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Abstract: Automated detection of ovarian follicles in ultrasound images is much appreciated when
its effectiveness is comparable with the experts’ annotations. Today’s best methods estimate follicles
notably worse than the experts. This paper describes the development of two-stage deeply-supervised
3D Convolutional Neural Networks (CNN) based on the established U-Net. Either the entire U-Net
or specific parts of the U-Net decoder were replicated in order to integrate the prior knowledge into
the detection. Methods were trained end-to-end by follicle detection, while transfer learning was
employed for ovary detection. The USOVA3D database of annotated ultrasound volumes, with its
verification protocol, was used to verify the effectiveness. In follicle detection, the proposed methods
estimate follicles up to 2.9% more accurately than the compared methods. With our two-stage CNNs
trained by transfer learning, the effectiveness of ovary detection surpasses the up-to-date automated
detection methods by about 7.6%. The obtained results demonstrated that our methods estimate
follicles only slightly worse than the experts, while the ovaries are detected almost as accurately as
by the experts. Statistical analysis of 50 repetitions of CNN model training proved that the training
is stable, and that the effectiveness improvements are not only due to random initialisation. Our
deeply-supervised 3D CNNs can be adapted easily to other problem domains.

Keywords: 3D Deep Neural Networks; 3D ultrasound images of ovaries; deep supervision; detection
of follicles and ovaries; U-Net based architecture

1. Introduction

A sexually mature female has two almond-shaped ovaries about the size of a large
grape, one on each side of the uterus. The human ovary consists of a surface, an inner
medulla and outer cortex, with indistinct boundaries between the latter two. The medulla
contains the blood vessels, lymphatic vessels and nerves, while the cortex embraces the
developing follicles [1]. The follicle is certainly a very important part of the ovary. It is
similar to a small sac filled with liquid, holding one immature egg (ovum). The ovary
contains thousands of follicles. A few selected follicles begin to develop (grow) during
each woman’s menstrual cycle. At the end of the menstrual cycle, typically, only one of
these follicles reaches maturity and the rest deteriorate. This mature, so-called dominant,
follicle breaks open and releases the egg from the ovary for possible fertilisation [1,2].

Monitoring changes in the ovary, especially follicle growth dynamics during the
menstrual cycle, is crucial for the fields of Obstetrics and Gynaecology (e.g., for In-Vitro
Fertilisation). On the other hand, the measurement of ovarian volume has been shown to
be a useful indirect indicator of the ovarian reserve in women of reproductive age, in the
diagnosis and management of a number of disorders of puberty and adult reproductive
function, and is under investigation as a screening tool for ovarian cancer [3]. Clinicians
today use non-invasive ultrasound devices regularly for these purposes, with which they
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conduct frequent examinations of patients. Modern ultrasound devices support 3D record-
ing, and contain computer algorithms that help Sonographers recognise the observed 3D
structures. The use of 3D ultrasound devices allows us to capture the entire ovary and
follicles in a single sweep, which may take seconds to complete, unlike 2D ultrasound
devices, where much more time is needed to capture the imaging material. Besides, the
3D recording enables a more detailed survey of the ovary and follicles compared to 2D
ultrasound. Several display modes and standardised examinations permit the observation
of ovary and follicles in controlled planes and rendered images from different (optimal)
angles. In this way, we can notice the peculiarities of the ovary and follicles faster and more
accurately [4].

The ovarian follicles manifest on ultrasound images (volumes) as darker regions
(volumes) on a brighter background. Figure 1 depicts a sample 3D ovarian ultrasound
image with follicles (coloured) inside an ovary (ochre) annotated by an expert in 2D views
of selected cross-sections through the volume (top row) and in a 3D view (bottom row).

Figure 1. Sample ultrasound volume from the USOVA3D database: (a) 2D views of an annotated
ovary (ochre) with follicles (coloured) superimposed on the selected cross-sections: ZY plane (left),
ZX plane (middle) and XY plane (right); (b) A 3D view of the cross-sections, shown in (a), through
volume with annotated follicles; and (c) The 3D view of the corresponding ovary.

Manual, or non-automated follicle observing in a day-to-day manner is very laborious
and time-consuming, and due to the routine nature of the work it can also lead to inaccura-
cies. Already in the 90s of the last century, computer procedures for follicle detection and
recognition began to appear, initially for the 2D ultrasound images [5]. This research and
application field has been evolving constantly with the introduction of increasingly efficient
and accurate automated or semi-automated detection algorithms, respectively. Thus, we
have witnessed a development from simple 2D detection methods in the 1990s, such as
solutions based on heuristic graph searching, optimal thresholding, cellular automata and
2D region growing, all the way to sophisticated approaches at the beginning of the 21st
century, such as are knowledge-based methods, methods based on cellular neural networks
and the Kalman filter [5,6]. The efficiency (usually sensitivity and precision were used
as the metrics) and accuracy (metrics mean absolute distance between the detected and
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annotated follicle) of detection approaches have increased with this development. 3D
ultrasound devices began to appear massively around 2000, and in a few years became
the de facto Standard in the field of Obstetrics and Gynaecology. Simultaneously, the
development of follicle detection approaches has shifted from methods designed to process
2D cross-sections through the ovary to true 3D detection methods that process 3D ovarian
ultrasound volumes as a whole. Among them we find successful methods based either
on continuous wavelets, levels sets, or on trained probabilistic frameworks of ovary and
follicle models [5,7]. The proprietary semi-automated detection algorithm SonoAVC [8],
incorporated in the General Electric ultrasound devices designed for automated volume
calculation, should also be pointed out. The 3D follicle detection method based on the
Directional 3D Wavelet Transform (3D DWT) [9], developed by our research group, has
proven to be also very efficient and accurate.

Recently, Deep Learning based approaches have been proposed for follicle and ovary
detection. The CR-Unet network [10] upgraded a 2D U-Net architecture by spatial Recurrent
Neural Network (RNN) modules. These RNN modules were used to learn large scale
spatial features in the segmentation model. The model was trained to detect ovaries and
follicles simultaneously as a three class segmentation problem. This model was, indeed,
trained on 2D ultrasound slices, but can also be applied in a slice-by-slice manner to 3D
volumes. The S-Net network [11] also utilised the 2D U-Net, with the difference that several
slices of a 3D volume were processed at once. Such processing enabled the extraction of
additional 3D information, and, thus, reduced discontinuities in the 3D segments. S-Net
treated ovary and follicle detection as two binary segmentation problems. It used a special
composite Binary Cross Entropy loss function that gave an additional penalty to follicle
detections outside the ovary. Both mentioned Deep Neural Networks were trained and
evaluated on proprietary databases, which makes direct comparisons with these results
difficult. However, the methods in [10,11] were compared directly, demonstrating S-Net [11]
to be superior.

After a brief review, we concluded that this research field is a mature, but still ac-
tive field, as the development of improved computer follicle detection approaches still
challenges many researchers [5,9–12].

