence in the
presence of material and/or geometrical nonlinearities, through a viscoplastic regularisa-
tion by Duvaut and Lions [88]. This parameter should be treated with care as it can mis-
represent the obtained results. For the present macro—element, the default value of 0 (zero)
has been adopted, even though it has been noticed that within a quasi—static pushover
analysis a value of 1 X 10™* can decrease the computational cost without apparently af-
fecting the results.

Since truss beams define the material behaviour of the interfaces, the system will un-
dergo only uniaxial loading conditions and, therefore, the plastic strain rates in tension,
éfl, and compression, éf], are a function of the uniaxial plastic strain rate, '511711, and read
as:

= and & = (18)

Likewise, even if the CDP has been extended for the general multiaxial conditions,

the uniaxial character of the system may also be adopted for the cyclic loading analysis,

which simplifies, to a great extent, its follow—up validation. In such cases, the recovery of

the elastic stiffness when the sign of the imposed load changes is an important aspect to

consider. The so—called ‘unilateral effect’ holds both in tensile and compressive sides of
the cycle, in which, for uniaxial conditions, the damage parameter variable d is given as:

1-d=010-sd)A - s.dp,s;=20,s.<1 (19)

Here, s; and s, are functions of the stress state which represents the referred stiff-
ness recovery with the related stress reversals and are defined as:
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s¢ = 1 —wr*(611)
(20)
s =1- cuc(l - r*(&ll))

Here, w; and w, are weight factors and assumed as input material parameters for
the CDP model and limited by 0 < w; <1 and 0 € w, < 1,and r'(Gy;) =1 if 5;; > 0 or
¥'(G11) = 0 if 511 < 0.In concrete-like materials, the effect is more marked when the ma-
terial is in a compression regime (o;; < 0), because tensile cracks tend to close [86]. Nev-
ertheless, the aim here is to fully reproduce the homogenised behaviour in both regimes
and so the Bauschinger effect is not reproduced. Therefore, the tensile and compressive
elastic stiffnesses have a full recovery effect, which is the same as defining @, = 1 and
w. = 1.

To fulfil the input requirements of the CDP model in ABAQUS, information regard-
ing the post-failure behaviour may be introduced for each element that features material
nonlinearity, i.e., the truss beams, in terms of stress and inelastic strain & values. The
latter must be obtained for each point of the post-peak homogenised curve by Equation
(21):

g =g —gel (1)

in which ¢! is the elastic strain corresponding to the undamaged material and ¢ is the
total axial strain of the multi-linear stress envelope. If the damage parameters, d, are in-
troduced, the plasticity model is thus coupled with a damage description and is suitable
for the cyclic behaviour description of the material. The plastic strain values, e!, are cal-
culated, for each point of the curve, as:
ePl = g7 — _d (22)
(1-d)E¢
Since the permanent plastic strain can be just positive or null, the latter can constitute
a good checkpoint to foresee if the damage parameters have been properly computed.
Lastly, it is important to recall that to increase the robustness of the problem, and as given
in Figure 4, multi-linear curves (e.g., with 5-nodes) are defined. Furthermore, a small
plateau near the peak strength of the curve is recommended, to circumvent an abrupt
stiffness loss, avoid potential convergence, and run-time problems. The adequacy of such
approximation will be discussed in Section 3.

2.5. Material Information and Required Processing Steps

The material input for the macro-element interfaces (FE trusses) needs to be given in
terms of stress—strain (X — E) and, through thickness integration, converted to moment-
curvature (M — x) curves when out-of—plane behaviour is of interest. This information
is employed at the macro—element after two processing steps, aiming to achieve a correct
material characterisation, i.e., the so—called scaling and regularisation steps. These appear
to be critical to assure that the macro—input is independent of the refinement (size)
adopted for the macro—element.

Such transition steps are conducted after the preparation of the computational model,
because it is dependent on the size of the used discrete mesh, particularly, on the values
of H, e, L, and t. Furthermore, squared rigid elements are assumed, hence only two differ-
ent are possible for the interfaces: 0 and 90 degrees. The material orthotropy is reproduced
at a structural level because the approach offers the possibility to reproduce different in-
put stress—strain relationships according to the trusses plane. For the in—plane behaviour,
the stress quantities are directly derived from the input curves. For the out-of-plane sys-
tem, the macroscopic homogenised moment values are adapted to follow representative
stress values for the bending and torsional trusses through Equations (23) and (24):
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Here, M is the bending moment per unit of interface length; H is the size of each
square rigid element or plate; ¢ is the thickness of the wall; Apr,yss is the bending truss
area; Arrryss is the torque truss area; and e is the gap between the rigid plates, which
ideally should be zero but in practice is assumed small enough to be able to place trusses
between the elements.

