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Čilag, A.; Berisavljević, T.; Gotshaber,
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Abstract: Robotic systems for research and development of factory automation are complex and
unavailable for broad deployment in robotic laboratory settings. The usual robotic factory automation
setup consists of series of sensors, robotic arms and mobile robots integrated and orchestrated by a
central information system. Cloud-based integration has been gaining traction in recent years. In
order to build such a system in a laboratory environment, there are several practical challenges that
have to be resolved to come to a point when such a system can become operational. In this paper, we
present the development of one such system composed of (i) a cloud-based system built on top of
open platform for innovation in logistics, (ii) a prototyped mobile robot with a forklift to manipulate
pallets in a “factory” floor, and (iii) industrial robot ABB IRB 140 with a customized gripper and
various sensors. A mobile robot is designed as an autonomous four Mecanum wheels system with
on-board LiDAR and RGB-D sensor for simultaneous localization and mapping. The paper shows a
use case of the overall system and highlights the advantages of having a laboratory setting with real
robots for the research of factory automation in a laboratory environment. Moreover, the proposed
solution could be scaled and replicated in real factory automation applications.

Keywords: multi-robot system; cloud robotics; factory automation

1. Introduction

The automation of warehouses and operation at factory floors is rapidly expanding.
This process is enabled by the combination of industrial robots, mobile robotic systems,
sensor networks and a central server system that manages and coordinates the work of all
machines in the warehouse or across the factory floor. There are many open problems in
this domain, such as localization of mobile systems [1], accurate object manipulation for
various tasks [2], coordination of the entire system [3], management of alarm events and
unwanted events, etc. In many cases, it is also not possible to fully automate the process,
and interaction with humans arises as another aspect for research.

Our work contributes to research in the area of the factory and warehouse automation
process, as well as in other segments important for the successful integration of mobile and
industrial robots together with cloud-based solutions for the integration and coordination
of tasks. Taking advantage of our experience, laboratories can build a scaled version of the
factory floor and deal with real-world problems not only in simulation or in a real factory,
but also in the laboratory environment, where a lot of realistic situations can be prepared
and validated before moving the experiment on the site (Figure 1).
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Figure 1. ABB IRB 140 robot and mobile four wheel drive robot in laboratory.

The paper is organized as follows. In Section 2, we give an overview of mobile and
industrial robots used for factory floor automation as well as challenges and solutions
for their effective coordination with cloud-based services. Robots are designed and pro-
grammed for the automation of pallets transportation and boxes palletizing as one of the
most common use cases in many factories. Section 3 gives a detailed description of the
hardware design and software architecture in our solution. The robot operating system
(ROS) is the backbone of robotic software development. Additionally, the description
and evaluation of used simultaneous localization and mapping (SLAM) algorithms are
presented, as localization of the mobile robot is of the great importance for successful inte-
gration. Section 4 explains a software architecture of mobile and industrial robots relevant
for integration with the cloud server. The focus is on interconnection and communication
aspects. At the end, in Section 5, we give the final discussion and conclusion, establishing
directions for future work.

2. State of the Art

This section reports the techniques commonly used in the development and usage
of AGVs and industrial robots. The key point is increasing their autonomy and flexibility
but there is a noticeable shortcoming in the availability of a verification and validation
infrastructure for different approaches in robot-assisted manufacturing. In [4], the authors
compared different strategies for robotic warehousing using multi-robot systems. This
work is focused on AGV’s roles only, providing a comparison of two collection methods,
analyzing completion time and energy consumption. Similar to our work, the authors
in [5] presented and demonstrated a solution for the automation of the order-picking
task at an industrial shop floor. As in our case, the presented system includes AGV and a
collaborative robot, but there are two important points of difference—commercial robots are
used and, instead of a cloud infrastructure, an Arduino board with a TCP/IP socket server
is used in order to dispatch specific commands to the AGV and the cobot manipulator. This
work, instead, focuses on the development of laboratory-scaled AGV, the development of
control software for AGV and the industrial robot and their integration through the OPIL
cloud framework.