Already in our review article [5] we identified the problem of unbiased comparison of
follicle detection algorithms. In order to validate the solutions, different research groups,
namely, use all sorts of metrics, evaluated on their own image datasets, in which the fol-
licles (ovaries) are annotated manually by experts according to their own protocol. Such
indefiniteness limits the objective comparison of different follicle-detection approaches. In
our previous work [7], we therefore published the USOVA3D public database of annotated
3D ultrasound images of ovaries, which was supplemented with a precisely specified verifi-
cation protocol for unbiased assessment of general detection algorithms. Additionally, two
baseline algorithms were introduced for follicle and ovary detection. The first algorithm,
3D DWT, uses heuristic features and a classical approach to designing algorithms. In fact,
it is a small upgrade of our most efficient follicle detection method to date [9]. The second
baseline algorithm, 2D UNET, demonstrates modern algorithm designing based on Deep
Learning, the Convolutional Neural Networks (CNN) theory, and established 2D U-Net
architecture. Both algorithms were evaluated on the USOVA3D testing set, and the baseline
results (i.e., scores) were established for the follicle and ovary detection efficiency [7]. We
also confirmed by thorough analysis that the USOVA3D database can be a reliable source
for developing new detection methods.

We deal with the development of effective learning-based object detection approaches
in 3D medical imaging data using 3D Convolutional Neural Networks in this research.
Although 2D CNN-based detection methods that process volumes in a slice-by-slice manner
and then combine partial results into a whole, generally tend to be superior in respect
of the ‘true’ 3D CNN-based detection methods that process volumes as a whole [13] (the
reasons are often the need for an extremely large number of training samples and the
huge computational complexity of 3D CNNs), the opposite will be demonstrated in this
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work. On the case of follicle and ovary detection in ovarian ultrasound volumes, we
will confirm experimentally that it is possible to develop sophisticated 3D CNN-based
methods that surpass 2D CNN-based methods and 3D methods based on ‘hand-crafted’
features. The development and verification of 3D detection procedures will be conducted
by using the USOVA3D public database, which is basically a relatively small database. It is
usually the lack of data that is the main reason for the lower efficiency of 3D CNN-based
detection methods [13]. However, it will be proven in this research that we can develop
an effective 3D detection method through appropriately supervised learning, despite the
relatively small training set. This paper thus introduces advanced solutions based on three-
dimensional CNNs for the follicle and ovary detection in ovarian ultrasound volumes.
Our solutions are based on the established U-Net architecture [14,15]. We have developed
advanced methods for 3D object detection in volumes by using the Deep Supervision
technique [16], and by replication of either the entire U-Net architecture or certain parts of
the U-Net decoder. The proposed approaches were designed primarily for 3D follicle and
ovary detection in ultrasound volumes. The effectiveness of the proposed methods was
verified by using the USOVA3D database.

The contribution of this research work is summarised in:

1. The development of sophisticated two-stage CNN-based algorithms for 3D object detec-
tion, whereat the algorithms are built on the U-Net architecture and Deep Supervision;

2. Introduction of the most effective 3D algorithms for follicle and ovary detection,
obtained by appropriately controlled training;

3. Effectiveness assessment of CNN-based object detection approaches by statistical
evaluation of multiple model training repetitions.

This article is structured as follows. A short overview of the USOVA3D public database
and employed evaluation protocol is given in Section 2. Novel 3D object detection algo-
rithms based on the U-Net architecture are described in detail in Section 3. In addition,
guidelines are provided on how to adapt these methods to detect follicles and ovaries.
Section 4 presents some of the results obtained on the USOVA3D database, followed by
Section 5, which emphasises certain aspects of our detection methods. Section 6 concludes
this paper briefly with some hints about future work.

2. Review of the USOVA3D Public Database and the Evaluation Protocol

The USOVA3D public database of annotated 3D ultrasound images of ovaries is
summarised briefly in this sequel, while details can be found in our previous work [7].
The database consists of 35 entries, which are predivided into training (16 entries) and
a testing (19 entries) sets. Each entry contains 5 volumes (3D images), namely, the orig-
inal ovarian ultrasound volume, two times manually annotated ovary and two times
manually annotated follicles. Manual annotations (segmentations) were provided indepen-
dently by two experienced medical experts (i.e., by rater 1 and rater 2). Its volume size
is between [101 . . . 229] × [89 . . . 193] × [115 . . . 247] voxels, with the voxel dimensions
0.2 mm × 0.2 mm × 0.2 mm. The raters’ manual annotations are considered as ‘ground
truth’. The USOVA3D database is accessible at the web address: https://usova3d.um.si
(accessed on 1 January 2022).

As is widely accepted, the use of training data is foreseen for the development of de-
tection algorithms, and a testing set is intended for an efficiency evaluation. The USOVA3D
database introduces a small change in respect of this established concept. Only the original
ovarian ultrasound volumes are available to researchers in the testing set, but not the
manual annotations of the ovaries and follicles. Validation of the new detection method is,
therefore, performed exclusively using the USOVA3D services on the USOVA3D portal,
as the ‘ground truth’ for the testing set is stored on the USOVA3D portal only, and is not
part of the publicly accessible USOVA3D database. Such design of the USOVA3D database
leads to a more fair validation and comparison of algorithms.

https://usova3d.um.si
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2.1. Evaluation Protocol

A general evaluation protocol for the unbiased assessment of detection algorithms was
also developed in [7] as a supplement to the USOVA3D database. This evaluation returns
an overall score of the detection algorithm, ξalg, which takes into account several aspects
of detection performance and accuracy (5 metrics) on all testing data. At the same time,
a detection that deviates more strongly from the average detection performance on the
testing set is considered in the overall score with a smaller weight. The advantage of our
protocol is that we obtain a single effectiveness estimate for each method over all metrics,
all raters, and all testing data, and, therefore, the methods do not need to be re-ranked
according to each of the individual metrics.

The overall algorithm score is determined as described in this sequel. An individual
detection algorithm is validated on the USOVA3D testing set in our research. Detection
effectiveness and accuracy are first evaluated using 5 metrics separately for each of the
19 entries in the testing set. The following metrics are calculated: (i) Product of sensitivity
and precision ((1) in [7]), (ii) Product ρ1ρ2, (iii) The ratio of the total volume of correctly
detected objects (follicles or ovary) and the total volume of all the referential objects
((2) in [7]), (iv) The mean Euclidean distance (in voxels) between the surfaces of correctly
detected and referential objects ((3) in [7]), and (v) The mean absolute difference (in voxels)
between the diameters of equivalent spheres that have the same volumes as the detected
and referential objects ((4) in [7]). The first three metrics have values between 0 and 1, while
the last two metrics are normalised to the interval [0, 1]. All five metrics are then summed
and multiplied by 20 to give the so-called combined score, i.e., a value between 0 and 100
for each entry (volume) in the testing set.

The USOVA3D database was annotated manually by 2 raters. The segmentation result
for each entry in the testing set is, therefore, compared to the annotations of both raters.
The metrics for those objects in the volume where the raters agreed in the annotations are
considered with greater weight than for objects where there was disagreement between
both the raters. The final score, ξvol , for an individual entry (volume) in the testing set
is calculated from the combined scores in this way. There are currently 19 entries in the
USOVA3D testing set, which means we get 19 final scores ξvol . Finally, the overall algorithm
score, ξalg, is determined by statistical analysis of the 19 final scores ξvol , calculated for all
volumes in the USOVA3D testing set.

An overall algorithm score was introduced primarily for ranking the detection algo-
rithms in respect of their performance. The overall score ξalg equal to 100 would have a per-
fect detection algorithm, while ξalg = 0 would be assigned to the worst detection algorithm
possible. The evaluation protocol summarised here is explained in detail in [7]. Auxiliary
routines that implement this evaluation protocol are available on the USOVA3D portal.