After the earlier stage, the stress—strain curves are regularised by defining the elastic
stiffness and fracture energy terms. The regularisation step is necessary to properly find
the elastic stiffness of each truss beam and to guarantee the input independence from the
macro—mesh and, thus, its objectivity in the nonlinear range. One raises the similarities
with the regularisation concept firstly addressed by Bazant and Oh [89] in which the frac-
ture energy terms are regularised by a crack bandwidth parameter, [ .4; albeit, more
sophisticated approaches exist, such as those who convey on non-local methods [90,91].

By assuring the elastic energy equivalence between the discrete model and a contin-
uum homogeneous plate, it is possible to derive the so—called regularisation factor, f,—
this scaling operator affects the strain values of the curves that serve as an input. Within
a decoupled behaviour, the latter is performed separately for the in—plane, axial (mode-I
and mode-IV) and shear (mode-II) deformations, and out—of-plane modes, i.e., both flex-
ural and twisting movements. In this way four different f, operators are found, which
allow the holding of the energy equivalence assumption.

Briefly, let us consider, for instance, that E=[&1 & - &-1 &] and £=
[01 Oz --- Opn_1 On] are the n—dimensional sets which define, respectively, the stress—
strain input curves being regularised (n is the number of points of the curve). The correct
elastic stiffness value, obtained through the energy equivalence demonstration, is com-
puted for the point of the curve which has one-third of the peak stress value, designated
as point p. The regularisation factor is given as f. = 0,/ (&pEcorrectea), in Which Ecorrectea
is the corrected Young’s modulus obtained for each truss type (see Sections 2.2 and 2.3).
This procedure is followed, and four regularisation factors are computed. By correcting
the strain values of the curves, both the elastic stiffness and fracture energy terms are reg-
ularised.

3. Macro-Element Application

The mechanical validation of the macro—element is addressed next, with a clear focus
on the study of the out—of-plane behaviour of masonry. Since the seminal works by Irons
et al. [92-94], conducting patch tests has become a regular step when presenting finite
elements, see [95-99] for a review. Zienkiewicz and Taylor [100] stated that, in plate prob-
lems, the ‘importance of the patch test in both the design and testing of the elements is
paramount and this should never be omitted’.

Patch tests may be a trivial formality for standard finite elements because of the shape
function’s continuity requirements, but its usefulness as a debugging step for code imple-
mentation is accepted. In this sense, some tests of comprehensiveness are employed over
the macroscopic unit—cell element aiming to assess the reliability and convergence of the
solution in elastic and inelastic problems for static and dynamic ranges.
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3.1. Linear Range

Performance tests were conducted to evaluate the ability of the model in (i) elasticity
problems, and (ii) in vibration analysis through the eigenmodes frequencies and de-
formed shapes.

3.1.1. Elasticity Problems

The conducted test addresses a squared plate subjected to different loading cases and
with two possible boundary conditions. The squared plate benchmark has a side length,
L, and belongs to the set of patch tests proposed by Rao and Shrinivasa [99]. Aiming to
especially serve as a reference test for plate bending elements, a thickness equal to L/100
is assumed, that approximates well thin—plate solutions. Two squared plates, one with
pinned (SSSS) and the other with clamped supports (CCCC) at its edges, are subjected to
a point and a surface (normal) load.

The convergence of the discrete macro-model has been assessed by comparing the
maximum elastic displacement, w, obtained with the exact solution, W4, for different
mesh refinement levels, N. The maximum deflection obtained at the centre of the plate is
normalised with the exact theoretical solution and presented in Figure 5. Although the
discrete element behaves better in the presence of simply supported edges, which is to be
expected given the lower gradients of curvature, the load type seems to have a further
extent on the solution accuracy. The model can better reproduce the point load behaviour
due to its localised effect, which goes in favour with the data from the Rigid—Body-Spring
model (RBSM) developed by Kawai [79]. Globally, a refinement of N = 15 (H = L/15) is
a proper choice allowing estimations within 10% of a maximum deflection error. Hence,
a higher refinement is recommended for clamped edges (N = L/16) than simply sup-
ported edges (N = L/12).