2.1. Mobile Robots for Factory Automation

Industrial technology advancement and the diversity of manufacturing strategies have
raised the need for flexible and robust systems to fulfill different tasks with minimal or
no changes. Mobile robots have become the main tool in solving logistics’ problems of
increasing productivity. The robots that are most commonly used in industrial manufac-
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turing facilities or warehouses are automated guided vehicles or AGVs. They are portable
robots that use marked lines on the floor, radio waves, cameras for vision, or various types
of sensors for navigation. They are driverless vehicles, battery powered, and suited for
transferring products or equipment in an industrial environment. The AGV can have
objects hooked up, such as a trolley or a trailer, which can attach itself automatically [6].
Forklifts and simple carrying beds can also be installed on the AGV in order to both lift
and place a product, or to simply carry and store many parts, respectively. In order to
move somewhat freely and without many constraints, a set of omni-directional wheels can
be installed on the AGV [7]. Omni-directional wheels can be designed as conventional or
special wheels. Conventional wheels are made by Swedish engineer Berndt Ilon, and they
are also called Ilon’s wheels or Mecanum wheels. These rollers have an axis rotation of
45◦ and can move and rotate in almost any given direction. Mecanum wheels enable
3 degrees of freedom mobility of mobile robots. Special omni-directional wheels have
changes in rollers designs [8] or angle positions of rollers to ensure greater stability [9].
Special omni-directional wheels can also have more freedom in rotation and reposition,
so they can be utilized in more challenging tasks. AGVs with installed omni-directional
wheels are widely spread and commonly used in industry.

The navigation of autonomous mobile robots requires accurate localization. In order
to provide a robot with its precise location, a combination of various sensing methods
and SLAM algorithms is used. For successful navigation through an environment, this
approach needs to satisfy the following:

• Online computation and decision making, which is required in order to avoid unsafe
situations and ensure easier incorporation of algorithms with other processes on
system without overloading CPU time.

• Ability to adapt to dynamic environments, illumination changes or repetitive environ-
ments.

• Low-drift odometry provides information about robot position when it cannot localize
itself on the map. Until the SLAM algorithm localizes again, odometry drift should be
minimized to provide the system with accurate position information so that navigation
is still possible.

There is a wide variety of SLAM approaches integrated in ROS, such as ones with
reliable solutions for planar environments using Rao-Blackwellized particle filters [10]. The
availability of enough estimated particles is required to converge to a solution which well
represents the environment. Hector SLAM [11] can create fast 2D occupancy grid maps
from 2D LiDAR with low computation resources. One of the drawbacks of Hector SLAM is
that it does not implement loop closing. (Loop closure algorithms determine whether or
not a robot returned to a previously visited area [12]. Loop closure reduces the uncertainty
in the mapping and improves the precision of the localization of the robot.) Leaving this
feature out was done to maintain low computational requirements. On the other hand,
the Hector SLAM approach does not require an external odometry source, which is an
advantage in environments with high geometry constraints.

In addition to 2D LiDAR-based SLAM approaches, visual SLAM can also be used
in mobile robot navigation problems. One of the available visual SLAM approaches is
ORB-SLAM2 [13], which is feature-based visual SLAM. ORB-SLAM2 can be used with
a stereo camera system, or RGB-D camera. Loop-closure detection and relocalization of
a system is based on DBoW2 [14]. As the map grows, the time required for loop closure
defections and graph optimization processes increases. This can lead to significant delay
in the loop closure correction, making this approach not completely suitable for use on a
real robot.

RTAB-Map [15] is a graph-based SLAM approach based on an incremental appearance-
based loop closure detector. RTAB-Map is capable of using an RGB-D camera, stereo
camera and LiDAR to perform mapping and localization. The detection of loop closures is
again done using the bag-of-words approach to determine the likelihood of a new image
coming from a previous location or a new location. After loop closure detection, a graph
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optimizer optimizes the errors in the map. Memory management implemented in RTAB-
Map enables its usage in real time on larger environment areas. RTAB-Map can be used
alone, with handheld camera, a stereo camera, or a 3D LiDAR for 6DoF mapping. The
integration of RTAB-Map in ROS enables easier implementation on a robot equipped with
camera and/or LiDAR .