This evaluation protocol can also be used with a small extension to assess inter-rater
variability. In the case of the USOVA3D database, at first we take the annotations of the first
rater as ‘ground truth’ and the annotations of the second rater as the detection algorithm
results, and then calculate the overall score (ξrater2 score, that measures the variability
of rater 2’s annotations with respect to rater 1). Afterwards we reverse the raters’ roles
and repeat the calculation (ξrater1 score). The inter-rater variability and reliability of the
USOVA3D database has been analysed carefully in [7].

3. Computational Methods
3.1. U-Net Architecture

Our proposed solutions are based on the U-Net architecture [14,15], modified for 3D
volumetric data [17]. We chose U-Net as it has been proven as a baseline for the USOVA3D
database for ovary detection [7]. It is also a popular architecture for the problem of follicle
and ovary detection in ovarian ultrasound data [10,11].

The U-Net architecture in 3D space is identical to that in 2D, utilising 3D layers
and/or 3D building blocks instead of their 2D counterparts. The basic U-Net architecture is
constructed from a series of down-sampling encoders, followed by up sampling decoders
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organised in layers representing the scale of the feature map. An example is shown in
Figure 2.

Figure 2. Basic U-Net architecture with three multi-scale layers.

Each encoder contains a series of two convolution blocks and a max pooling layer.
Each convolution block consists of a convolution, batch normalisation and ReLU activation.
The output of the max pooling is used as the input of the next encoder, while the output
of the second convolution block is passed to the decoder. As the size of the feature map
decreases with pooling, the number of channels is doubled in the second convolution block.
There is the encoder with only two convolution blocks and no pooling at the lowest level in
Figure 2.

The output is then passed to the first decoder’s transposed convolution layer. Each
decoder consists of a transposed convolution, concatenation and two convolution blocks.
The transposed convolution up-samples the output of the previous decoder, while the con-
catenation combines this with the output of the second convolution block of the encoder on
the same scale level. Lastly, the output of the final decoder’s convolution block is processed
by a classification block constructed of a convolution layer and sigmoid activation.

The outputs of the last encoder and each decoder are feature maps optimised for the
targeted segmentation task. Feature maps from the final decoder are then passed through a
classification layer, a convolution with a sigmoid transfer function, to produce the targeted
segmentation map.

3.2. Deep Supervision

Adding and optimising intermediate outputs at multiple levels of a neural network
has been shown to improve training stability and performance. The Deep Supervision
introduced in [16] is an example of such successful approach.

Deep Supervision is often used in U-Net [10,11,18,19]. Figure 3 depicts an example
of the U-Net architecture using Deep Supervision. Additional classification layers are
added to the feature maps at each scale. Usually, these outputs are resampled to match
the sampling at the original input size, a loss is computed for each of them, and a final
combined loss over all layers is produced using a weighted sum. The weights are adjusted
commonly for each layer.

The predicted outputs on each level remain as they are in our implementation of Deep
Supervision, while the ground truth labels are subsampled to match the outputs’ sizes.
This reduces the memory requirements during training. No additional weighting scheme
is used to balance the loss of different outputs. The losses are summed up simply.

Figure 3. Three multi-scale layer U-Net with Deep Supervision. Additional outputs are introduced at
lower scales.
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3.3. U-Net Extensions

Quite a few studies have substantiated that detecting ovaries is a much more difficult
problem than detecting follicles in ultrasound images/volumes [5]. This is reflected in the
much greater inter-rater variability of ovary annotations in respect to the variability of
follicle annotations in the USOVA3D database [7]. Through experimentation, we found
that training an independent U-Net network either to predict solely ovaries, or jointly, to
predict ovaries and follicles, resulted in poorly detected ovaries and in a lower precision
metric if follicles were detected as well. On the other hand, training the U-Net for follicle
detection only improved results (i.e., recognition rate and accuracy).

It is known from the anatomy that the follicles are always located inside the ovary.
In this work, we aim to exploit this relationship and the follicle segmentation results to
improve the ovary segmentation. We developed a two-stage architecture for follicle and
ovary detection. Follicles are detected in the first stage, and the prior knowledge of the
ovary-follicles relationship is utilised in the second stage. The idea is similar to the 3D
DWT baseline function [7], except that this baseline function did not perform well when
detecting ovaries.

We have implemented two different extensions of the U-Net architecture to exploit
the ovary-follicles relationship. Both CNNs consist of one base U-Net network trained to
detect follicles. The extension is then applied to this network to predict ovary segments.

The first extension, EXT 1, shown in Figure 4, brings in a full additional U-Net network.
The implementation is trivial and straightforward. An output of the first network, i.e.,
a segmentation map for follicles, is concatenated with the input volume and passed to the
second U-Net network. By providing the segmentation maps of follicles we submit seeding
information about potential ovary location to the second network. Such information focuses
the second U-Net on the important parts of the input volume.

Figure 4. Example of the first proposed U-Net extension, EXT 1—two consecutive U-Nets: The
segmentation map of the first stage is concatenated with the input and passed as the input to the
second stage. The first stage detects follicles, while the second stage identifies the ovary. Deep
Supervision outputs are shown in a grey box.

The second extension, EXT 2, not only utilises the segmentation of follicles, but also
exploits the extracted features used to predict such segmentation. The EXT 2 extension is
depicted in Figure 5. The predictive features at each level of the base U-Net are passed
to the same level of the second network aimed for detecting the ovaries. These features
have already gone through the encoders of the base U-Net. However, these features have
been optimised for the follicle detection. In order to adapt them for ovary detection, we
introduced additional convolution blocks at the lowest layer, and additional decoders on
the higher levels of the second CNN.

Additional outputs are added to both extensions, as shown in grey in Figures 4 and 5
when training with Deep Supervision.
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Figure 5. Example of the second proposed U-Net extension, EXT 2—U-Net with a series of additional
decoders. The first stage detects follicles, while the additional decoders in the second stage identify
the ovary. Deep Supervision outputs are shown in a grey box.

3.4. Network Parameters

The multi-scale U-Net architecture is parametrised by a scale, convolution kernel size,
and a number of channels in the first convolution block. In our experiments, we used a
scale equal to 5, kernels of 3 × 3 × 3 for all convolution and transposed convolution layers,
and 8 channels for the initial convolution block. Every second convolution block in the
encoder doubles the number of channels. The network architecture is detailed in Figure 6.
When using Deep Supervision additional outputs were added, specified at the right of
the Figure.

Figure 6. Basic U-Net architecture with five scales, as used in our experiments. In front of each
scale on the left are depicted the spatial dimensions of the feature maps at that scale. Next to each
individual operation block on the arrow is marked the number of output channels for that block.

Our first proposed U-Net extension, EXT 1, concatenates the output of the basic U-Net
with the input volume, thus creating a 2-channel input. Such conglomerate is then passed
to the U-Net, as specified in Figure 6. The second proposed U-Net extension, EXT 2,
introduces additional decoders to the network. These are identical to the decoders in the
original U-Net. The extension layers are specified in Figure 7, and are connected to the
original U-Net layers (see also Figure 6). If Deep Supervision is employed, then additional
outputs must be introduced to the CNNs. These additional outputs are specified at the
right of Figures 6 and 7.



Appl. Sci. 2022, 12, 1246 9 of 21

Figure 7. New layers of the second U-Net extension (EXT 2) with five scales, as used in our experi-
ments. These layers (on the right) are connected with the basic U-Net (on the left), which is depicted
without annotations. See Figure 6 for an explanation of the basic U-Net and used denotations.