—&— SSSS - Point load

o T\ P-P-P-P
e

T ] T
g = —0— 858 - Surface load L i
<o 2.5 i b
—4A— CCCC - Point load N=4 P - Simply supported
—%— CCCC - Surface load c-qal d
~Exact solution -ampe
2r W SSSS - Point load (Kawai, 1977) | F—L—F

a 8  CCCC - Point load (Kawai, 1977)

1.5¢ 8\\\ o g
\2\0 E @

1
A/A——”‘/_’_ Point load Surface load

Normalized displacement (w /w

0.5+ b
E=17472MPa v=0.3
0 1 1 1 1
4 8 Iz 16 30 L=2m thickness = %

Mesh refinement N x N

Figure 5. Convergence study conducted for a squared plate test.

The plate benchmark test is inexpensive to carry out and a time—cost analysis has
been disregarded. The value of the errors found are admissible and in agreement with
typical simplified mixed-FE strategies, as the RBSM by Kawai [79] and the Hermann-
Hellan constant-stress—triangular elements [101]. Besides the simplification adopted for
the decoupled flexural-torsional behaviour, it may be emphasised that the deviations
found, especially when clamped supported edges exist, stem from the macro—element as-
sumptions. Quadrilateral elements are adopted which restrains the model adaptability
and deformability near cornered regions. Therefore, a mesh bias occurs near the supports
that explains the stiffer responses found for the clamped edges cases, i.e., no deformation
exists within a distance from the border given by the mesh size H. This also supports the
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fact that the response is different than classical continuous FE-based models since it gives
lower bound estimations of the displacement (for different mesh refinements).

3.1.2. Vibration Analysis

Free vibration analysis is conducted in a simply supported squared plate. The plate
is isotropic and shows uniform thickness, t, and mass density values, p. The free harmonic
vibration of a thin plate is governed by the following differential equation:

DViw(x,y) — w?ptw(x,y) =0 (25)

Here, w(x,y) is a given mode in the cartesian space, V* is the biharmonic differen-
tial operator in Cartesian coordinates, i.e., 32/dx* + d2/dy?, and D is the bending stiff-
ness given as Et3/12/(1 —v?). For the present example, a squared plate simply sup-
ported at its four edges, the solution of the vibration mode shapes has been formulated
by Navier [102]:

w(x,y) = Appsin (%) sin (?) ,(mn=12,..) (26)

in which, 4,,, is the amplitude of vibration (which are the unknown coefficients), m is
the number of half-waves in the x-direction, n is the number of half-waves in the y—di-
rection, and a is equal to the length, L, of the squared plate side. By replacing Equation
(26) in the differential equation, one obtains the exact solution for the vibration of frequen-
cies in terms of the parameters m and n:

BIGR) &

By adopting different values for the integer parameters m and n, the theoretical and
exact frequencies of the first eight modes have been found. For the discrete model, since
it relies on an FE-based strategy, the natural frequencies and mode shapes are obtained
through the following matrix form equation:

(K] — w?*[MD{w} =0 (28)

Here, [K] and [M] are the global stiffness and mass matrices. The mass of the discrete
system is carried by the rigid plate elements by providing a representative density value,
Psystem- Uniform mass distribution is assumed to assemble the mass matrix either through
a lumped or consistent strategy. The former admits that the mass of the rigid plate is
lumped in its nodes, this allowing to obtain a diagonal mass matrix. In the consistent strat-
egy, mass is distributed in the rigid plates following a linear interpolation rule, as when
computing the local stiffness matrix, and both translational and rotational inertias are ac-
counted. Towards a convergence study, four mesh refinements have been considered: N =
4,N = 8,N = 16 and N = 30. A thickness value of L/10 and a gap spacing between the dis-
crete cells of e = 20 mm have been admitted. Furthermore, the analysis is complemented
with the results from a standard continuum FE model (with a mapped mesh, element size
of L/30 and with a consistent mass matrix) designated as FEA. Results gathered in Table
1 are given as normalised angular frequencies (with the exact solution).

According to the h-refinement dependency verified in the elasticity problems con-
sidered before, a higher mesh refinement lead to lower errors. Yet, a mesh size of L/16
provides solutions with an error lower than 5% (lumped approach), which seems to con-
stitute a sufficient refinement choice for larger case studies. A consistent mass matrix strat-
egy yields more accurate eigenfrequency contents than the lumped one; that is especially
clear for coarser meshes in which significant differences have been found (higher than
20%). On the other hand, the modal deformed shapes depicted in Figure 6 indicate that
all the discretisation fit the FEA results up to the first four modes.
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Table 1. Convergence study: normalised natural frequencies (w/weyqc:) found for the proposed
macro—-model and a standard continuous Finite Element Analysis (FEA).

o Macro-Element Macro-Element FEA Exact
§ (Lumped Mass Approach) (Consistent Mass Approach) N=30 (rad/s) m n
N=4 N=8 N=16 N=30 N=4 N=8 N=16 N-=30 -

1 1.276 1.094 1.026 1.025 1.244 1.088 1.064 1.024 1.000 19.739 1 1

2 1.382 1.085 1.037 1.037 1.302 1.069 1.064 1.034 1.000 49.348 1 2

3 1.382 1.085 1.037 1.037 1.294 1.069 1.064 1.034 1.000 49.348 2 1

4 1.499 1.129 1.036 1.028 1.371 1.103 1.073 1.031 1.001 78.957 2 2

5 1.405 1.088 1.047 1.045 1.276 1.053 1.063 1.039 1.000 98.696 1 3

6 1.475 1.084 1.046 1.045 1.218 1.049 1.061 1.039 1.000 98.696 3 1

7 1.569 1.143 1.045 1.038 1.356 1.099 1.075 1.036 1.001 128.30 3 2

8 1.569 1.143 1.045 1.038 1.355 1.099 1.075 1.036 1.001 128.30 2 3
Proposed Discrete FE model FEA (Reference)
N=8 N=16 N =30

° :

]

s}

g

B

i

]

]

<}

g

]

=t

N

ddddddd,

8th mode 7thmode 6thmode b5thmode 4thmode 3rd mode

Figure 6. Deformed shape of the first eight eigenmodes obtained with the macro—element (discrete)
model and through a classical FEA.
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After that, coarser meshes are unable to catch higher modal responses, due to the
implicit mechanical arrangement of the quadrilateral rigid elements. Nonetheless, the
higher refinement (L/30) reproduces well all the modal displacements. At last, it may be
pointed out that the choice between the best approach to distribute the mass matrix is
arguable because the accuracy depends on the mesh refinement. Still, a consistent strategy
is adopted hereafter.

3.2. Non—Linear Range

The main purpose of this section is to briefly assess if the nonlinear homogenised
curve that serves as input for the constitutive material model (CDP) is properly attributed.
This is accomplished by attesting if the CDP adopted for the macro-interfaces leads to the
expected static and hysteretic responses. An ad-hoc simple case study is used for both
purposes, namely a vertical masonry wall simply supported in its bottom and top edges
and subjected to a centrally prescribed displacement, as depicted in Figure 7.

Frlont Flexural trusses 10° Unidirectional cyclic loading
view ) 2 X ‘ ‘ ‘ ‘ ‘

i e R Y 2
I E |l
200 mm o | — 2 ~__u(t) =

0 I I
/ ‘ z 0 1 2 3 4 5 6 7

time (s)

<10% Bi-directional cyclic loading

Y 5 ‘ 1t cycle‘ ‘ 2"d‘cycle ‘ ‘ ]
X - 1 i :
E N s /\ :
Y E0 \V4
=
2 Discrete -5t . , , . . . k|
elements 0 1 2 3 4 5 6 7
idealization time (s)
(a) (b)

Figure 7. Nonlinear validation of the macro-constitutive model for an out-of—plane loaded wall. (a)
Vertical masonry wall. (b) Uni— and bi—directional cyclic loading.

3.2.1. Quasi-Static (Monotonic) Nonlinear Curve

The first conceptual verification is performed through a quasi-static analysis. An
out-of-plane displacement is applied at the centre of the masonry wall. The assumed
stress—strain in—plane curves (Z,, — E,,, curves) are given in Figure 8. Specifically, a linear
behaviour was assumed in compression, and a strength value of 0.80 MPa followed by
exponential softening was assumed in tension. The corresponding vertical bending mo-
ment Mz (designated as the principal stress couple, equivalent to Myy) is obtained
through—the—thickness integration of the wall using a Kirchhoff-plate theory, as given in
Figure 8.