3.5. Follicle and Ovary Detection

All CNNs described in this article can be adapted easily to detect follicles and ovaries.
First, inputs (i.e., ovarian ultrasound volumes) and expected outputs (i.e., ground truth
for follicles and ovaries) need to be prepared properly, followed by appropriate Neural
Network training. In the case of the USOVA3D database data are already prepared, and
it is just a matter of implementation details of how the data are fed into the CNN. In this
sequel, we will provide some guidance on how to train the presented CNNs to be more
focused and controlled. Special emphasis will be placed on ovary detection by using the
U-Net extensions.

3.5.1. Transfer Learning

The proposed extended U-Nets can be trained definitively end-to-end to predict both
ovary and follicles. However, such simultaneous training for both types of objects can have
a negative impact on the ultimate detection effectiveness. We are dealing in both stages
with the optimisation, and therefore there may be a trade-off between the successfulness
of follicle and ovary detection. To avoid this problem, we trained the first stage or follicle
detection independently of the second stage. Afterwards, the weights of the trained CNN
from the first stage were frozen (i.e., the network was not trained, just weights were loaded)
and the weights for the second stage network were only trained/adapted. As already
mentioned, the second stage of the extended U-Net is aimed to detect ovaries.

The described approach is similar to the popular Transfer Learning techniques [20,21],
where weights of particular layers of a trained network on one problem are reused in the
similar network designed for a different application problem.

3.5.2. Loss Function

The proposed CNNs were trained by using the same loss function as defined in [7].
The loss function was left unchanged intentionally, as we wanted to demonstrate that all
the improvements were solely due to the CNN architecture modifications and supervised
training. Our final loss function L is, therefore, a combination of the binary cross-entropy
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loss (LEnt), the loss based on the Dice Similarity Coefficient (LDSC) and the loss based on
ρ1ρ2 product (Lρ1ρ2 ) [7]:

L(y, ŷ) = LEnt(y, ŷ) + LDSC(y, ŷ) + Lρ1ρ2(y, ŷ) , (1)

where y is the true and ŷ is the estimated object (annotation/segmentation), and the
individual losses are defined as

LEnt(y, ŷ) = − 1
H W D ∑

i
yi logŷi, (2)

LDSC(y, ŷ) = 1 − 2 ∑i yi ŷi

∑i yi + ∑i ŷi
, (3)

Lρ1ρ2(y, ŷ) = 1 − (∑i yi ŷi)
2

∑i yi ∑i ŷi
. (4)

The H, W, and D denote data volume size (i.e., H × W × D).
When the CNN has multiple outputs, which is either in the case of a network for

simultaneous detection of follicles and ovaries, and/or when the Deep Supervision is
employed, then the loss function, denoted as total loss LTotal , is calculated as the sum of
losses across all n outputs:

LTotal = ∑
n

L(yn, ŷn). (5)

3.5.3. Data Processing, Augmentation and Training

Some implementation details are provided in this sequel. The ovarian ultrasound
volumes were first scaled to the [0, 1] interval, followed by resampling and padding to
128 × 128 × 128 cubes. Data were augmented by random shuffling and flipping of volume
dimensions. The labels (annotations) were transformed accordingly.

For the CNN training purposes, the USOVA3D training set was split randomly into
new training and validation sets, keeping roughly 80% of samples for the training and 20%
for the validation. The same split was used in all training runs.

Our networks were trained using the Adam optimiser [22], with an initial learning
rate of 0.001. The learning rate was reduced by a factor of 0.5 every 15 epochs without loss
improvement on the validation set, while the training was stopped early after 50 epochs
without loss improvement. The training was limited to a maximum of 200 epochs. All
specified hyper-parameters were determined by experimenting (partly inspired by [7]).
The best and the last models were saved. The best model (denoted as ‘best’ in parentheses
next to the method name) being the one with the lowest validation loss, while the last
model (denoted as ‘last’) being the one after the last training step.

The training procedure was repeated 50 times for each CNN model configuration.
Such one-time training is called a run in the sequel. It should be emphasised that the data
split was the same, although the model was reinitialised in every run, whereat weights
were determined randomly from the same distribution.

4. Results

Our proposed 3D object detection methods based on established U-Net architecture
were evaluated by using the testing set of the USOVA3D database. This testing set contains
19 ovarian ultrasound volumes, whereas manual annotations from two raters for follicles
and ovaries are part of a precisely specified validation protocol (see Section 2.1). The
USOVA3D database is supplemented by the 3D DWT and 2D UNET baseline functions [7]
which set the baseline statistical metrics of follicle and ovary detection effectiveness. For
that reason, these baseline metrics, as well as the inter-rater variabilities, were incorporated
into the results. Algorithms were ranked using an overall (algorithm) score ξalg, whereat a
higher value indicates a more effective detection algorithm.
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Table 1 contains the results of ovarian follicle detection for the original 3D U-Net (3D
UNET) and by Deep Supervision (DS) upgraded (+) 3D U-Net method (3D UNET + DS).
Each method was trained and evaluated 50 times on the USOVA3D database. Minimum,
maximum, mean and median are presented of the algorithm’s effectiveness over 50 runs.
The ‘best’ designates that the CNN model with the lowest validation loss was selected,
while the ‘last’ means that the model was picked in a particular run after the final training
step. Although both proposed U-Net extensions, i.e., EXT 1 and EXT 2, were not developed
primarily for follicle detection, we trained them to detect follicles according to the above
described procedure (see also the previous section) and in an ‘end-to-end’ manner. These
results were added to the Table 1 as well.

Table 1. Effectiveness of the proposed follicle detection methods trained and evaluated 50 times on
the USOVA3D database. Minimum, maximum, mean and median of the overall algorithm’s score are
presented over 50 runs. Entries are sorted with respect to the median value.

Method min(ξalg) max(ξalg) mean(ξalg) ± std(ξalg) median(ξalg)

3D UNET + DS (last) 73.7 80.0 77.7 ± 1.6 78.0
EXT 2 + DS (last) 74.4 80.4 77.3 ± 1.3 77.3
EXT 2 + DS (best) 71.0 80.2 76.7 ± 1.7 76.8
EXT 1 + DS (last) 71.2 79.9 76.0 ± 1.9 76.3

3D UNET + DS (best) 70.4 79.7 76.0 ± 2.0 76.3
EXT 1 + DS (best) 64.5 80.5 75.3 ± 3.0 75.9
3D UNET (best) 64.9 74.8 70.0 ± 2.1 70.1
3D UNET (last) 61.1 74.4 69.0 ± 2.7 69.7

Afterwards, a comparison was made with both USOVA3D baseline functions, with
the state-of-the-art SNET method [11], and with the variability of both raters by follicle
annotating. Inter-rater variability represents the upper limit of performance to which we
aspire. This comparison can be seen in Table 2. We entered the results in this table only for
the more effective CNN model, which we got among 50 runs for our individual method (i.e.,
a run where the max from Table 1 was obtained). In one row, there are aggregated results
over all 19 test volumes for a particular method: Min and max denote the effectiveness
(i.e., the final score), on the worst or best detected volume respectively, followed by median
statistics over 19 test volumes, and, finally, the overall algorithm score is given. The
implementation of the SNET [11] is not available publicly, so we implemented this method
by ourselves based on published information. We applied the specified hyperparameters
from [11]. The same training protocol (i.e., 50 runs) was utilised as by all our methods, and
only the max obtained result was entered in Table 2.