Following the required transitions steps addressed in Section 2.5, the calibrated and
regularised o — & curves required for the vertical flexural truss beams have been identi-
fied and given in Table 2. The quasi-static analysis allowed us to reach the wall’s struc-
tural response, whose capacity curve, in terms of bending moment—curvature, is repre-
sented in Figure 9 and compared with the expected one (M2 homogenised curved for an
L = 400 mm). Results show that the strategy is well implemented and that adopting a
simplified 6-node curve is adequate since the stored bending energy difference is, be-
tween the obtained and the theoretical curves, lower than 1%.
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Figure 8. Procedure for integrating the homogenised vertical stress—strain curves on the masonry
thickness aiming to obtain the homogenised vertical bending moment curve for the benchmark test.
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Figure 9. Quasi-static test: expected vs. obtained bending moment capacity curve.

Table 2. Input stress—strain (o — €) curves for the FE trusses in the FE software (CDP model in

ABAQUS).

Cracking Strain (-)

Stress (MPa)

Damage Scalar D (-)

0.00
5.06 x 10
211 =10+
3.49 x 10+
6.09 x 10+

9.61
941
5.57
4.03
3.36

0.00
0.20
0.42
0.58
0.65

3.2.2. Uni-Directional Cyclic Loading

In classical plasticity theory, three key features are of utmost importance: the yield
criterion, the flow rule, and the hardening/softening rule [85]. As referred, a Mohr—Cou-
lomb yield failure envelope and a non-associated flow rule have been assumed. For the
hardening rule, the model depends on the definition of cracking strains associated with
given effective stresses. It is the purpose of the uni-directional cyclic test to verify if the
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latter is well reproduced for a cyclic type of loading. Towards the latter, the same case
study of Figure 7 has been used. The process of strength deterioration is itself the pure
representation of the softening rule evolution [85]. Figure 10 shows that the obtained skel-
eton curve using the CDP model fits the expected quasi-static curve.

900 : . . . . . 900 - 0.8
oo Obtained curve - Plasticity model 800} Obtained curve - Cl()iP rn(l)de.'l |
Obtained curve - CDP model —— Damage parameter d evolution
2 700 —— Expected curve (Quasi-static) 1 ’E 7001 10.6 g
E L | L | =
EC 5 600 !
« L 1 <= L ] n
g 300 § 300 Strength degradation 104 E
2 4000 Stiffness degradation 1 2 400t 17 E
& ] 7 3} aq
§ 300 - >
2 300 § 3007 1 §
200¢ 200} 102 F
1007 i 1007, ]
0 J T H /A R 0 | ‘ ‘ 0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Curvature (mm™) x 107 Curvature (mm™) x 107

Figure 10. Uni—directional cyclic behaviour (Note: only the positive moments are plotted, i.e., the
part of the unloading branch for negative bending moments has been disregarded for the sake of
readiness).

Furthermore, a damage model is coupled with the plasticity one. The softening rule
is interpreted through an isotropic damage variable, d, which is, by itself, a function of the
equivalent plastic strains and, therefore, its value never decreases. Stiffness degradation
of the material after cracking should be accounted. Figure 10 shows a comparison between
the present CDP model and a pure plasticity model with an absence of stiffness degrada-
tion. On one hand, both phenomenological representations allow to achieve permanent
material plastic deformations, but these are higher if a total plasticity model with initial
unloading stiffness is adopted (known to be too conservative). On the other hand, the
appearance of plastic strains is a manifestation of inelastic behaviour and, as Figure 10
proves, its evolution follows the expected path (see Table 2) reaching a constant value
after the ultimate strain threshold limit, correspondent to a cracking strain of 6.09 x 10,
in which the residual strength is defined and thus damage remains constant.

3.2.3. Bi-Directional Cyclic Loading

The last test covers the bi—directional cyclic loading response of the outlined case
study in Figure 7. The goal is to see if the expected hysteretic behaviour of the flexural
trusses is well reproduced. Both positive and negative vertical bending capacities are sim-
ilar, hence both the flexural trusses, ft1 and ft2, need to trace the same behaviour. This was
sustained by Figure 4 wherein the axial Cauchy stress o, faced in both flexural trusses
are similar in magnitude and, owing to the binary of the bending force, have an opposite
signal.

Regarding the hysteretic behaviour, after completion of the first cycle (A—F, t =
2.255), as depicted in Figure 11c, the tensile peak is reached at A and the first tensile un-
loading branch initiates at B with a stiffness given by Eg = (1 — d?)E, until C. The first
compressive re-loading branch starts at C with a stiffness E,, since a value of 1 has been
defined for the recovery parameter w, and so, predictably, the maximum compressive
stress at D reaches the same magnitude as A, i.e., the maximum quasi—static envelope. In
the same manner, the unloading branch (E—F) has a stiffness given by (1 — d£)E,, and
the first re-loading tensile branch (F—G) has the same stiffness as the last unloading ten-
sile branch (B—C). This is equivalent for the first reloading compressive regime I-], which
follows the same path as the last unloading phase E-F. It is also noticeable that H and L
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have the same (in magnitude) axial stress oy, as the last point of the quasi-static enve-
lope. The material constitutive behaviour formulation defines minimum stress, or the des-
ignated residual strength, to be the last effective stress given as input, see Figure 11. Thus,
after reaching point H, the damage parameter remains stationary (Figure 11b).
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Figure 11. Bi-directional cyclic loading. (a) Cauchy stress 07, for flexural trusses. (b) Evolution of
the damage parameter, d, for the flexural trusses. (c) Vertical bending moment—curvature (first
cycle). (d) Vertical bending moment-curvature (second cycle)

x10”

It has been demonstrated that the cyclic behaviour is reproduced as it was expected.
Both positive and negative vertical bending moments are represented (truss ft1 and ft2).
It may be highlighted, again, that the latter holds true because total recovery effects have
been defined for tensile and compressive regimes (w, = 1 and w, = 1). Furthermore, the
model exhibits the capacity of allocating in memory the damage variables, for both the
preceding tensile and compressive cycle of each flexural trusses, allowing thus the calcu-
lation of the onward un(re)-loading cycle.

4. Computational Features and CPU Parallelisation

The implementation of the discrete model can be achieved using any FE-based plat-
form. Nonetheless, the authors raise the importance of several modelling assumptions in
the ease of such a process and for the optimisation of the associated computational costs.
For instance, the importance of considering a node renumbering algorithm is presented
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next, together with the use of an implicit solver rather than an explicit one. At last, a com-
parison over the CPU time is performed between a traditional continuous FE model
(smeared crack model) and the macro-element (discrete) model.

4.1. Node Renumbering Algorithm

A remark on the importance of adequate node renumbering is briefly stated hereaf-
ter. Its importance is evaluated in terms of time costs and required RAM to complete a
linear elastic analysis. Such costs are influenced by the bandwidth dimension of the global
stiffness matrix [K]. The minimisation of the latter through sparse matrices is well-docu-
mented [103,104] and several algorithms have been developed [105-108]. A brief test is
performed on a masonry wall subjected to an out-of—plane surface load. Results are found
for linear elastic analysis and through a direct sparse solver. A refined mesh of 35 X 65
rigid quadrilateral elements represent the masonry wall. Two algorithms have been em-
ployed: (i) a geometric-based algorithm, in which mesh nodes are numbered according
to a defined direction vector (length with higher dimension); and (ii) the so—called Ap-
proximate Minimum Degree (AMD) sparsity algorithm, in which the number of non-zero
entries in the global stiffness matrix is reduced through a heuristic approach [109]. Results
gathered in Table 3 were found through a 64-bit Windows 10 computer with 16 Gb RAM
and Intel i7 CPU running at 3.4 GHz.

Although the absolute computational time difference may be negligible for the pre-
sent benchmark, the use of an algorithm may reduce the relative CPU time by around 60%
and around 44—49% of the required optimum physical memory. Such differences could be
more relevant within a nonlinear quasi-static analysis since several steps (and iterations)
need to be solved. Exploring the issue of the most efficient algorithm available in the lit-
erature is especially convenient for very large-scale structures, in which powerful pre—
processors software as ANSA [110] can be used. Here, even if the performed test is simple,
it aims to raise the awareness (or the discrete—-model FE user) over the importance of a
renumbering strategy. To cope with the concern of improving computational efficiency,
ABAQUS offers a renumbering algorithm based on a geometrical method. This seems
suitable for the dimension of the structural problems involved in the present study and in
cases where a dominant length direction exists.