The evaluation protocol used in this study (see Section 2.1) was published recently
in [7], and is, therefore, not yet used regularly by publishing results. For this reason,
we have evaluated the effectiveness of selected follicle detection methods further using
Sensitivity or Recall (S), Precision (P), Dice Similarity Coefficient (DSC), Jaccard Index (JCI)
and the F1 score (F1), which are established metrics, but each of them covers only one aspect
of the algorithm’s detection performance (On the other hand, our used evaluation protocol
combines several aspects over several raters into a common assessment or overall score,
respectively!). Data in the USOVA3D database were annotated by two raters, therefore, the
algorithm’s segmentation result on each volume was compared with each of the annotations,
and, finally, the average and Standard Deviation of the selected metric were calculated over
all 19 testing volumes and both raters. The metrics calculated in this way are gathered in
Table 3. Only the more successful variants of the proposed and compared methods have
been added to this table (see also Table 2).
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Table 2. Effectiveness of the proposed follicle detection methods compared to the state-of-the-art and
inter-rater variability. Presented are the final score statistics and the overall algorithm’s score on the
USOVA3D database. Entries are sorted with respect to the overall score.

Method median(ξvol) min(ξvol) max(ξvol) ξalg

Rater 1 vs. rater 2 84.1 72.7 91.2 83.9
Rater 2 vs. rater 1 84.5 70.4 91.5 83.1

EXT 1 + DS (best) 80.9 63.2 93.5 80.5
EXT 2 + DS (last) 82.8 65.3 92.5 80.4
EXT 2 + DS (best) 81.9 63.4 92.4 80.2

3D UNET + DS (last) 83.0 67.5 93.3 80.0
EXT 1 + DS (last) 80.7 65.9 93.2 79.9

3D UNET + DS (best) 82.6 56.1 93.9 79.7
3D DWT (baseline 1) 79.3 59.7 90.6 78.2

3D UNET (best) 76.0 59.6 90.4 74.8
3D UNET (last) 76.0 54.0 93.0 74.4

SNET (best) 74.6 47.7 89.1 72.6
2D UNET (baseline 2) 75.1 43.8 91.5 72.5

Table 3. Effectiveness of the proposed follicle detection methods compared to the state-of-the-art
and inter-rater variability. Presented are the mean and Standard Deviation of Sensitivity or Recall
(S), Precision (P), Dice Similarity Coefficient (DSC), Jaccard Index (JCI), and the F1 score (F1) on the
USOVA3D database.

Method S P DSC JCI F1

Rater 1 vs. rater 2 0.881 ± 0.152 0.850 ± 0.254 0.863 ± 0.055 0.769 ± 0.076 0.825 ± 0.168
Rater 2 vs. rater 1 0.850 ± 0.254 0.881 ± 0.152 0.863 ± 0.055 0.769 ± 0.076 0.825 ± 0.168

EXT 1 + DS (best) 0.795 ± 0.245 0.940 ± 0.141 0.812 ± 0.109 0.715 ± 0.133 0.830 ± 0.190
EXT 2 + DS (last) 0.799 ± 0.253 0.943 ± 0.147 0.808 ± 0.113 0.710 ± 0.131 0.828 ± 0.192
3D UNET + DS

(last) 0.768 ± 0.251 0.970 ± 0.097 0.811 ± 0.102 0.712 ± 0.125 0.829 ± 0.189

3D UNET (best) 0.758 ± 0.256 0.852 ± 0.215 0.791 ± 0.095 0.682 ± 0.117 0.760 ± 0.193
SNET (best) 0.797 ± 0.248 0.900 ± 0.174 0.719 ± 0.153 0.613 ± 0.171 0.808 ± 0.182

For illustration, we also calculated the effectiveness of better follicle detection methods
at the level of all detected voxels, i.e., we did not consider to which follicle the voxel
belonged. Actually, we evaluated the effectiveness of a binary segmentation of selected 3D
detection methods (segmented voxel value 1 determines the Region of Interest, while value
0 means the background). Besides the classical metrics written above, we also calculated
the Accuracy (ACC) metric. We were not able to calculate the Accuracy at the ‘follicle
level’, as our CNN networks do not return information about True Negatives. It should
also be noted that the Dice Similarity Coefficient and the F1 score are the same in the case
of Boolean or binary data analysis. The calculated metrics are collected in Table 4.

Our methods were then evaluated in respect to the effectiveness of ovary detection. If
the 3D U-Net (with or without Deep Supervision) was trained in detecting ovaries directly
(as by follicle detection), such an approach was significantly less successful than the baseline
methods. A similar result was observed if our U-Net extensions were trained to detect
follicles and ovaries simultaneously. Some results of these non-successful experiments
are not reported. To detect the ovaries, we therefore utilised variations of both the U-Net
extensions (i.e., EXT 1 and EXT 2) proposed in Section 3.3, whereas the network from the
first stage was pretrained on the problem of ovarian follicle detection. A kind of Transfer
Learning (see Section 3.5) was employed, because the weights of the network from the first
stage were frozen, and were no longer adapted during the ovary detection training. Table 5
contains the results of ovary detection for both the proposed pretrained U-Net extensions
(EXT 1 and EXT 2), with or without Deep Supervision (+DS). Each method was trained and
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evaluated 50 times on the USOVA3D database. Minimum, maximum, mean, and median
are presented of the algorithm’s effectiveness over 50 runs. The ‘best’ designates that the
CNN model with the lowest validation loss was selected, while the ‘last’ means that the
model was picked in a particular run after the final training step.

Table 4. Effectiveness of the proposed follicle detection methods compared to the state-of-the-art
and inter-rater variability, calculated on the ‘voxel level’, where it is not considered to which follicle
the voxel belongs. Presented are the mean and Standard Deviation of Sensitivity or Recall (S),
Precision (P), Dice Similarity Coefficient (DSC), Jaccard Index (JCI), and the Accuracy (ACC) on the
USOVA3D database.

Method S P DSC JCI ACC

Rater 1 vs. rater 2 0.904 ± 0.056 0.905 ± 0.067 0.902 ± 0.039 0.824 ± 0.063 0.977 ± 0.013
Rater 2 vs. rater 1 0.905 ± 0.067 0.904 ± 0.056 0.902 ± 0.039 0.824 ± 0.063 0.977 ± 0.013

EXT 1 + DS (best) 0.809 ± 0.135 0.958 ± 0.039 0.871 ± 0.089 0.781 ± 0.128 0.974 ± 0.017
EXT 2 + DS (last) 0.806 ± 0.143 0.956 ± 0.044 0.866 ± 0.092 0.775 ± 0.131 0.973 ± 0.017
3D UNET + DS

(last) 0.794 ± 0.135 0.960 ± 0.041 0.860 ± 0.086 0.767 ± 0.124 0.971 ± 0.020

3D UNET (best) 0.800 ± 0.140 0.919 ± 0.082 0.849 ± 0.104 0.750 ± 0.141 0.969 ± 0.020
SNET (best) 0.757 ± 0.206 0.939 ± 0.050 0.821 ± 0.154 0.720 ± 0.193 0.969 ± 0.021

Table 5. Effectiveness of the proposed ovary detection methods trained and evaluated 50 times on
the USOVA3D database. The minimum, maximum, mean and median of the overall algorithm’s
score are presented over 50 runs. Entries are sorted with respect to the median value.