Table 3. Performance test on an out-of-plane loaded masonry wall (35 X 65 elements) for two-
node renumbering algorithms and within a direct sparse solver.

. . None . . .
Node Renumbering Algorithm (Reference) Geometric Algorithm AMD Algorithm
CPU total time (s) 14.95 5.523 (—63.1%) 6.006 (—59.8%)
Optimum physical memory RAM (Mbytes) 137.1 69.93 (—49.0%) 76.23 (—44.4%)

4.2. Implicit vs. Explicit FE Analysis

For dynamic analysis, the macro-system equilibrium can be solved using an implicit
or explicit scheme. Still, two main reasons support the selection of an implicit procedure.
The first concerns the modelling of the inertial mass system that is achieved by assigning
a representative density value for the rigid plates only. In opposition, an explicit solver
demands the insertion of density values for all the elements, which compromise the sta-
bility and representativeness of eigenvalues problems due to the local modal effects (as-
sociated with FE trusses). The second reason is linked to the intrinsic nature of each pro-
cedure. The explicit solver suffers from a time—step solution bias since considerable small—-
time increments are required to avoid a system misrepresentation. Although its use is rec-
ommended for many problems due to its stability—as fast-dynamic problems or when
interface contact exists [111-114] —, an explicit solver may lead to long and prohibitive
processing times and to larger disk storage space when conducting a seismic assessment
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study of a masonry structure. In converse, an implicit procedure allows larger time incre-
ments with the setback that a converged solution must be found for each iteration; how-
ever, this is well handled by the macro—element due to its robustness, as is demonstrated
next in Section 4.3.

4.3. Comment on the Computational Attractiveness of the (Discrete) Macro—Element

It has been seen that the macro-scale behaviour arises from the deformation of in—
and out-of—plane FE trusses that carry the material information (from experimentation or
numerical homogenisation). Restricting the macro—-deformation to linear elements brings
direct advantages due to its simplicity and one-dimensionality of the constitutive equa-
tions, cyclic behaviour, strength domain, inelastic strain evolution laws, and damage evo-
lution and tracking (closure—opening crack states). The use of advanced structural analy-
sis software, such as ABAQUS, is of utmost importance. In cases where a given instability
renders a not purely positive definite stiffness matrix, the traditional equation solvers (as
the Newton-Raphson, the modified Newton-Raphson, or secant methods) are unable to
give an adequate solution. In such situations, the software is robust because a modified
Riks method ([115-118]) is at its disposal to overcome snap-back and snap-through is-
sues. This is especially important when conducting quasi-static analysis in which material
(and of other kinds) non-linearities are active. A quasi-static type of analysis is performed
on the so—called LNEC brick house benchmark to demonstrate the efficiency of the macro-
element. Figure 12a depicts the brick structure, which is composed of three walls in a U-
shaped plan arrangement. The main fagade presents a gable wall (dimension s 3.50 x 2.75
m?) and is linked with two transversal walls (dimensions 2.50 x 2.25 m?). Walls are con-
structed with clay brickwork in an English-bond arrangement and have 235 mm of thick-
ness.

A mass proportional pushover analysis has been performed following the load di-
rection indicated in Figure 12a. Results from the macro—element (discrete) are compared
against a smeared (fixed) crack FE model. The assumed material properties (see Table 4)
are based on experimental and literature evidence [75,119], specifically the tension (f),
compression (f;), and shear (fier) strength values, and corresponding fracture energy
terms. A mesh size equal to 200mm has been assumed for both models to guarantee the
objectivity of the comparison. Likewise, the following have been considered (see [4]): (i)
an exponential softening in tension [4] governed by the tensile fracture energy, Gftension;
and (ii) a parabolic softening in compression [4] governed by the compressive fracture
energy, Gfwmpression. An exponential softening has been also assumed for the shear regime
within the macro—element model, albeit it is disregarded for the smeared crack model.

Analyses have been computed on a 64-bit Windows 7 computer with 16 GB RAM
and Intel i7 CPU running at 3.4 GHz. The obtained capacity curves and the required com-
putational times are given in Figure 12b. Differences in the peak (around 12%) and post-
peak response were expected due to the differences that both formulations contain. None-
theless, the aim of this comparison resorts especially on the computational time rather
than on the capacity curves. Herein, the macro—element allows reducing the computa-
tional cost by 41%. This is especially relevant if one states that the FE smeared crack mod-
els are typically the option for large-scale structures due to computational attractiveness
[2,4,5]. The improvement in the CPU time is mainly associated with the lower number of
iterations required by the macro—element model to compute the non-linear solution.
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Table 4. Material properties adopted for the LNEC brick house benchmark performance test.