Method min(ξalg) max(ξalg) mean(ξalg) ± std(ξalg) median(ξalg)

EXT 2 + DS (last) 63.0 76.0 71.7 ± 2.5 71.8
EXT 1 + DS (best) 62.1 76.2 70.3 ± 3.3 70.5
EXT 2 + DS (best) 60.0 74.9 69.1 ± 3.7 69.4
EXT 1 + DS (last) 53.1 77.7 68.9 ± 5.0 68.6

EXT 1 (best) 59.1 72.6 66.9 ± 3.1 67.0
EXT 1 (last) 53.7 71.8 64.7 ± 4.1 65.0

3D UNET (best) 56.8 72.8 64.2 ± 3.8 64.6
3D UNET + DS (best) 56.1 70.8 63.3 ± 3.4 63.3

EXT 2 (best) 54.0 68.9 62.2 ± 3.5 62.3
EXT 2 (last) 54.1 68.7 62.3 ± 3.3 62.3

3D UNET + DS (last) 50.0 63.0 58.0 ± 2.8 58.4
3D UNET (last) 43.8 69.8 56.8 ± 5.0 56.3

In a similar way to the follicles, a comparison was also made with the state-of-the-art
method SNET [11], USOVA3D baseline functions, and with the variability of both raters
in ovary annotating. The results are gathered in Table 6. The more successful variants
of the detection methods from this table were also evaluated using the Dice Similarity
Coefficient and Jaccard Index (Sensitivity, Precision, and F1 score equals 1 for all ovary
detection methods!). The mean and Standard Deviation of both metrics are presented in
Table 7.
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Table 6. Effectiveness of the proposed ovary detection methods compared to the state-of-the-art and
inter-rater variability. The final score statistics are presented, together with the overall algorithm’s
score on the USOVA3D database. Entries are sorted with respect to the overall score.

Method median(ξvol) min(ξvol) max(ξvol) ξalg

Rater 1 vs. rater 2 79.1 52.7 96.0 76.1
Rater 2 vs. rater 1 78.8 45.5 96.1 75.5

EXT 1 + DS (last) 79.9 51.6 91.5 77.7
EXT 1 + DS (best) 78.8 50.3 92.6 76.2
EXT 2 + DS (last) 80.9 52.1 93.4 76.0
EXT 2 + DS (best) 81.6 47.7 92.0 74.9
3D UNET (best) 75.8 47.7 88.4 72.8

EXT 1 (best) 75.9 48.9 93.3 72.6
2D UNET (baseline 2) 73.6 40.5 87.9 72.2

EXT 1 (last) 74.9 48.8 92.3 71.8
3D UNET + DS (best) 73.7 47.7 91.1 70.8

3D UNET (last) 71.4 42.5 92.2 69.8
SNET (best) 65.7 45.6 86.7 69.4
EXT 2 (best) 69.6 50.9 88.3 68.9
EXT 2 (last) 65.7 47.5 89.6 68.7

3D DWT (baseline 1) 72.5 18.3 87.1 63.3
3D UNET + DS (last) 59.3 42.2 92.6 63.0

Table 7. Effectiveness of the proposed ovary detection methods compared to the state-of-the-art
and inter-rater variability. Presented are the mean and Standard Deviation of the Dice Similarity
Coefficient (DSC) and Jaccard Index (JCI) on the USOVA3D database.

Method DSC JCI

Rater 1 vs. rater 2 0.880 ± 0.070 0.793 ± 0.111
Rater 2 vs. rater 1 0.880 ± 0.070 0.793 ± 0.111

EXT 1 + DS (last) 0.865 ± 0.088 0.771 ± 0.127
EXT 2 + DS (last) 0.852 ± 0.102 0.753 ± 0.143
3D UNET (best) 0.833 ± 0.112 0.728 ± 0.152

3D UNET + DS (best) 0.829 ± 0.108 0.722 ± 0.147
SNET (best) 0.802 ± 0.131 0.686 ± 0.162

Similarly as for follicles, we also calculated the effectiveness of better ovary detection
methods at the level of all detected voxels, i.e., all metrics were calculated across all properly
segmented voxels and not at the level of the entire ovary. The results are gathered in Table 8.

Table 8. Effectiveness of the proposed ovary detection methods compared to the state-of-the-art and
inter-rater variability, calculated on ‘voxel level’. Presented are the mean and Standard Deviation of
Sensitivity or Recall (S), Precision (P), Dice Similarity Coefficient (DSC), Jaccard Index (JCI), and the
Accuracy (ACC) on the USOVA3D database.

Method S P DSC JCI ACC

Rater 1 vs. rater 2 0.936 ± 0.066 0.844 ± 0.126 0.880 ± 0.070 0.793 ± 0.111 0.930 ± 0.056
Rater 2 vs. rater 1 0.844 ± 0.126 0.936 ± 0.066 0.880 ± 0.070 0.793 ± 0.111 0.930 ± 0.056

EXT 1 + DS (last) 0.844 ± 0.128 0.906 ± 0.098 0.865 ± 0.088 0.771 ± 0.127 0.924 ± 0.065
EXT 2 + DS (last) 0.853 ± 0.145 0.870 ± 0.102 0.852 ± 0.102 0.753 ± 0.143 0.920 ± 0.059

3D UNET + DS (best) 0.813 ± 0.165 0.894 ± 0.120 0.833 ± 0.112 0.728 ± 0.152 0.909 ± 0.072
3D UNET (best) 0.805 ± 0.177 0.902 ± 0.114 0.829 ± 0.108 0.722 ± 0.147 0.913 ± 0.059

SNET (best) 0.802 ± 0.169 0.823 ± 0.124 0.802 ± 0.131 0.686 ± 0.162 0.899 ± 0.054
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5. Discussion

Training (Convolutional) Neural Networks is, to some extent, a stochastic process.
With constant input data, the transformation function that the CNN will learn also depends
on the type of chosen optimisation algorithm, and the procedure by which synaptic weights
are initialised. Based on a variety of experiments and studies, the research community has
developed recommendations for selecting the more appropriate optimisation and weight
initialisation procedures [23]. We followed these guidelines in this study as well. Even if
the optimisation function and the weight initialisation procedure are fixed, as they were
in this study, the CNN training is still stochastic. The reason is that synaptic weights are
set initially to random values determined by some initialisation procedure. We argue that
a new CNN is established after each repetition of training, whereas such CNN will, of
course, implement a novel transformation function. The latter does not apply only in
the exceptional case when the synaptic weights would be initialised to fixed values, thus
obtaining an identical CNN after every training. However, the stochastic procedure for
synaptic weights’ initialisation is employed commonly in practice (also in this research).

It is a standard convention in reporting the effectiveness of learning-based approaches
that only a single best result is presented obtained with the selected CNN architecture.
Unfortunately, such compact presentation also has drawbacks, as it is not evident whether
the improvement in detection performance was only due to the stochasticity of weight
initialisation, or whether it is really a methodological refinement of detection. For the
reasons described, the training of our detection methods was repeated 50 times in this
study. Various statistics for these 50 training runs, such as minimum, maximum, expected
average and median effectiveness, were then summarised in the results (see Tables 1 and 5).
By comparison with the state-of-the-art, only the results of the best runs (models) were
indeed incorporated in Tables 2 and 6, but, in this discussion, we will evaluate the results
more critically.

To begin with, it should be stressed that a kind of ablation study [24] was conducted
in this article. Namely, we monitored the performance of our detection ‘system’ by remov-
ing/adding certain components, to understand the contribution of the component to the
overall system. Let us focus on the follicles first. We noticed that the effectiveness of the
original 3D U-Net (3D UNET) was in the range of results of the 2D UNET baseline method.
The results have improved remarkably with the incorporation of Deep Supervision into 3D
UNET (see Figure 3), which undoubtedly indicates the positive influence of this component
on the follicle detection. With the proposed EXT1 and EXT 2 extensions, we were not able
to improve the statistically significant the results of the ‘3D UNET + DS (last)’ method. The
‘3D UNET + DS (last)’ and ‘EXT 2 + DS (last)’ methods do not differ statistically significantly
(Wilcoxon rank sum test at 5% significance level) based on 50 runs. However, it is also true
that, by using our proposed methods, we obtained maximum overall algorithm’s scores
higher than the ‘3D UNET + DS (last)’ method. On the other hand, the effectiveness of all
the other follicle and ovary detection methods, from Tables 1 and 5, trained and evaluated
50 times on the USOVA3D database, do differ statistically significantly (the same Wilcoxon
test was applied).

More consideration is needed by the ovary detection. In this work, we have expanded
the original 3D U-Net once by duplicating the entire architecture (EXT 1 extension), and
the second time by duplicating the decoder components (EXT 2 extension), as detailed
in Section 3.3. The EXT 2 extension hardly improved the 3D UNET results, while the
application of EXT 1 contributed on average up to a 2.7 higher overall algorithm score. The
introduction of Deep Supervision in EXT 1 and EXT 2 also improved the results notably in
the case of the ovaries. The average overall score increased at best by 6.1 (EXT 1) and 7.5
(EXT 2) respectively, simultaneously increasing training stability (see Mean and Standard
Deviation in Table 5). A similar trend was observed for the median of the overall algorithm
score. It should be noted that the mere integration of Deep Supervision into the original 3D
U-Net has practically not improved the effectiveness of ovary detection.
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An additional comment is needed when assessing the results using the best models
on the validation set (denoted ‘best’), or the models after the last training step (‘last’),
respectively. One would expect that, if a model is effective on a validation set, it will also
be effective on a testing set, and vice versa. However, a certain inconsistency was noticed
in Section 4. The reason is sought in the small USOVA3D database for which the testing set
was determined manually without serious analysis [7]. The training set (with the validation
set as part of it) does not summarise/reflect the statistics of the data in the testing set
credibly, and, as a consequence, there were oscillations in performance by the ‘best’ and
‘last’ models.

Let us analyse the effectiveness of follicle and ovary detection using our proposed
methods in this sequel. For follicle detection, it pointed out that the effectiveness of the 3D
DWT baseline function was surpassed with the best runs of the ‘3D UNET + DS’ method
and our proposed methods (see Table 2). As mentioned earlier, it can be misleading to
observe only the results of the best training run. From Table 1 it can be noticed that the
median of the ‘3D UNET + DS (last)’ and ‘EXT 2 + DS (last)’ methods are almost equal to
the result of the 3D DWT baseline function. Based on the median and mean values, we
concluded that a result better or equal to the USOVA3D baseline result would be got from
every other run of these two methods. The latter undoubtedly confirms that our proposed
method also improved the successfulness of the 3D DWT baseline function, and that the
higher overall algorithm score was not merely due to the different initialisations of the
CNN models. A similar conclusion can be drawn for our 3D ovary detection methods.
The obtained results with the best runs of our approaches were at least in the rank of the
better 2D UNET baseline function, or the baseline results were exceeded in most cases,
respectively. When using both U-Net extensions with integrated Deep Supervision, the
results of the best runs were alongside the inter-rater variability, while, in the case of the
‘EXT 1 + DS’ method, this variability was even exceeded. The mean and median statistics
in Table 5 are more conclusive, which first reveal that, so far, the best 2D UNET (baseline)
method was surpassed by both the ‘EXT 1 + DS’ and ‘EXT 2 + DS’ methods, and, at the same
time, our proposed methods are still behind the accuracy of the raters. We notice in Table 6
that the inter-rater variability for the ovaries is importantly higher than for the follicles (i.e.,
lower ξalg for ovaries than for follicles). This discrepancy in the raters’ annotations (labels)
certainly affects the CNN models’ training with greater instability, thereby influencing the
variation of the obtained results and their scatter (e.g., higher Standard Deviation). Let us
emphasise once again that the labels of both raters were considered equally in the training.

Adding noise to training data is one of regularisation techniques that reduces the
possibility of CNN overfitting [23]. Based on the Dice Similarity Coefficient calculated
between both raters, we ascertained that the raters annotated the same ovarian ultrasound
volume to some extent differently. Nevertheless, we passed both non-identical annotations
for the same structure (i.e., for ovary or follicle) into the training, which, of course, intro-
duced some noise into the data, but at the same time prevented the CNN from overfitting.
It should also be emphasised that the ultrasound is a rather demanding modality, which
is reflected in the subjective interpretation of the imaging material. Particularly pressing
is the accurate determination of object boundaries (e.g., for ovaries and follicles), which
are often inexpressive and jagged. The complexity of interpreting ultrasound data from
the USOVA3D database is, thus, reflected in the higher inter-observer variability (e.g., DSC
and JCI coefficients much lower than 1).

In our study, we chose S-Net [11], which is also based on the U-Net architecture, as
a state-of-the-art for a comparison with our methods. Mathur et al. have shown in [11]
that S-Net is currently the most effective follicle and ovary detection method. The latter
was substantiated by 0.93 mean Sensitivity and by 0.92 (ovary) and 0.87 (follicle) mean
Dice Similarity Coefficient (DSC) by detection, respectively. All metrics were calculated
on 20 testing ovarian ultrasound volumes from their private database. To the best of our
knowledge, their testing data and the code of S-Net are not publicly available, therefore,
we implemented this method by ourselves, and tested it on the public USOVA3D database.
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The obtained results were evaluated both with our evaluation protocol and with the usual
metrics (i.e., DSC, Jaccard index). It pointed out that our proposed ‘EXT 1 + DS’ and
‘EXT 2 + DS’ methods outperformed S-Net in virtually all metrics, both in follicle and
ovary detection (see Tables 2, 3, 6 and 7). Besides, we note that the ranking of detection
methods based on our evaluation protocol or based on established metrics is consistent,
whereat the advantage of our protocol being that we obtain a single effectiveness estimate
for each method and, therefore, the methods do not need to be re-ranked according to
each of the individual metrics. The following should be also emphasised when comparing
effectiveness of our methods and S-Net. S-Net achieved very high mean sensitivity (0.93)
and mean DSC (around 0.9) by detection on private testing data. For the public USOVA3D
database, however, we observe that even inter-rater variability with 0.88 Sensitivity and
Dice Similarity Coefficient of 0.88 (ovary) or 0.86 (follicles) is far behind the S-Net results.
The latter indicates undoubtedly that USOVA3D is an extremely challenging database.

In our opinion, a direct comparison of the calculated effectiveness metrics for our
methods with the effectiveness metrics of similar works is not relevant, as different research
groups have evaluated their solutions (some were designed for 2D ultrasound data) on
their private ovarian ultrasound data. The problem of the large variation in the algorithm’s
effectiveness metrics, calculated on different data, was, in this study, demonstrated above
in the case of the state-of-the-art S-Net method. Cigale et al. [9] compared in detail their
3D DWT detection method with selected advanced algorithms (including the SonoAVC
algorithm integrated into General Electric ultrasound devices) on the same, i.e., today
publicly available ovarian ultrasound data (at that time the USOVA3D database was not yet
published). They demonstrated the superiority of their method by all criteria. This 3D DWT
method was then added to the USOVA3D database as a baseline function 1. In this study,
however, we proved experimentally that our proposed solutions surpassed the 3D DWT
method in respect to the effectiveness. Based on all the results and analyses, our methods
can also be considered the state-of-the-art in the field of Ovary and follicle detection.