Material Properties

Exx Eyy v ft Gftension fc chompression fshear Gfshem
(MPa) (MPa) () (MPa) (N/mm) (MPa) (N/mm) (MPa) (N/mm)

Macro—element (discrete) model 6400 3600 0200 0105 0012 2480 3.970 0.20 0.50
Smeared crack model 5170 5170 ) ' ' ) - -
. . 14 T T T T T T T T
Pushover direction
Discrete model (200mm mesh size)
12+ ——Smeared crack model (200mm mesh size) E
English bond pattern
Z Pushover
X 1r direction
0
x
9
E
g
oo
5 =
G g 187 s
9 o4l o 200 |
g & Pushover
= 5 100 direction
=
02 o .
Smeared Discrete
model model
0 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18
Displacement (mm)

(b)

Figure 12. Capacity (pushover) curve and required CPU time for the LNEC house benchmark: com-
parison between the macro—element (discrete) model and smeared crack model. (a) Geometry of the
LNEC brick house. (b) Capacity curves and required CPU time.

At last, the CPU time can be optimised if parallel computing is considered. In the
present study, the authors do not claim any inherent advantages due to the small-scale of
the structure. Nevertheless, parallelisation may have a special interest to speed up the
processing times for dynamic or large-scale problems [120,121]. Likewise, the use of
graphical processing units (GPU) can be an important booster, yet no investigation has
been conducted in this regard. Still, the use of CPU parallelisation and GPU are always
dependent on the machine at disposal

5. Final Remarks

A formal description and validation of a macro—element has been presented for the
three-dimensional analysis of masonry structures. The macro—element is based on the FE
method, but several simplifications have been developed to supply faster results than con-
ventional continuous FE models, such as those retrieved from smeared crack approaches.
It is aimed for the macro—scale analysis of structures, and based on a discrete approach;
specifically, quadrilateral rigid plates are connected at its interfaces by a set of FE trusses.
These one-dimensional elements govern the in—plane and out-of-plane deformations.
The constitutive response can be based on any plasticity model; however, the so—called
concrete damage plasticity model was assumed as it can reproduce well homogenised
material data provided from experimentation or numerical homogenisation of concrete-
like materials. A regularisation step corrects the fracture energy of the stress—strain input
curves according to the defined macro-mesh dimensions, thus guaranteeing the well-
posedness of the solution.
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Validation and convergence tests have been performed to evaluate if the macro—ele-
ment fulfils the requirements for (i) elastic problems; (ii) eigenvalue problems; and (iii)
nonlinear problems for monotonic and cyclic loading cases. The tests have shown that the
discrete model provides good results in both static and dynamic ranges. Likewise, it has
been concluded that a refinement level given by L/15 (L is the length of the wall side being
meshed) seems a reasonable choice for the mesh size when performing a structural anal-
ysis; at least in the case that a mesh sensitivity test is disregarded. Computational recom-
mendations have been also briefly addressed, as the use of an implicit solver scheme, the
use of the arc-length method for nonlinear quasi-static tests, and the use of a FE node
renumbering algorithm.

Although the application of discrete systems may be questionable in cases where
multiphase couplings can occur, as when thermal or hydro—mechanical effects exist, the
latter macro—element proved to be suitable for structural-oriented problems such as the
broader range of quasi—static and the seismic assessment of masonry structures. A decou-
pled characterisation for the admissible in— and out—of-plane deformations—that is cer-
tainly an approximation—proved to be reliable (at least for levels of pre—compression
lower than the masonry compressive strength). Nonetheless, the macro—element is robust
and can be implemented in any FE software, to any structural application, and perhaps
more importantly, to be used by both professionals and academics. As future research
streamlines, one can state that the reduced computational cost of the macro—element can
be explored: (a) within larger—scale structures [122,123]; (b) within a structural health
monitoring system [124,125] following the so-called digital twin framework; and (c) it can
be accounted within a probabilistic-based features for reliability and robustness-based
analysis.
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