Our study is not a clinical study, so information about clinically acceptable detection
errors was not available. The comparison was, therefore, made with an inter-observer
variability. The DSC coefficient was lower by less than 2% and the JCI index was lower
by less than 3% in respect to the inter-observer variability (i.e., an estimate of detection
accuracy that we can expect from experts) when detecting ovaries with our best ‘EXT 1 + DS’
method. In the detection of follicles, however, Sensitivity was lower by about 8%, the DSC
coefficient by about 6% and the JCI index by about 7% in respect to the inter-observer
variability. In summary, our best methods are, for ovary detection, in the range of the
experts’ accuracy, while for follicle detection, we are still behind the experts, and, therefore,
it would be necessary to verify the results manually in the clinical practice.

Figure 8 depicts some typical qualitative results for the better compared methods.
Computer detected follicles and ovary are superimposed on the selected cross-sections of
ovarian ultrasound volume. The difficulty of detection in the USOVA3D database can be
seen clearly, as the edges of the follicles and ovary are very indistinct. Annotations of rater
1 for this volume and these cross-sections are shown in Figure 1.

Let us also consider the capacity of our CNN models. The original 3D U-Net has a
little over 4.82 Million (M) of free parameters, while this number increased by 484 when
the Deep Supervision was integrated. Both 3D U-Net extensions were designed primarily
to detect the ovaries, however, they were also applied successfully for follicle detection.
The EXT 1 architecture has a total of 9.64 M parameters, of which 4.82 M parameters are
frozen or fixed by Transfer Learning (if the case of ovary detection), respectively. The frozen
parameters are for the first stage of the EXT 1 model. The proposed EXT 2 extension is
more complex, as it has a total of 11.41 M parameters, whereas also 4.82 M parameters from
the first stage are frozen or pretrained (by ovary detection), respectively. The integration
of Deep Supervison in the 3D U-Net extensions contributed an additional 968 parameters,
of which 484 were trainable (by ovary detection). In contrast, although 2D UNET has a
total of 31.13 M parameters, which is almost 3 times more than our proposed methods, its
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effectiveness of follicle and ovary detection is remarkably inferior to our methods. Our
deep models were indeed trained on a small number of volumes (16) as there are no more
training data available in the USOVA3D database. The lack of data was mitigated by
meaningful preprocessing and the use of augmentation. The fact that we train our CNN
models of segmentation, where each output voxel represents its own training sample, also
contributed to the successful training of our models. The number of voxels in our volumes
is, of course, extremely large. (It is also true that samples are not completely independent.)
We did not diagnose the overfitting problem when training our CNNs by USOVA3D data.

(a)

(b)

(c)

(d)

Figure 8. Qualitative results for the better compared methods. Detected follicles and ovary are
superimposed on the selected cross-sections: (a) ‘EXT 1 + DS (best)’ method; (b) ‘EXT 2 + DS (last)’
method; (c) ‘SNET (best)’ method; (d) ‘3D UNET + DS (best)’ method. Rater’s annotations are shown
in Figure 1.

CNN training is computationally demanding. An exhaustive experimentation with
50 repetitions of CNN models’ training was performed by using the HPC RIVR MAISTER
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powerful public supercomputer in Maribor, Slovenia (https://www.hpc-rivr.si, accessed
on 1 January 2022). Six dual-processor compute nodes, each with 4 additional Nvidia
Tesla V100 Graphics Processing Units, GPU (each GPU had 32 GB of RAM), with a total
of 122,952 cores, were utilised on this supercomputer. Follicle detection training took
about 3 s per step, or about 70 s per epoch. On the other hand, the EXT 1 and EXT 2
extensions, developed primarily for the ovary detection, took up to 5 s for the training step
and about 120 s per epoch, respectively. The trained network conducted an inference in
around 9 s per volume, which also includes all volume resizing, and storing the result on
the secondary memory.

6. Conclusions

The main intention of this paper was to introduce efficient 3D object detection algo-
rithms, aimed primarily to detect follicles and ovaries in ultrasound volumes. We took a
learning-based design approach, relying on the established U-Net architecture, and up-
grading it in this research. Two methods for indirect or two-stage object detection were
developed respectively, namely, in the first solution the entire U-Net architecture was
duplicated, while, in the second solution, just certain parts of the U-Net model decoder
were replicated. The first stage of such CNN introduces a kind of prior knowledge into
the detection process, as it directs the ‘second stage’ to that part of the 3D space (volume)
where the searched object is more likely to be located. Deep Supervision was integrated
into both CNNs as well, which had a positive effect on the training of the lower layers of
the Neural Network. The proposed methods were verified by the detection of follicles and
ovaries in ultrasound volumes. The methods were trained end-to-end by follicle detection,
while an idea of Transfer Learning was utilised by ovary detection. The latter means that
the ‘first stage’ of the CNN was trained separately on the problem of follicle detection, and,
afterwards, the trained ‘first stage’ was, by Transfer Learning, employed by training the
‘second stage’ to detect ovaries.

The follicle detection results pointed out that our proposed U-Net extensions did not
statistically significantly improve the results of the with Deep Supervision integrated 3D
U-Net. However, we obtained higher effectiveness than 3D U-Net (+ Deep Supervision) by
some repetitions of our CNNs’ training. On the other hand, the superiority of our proposed
methods was indisputable in the detection of ovaries. The results pointed out up to 7.6%
more accurate detection compared to the up-to-date automated ovary detection methods.
Our two-stage CNNs estimated follicles only slightly worse than the raters, while our
methods estimated the ovaries with almost the same accuracy as the raters. We verified
by quantitative metrics that our proposed methods, both in the case of follicle and ovary
detection, are more effective than the USOVA3D baseline functions and the state-of-the-art
method S-Net [11] on the very challenging USOVA3D testing data.

We demonstrated that the improvements are not only due to the random initialisation
of the CNN models, but that, by using the proposed modifications of the U-Net architecture,
the follicles and ovaries were detected more accurately in a systematic way. By analysing
50 repetitions of training (and testing) of our CNNs statistically, we proved that the training
is stable, and that in practically every other repetition the CNN is constructed, which is
more efficient than the most accurate methods for detecting follicles and ovaries so far.
In addition, it was substantiated that, despite using the small USOVA3D database, the
detection algorithms can be trained quite successfully and without any data overfitting. A
convergence was reached in a reasonable number of training steps.

Let us conclude this paper with some future work directions. One of the succeeding
researches will be focused on applying and transferring our solutions to other problem
domains. The aim will be to demonstrate that only minimal interventions are needed in our
proposed detection algorithms. In the field of Ovarian Ultrasound Volumes’ Processing,
we will upgrade our solutions further, in order to detect ovaries accurately in just one
pass, without adding prior knowledge about follicles. Special attention will be paid to
the augmentation of the small USOVA3D training set. Finally, we recommend that the

https://www.hpc-rivr.si
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statistical assessment of repetitive training and testing becomes the rule when also reporting
results in the field of CNN-based approaches.
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5. Potočnik, B.; Cigale, B.; Zazula, D. Computerized detection and recognition of follicles in ovarian ultrasound images: A review.

Med. Biol. Eng. Comput. 2012, 50, 1201–1212. [CrossRef] [PubMed]
6. Noble, J.; Boukerroui, D. Ultrasound image segmentation: A survey. IEEE Trans. Med. Imaging 2006, 25, 987–1010. [CrossRef]

[PubMed]
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