A map generated throughout SLAM is used to autonomously plan the path and
navigate the mobile robot in the environment. The path planner generates the trajectory
for a robot to follow in order to achieve the desired position in either known or unknown
space. Planners are divided into two types, global and local planners. Global planners
generate paths based on a static map, from start to the destination point. Global path
calculations are, in most cases, slow, making this kind of planner not suitable for dynamic
environments. This problem is solved using a local planner, which takes into account the
robot motion model, together with sensor data to obtain best possible velocity commands
that accomplish the global plan.

One of the very popular local planners is a dynamic window approach (DWA) [16].
The DWA algorithm has a goal to maximize an objective function, which takes in account
the distance to the target, obstacle proximity and robot’s velocity. The result of the algorithm
is a velocity pair (v, w), where v is the desired linear velocity of a robot, and w the desired
angular velocity. The DWA algorithm consists of several steps. Firstly, the algorithm
discretely samples velocities in velocity space. The second step simulates the behavior
of a robot for each sampled velocity for a short period forward in time. After simulating
the velocities, the algorithm calculates the cost functions and evaluates them to determine
which sampled pair gives the best trajectory score. The robot has the predefined set of
admissible velocities. Velocities for which the objective function is maximal are selected.
Elastic band (EBand) [17] is a real-time algorithm for collision-free motion control. Two key
features are used to obtain a collision-free path, ‘contraction force’ and ‘repulsion force’,
respectively. The first one removes slacks in the path, while the other pushes the robot away
from obstacles. This creates an elastic band, enabling the robot to smoothly follow the path.
Any encountered obstacle further deforms the generated path to avoid them while keeping
a smooth trajectory. In [18], the authors presented the timed elastic band (TEB) as an
extension of EBand, which, during calculations, takes into consideration a short distance
ahead of the global path, creating a local path consisted of multiple way-points. Each way-
point represents a temporal goal for a robot to achieve. Following way-points, the robot
arrives at desired location. During trajectory optimization, TEB takes into consideration
robot kinematics, dynamics, acceleration limits and geometric shape. Optimizing global
planner trajectory, TEB fulfills time-optimal objectives, decreasing the trajectory execution
time. For the path planner in this work, we used the time elastic band algorithm.

2.2. Industrial Robots and Tools

Next to mobile robots, industrial robots are inevitable for accomplishing flexible
factory automation. Combined together, industrial and mobile robots are able to perform
various tasks, including warehouse management, pick and place, transportation, machine
tending, etc. For an industrial robot to successfully handle/manipulate an object, a gripper
is being imposed as a medium between the manipulator and the manipulated object. If a
gripper is to perform a task of grasping an object, one should be able to securely and safely
hold it. Depending on the given object in the task, a suitable gripper is designed for the job.

Industrial mechanical grippers should be made as robust, rigid objects with very few
moving parts, easy to attach and detach. Depending on the task, a gripper also could be
required to handle various sized objects, with different shapes, materials and mass [19].
In the case of pneumatic grippers, they can also be made as rigid mechanical grippers,
or as soft, muscle-like mechanisms [20]. For a soft pneumatic gripper, grasping is mainly
conducted by a suction-like mechanism, which holds firmly to the attached item and
conforms itself to the shape of the grasped object [21]. In addition, soft pneumatic grippers
can be designed to resemble a biologically inspired method of grasping [22]. Pneumatic
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grippers, whether they are soft or rigid in their design, can adapt to the various shapes of
the grasped item. Because of these abilities, pneumatic grippers are convenient for their
usage in the food industry.

2.3. Integration of Cloud-Enabled Robot Systems

The idea of separating robot hardware from computational resources and high-level
reasoning is not new. In [23], the author introduced remote-brained robots as a way to
accomplish effective robotic architecture, multi-robot coordination, reconfigurable and
distributed modular systems and so on. This approach enabled intelligent behaviors of
multi-limbed robots and opened new fields of research such as networked robots and
cloud-enabled robots [24,25]. In the first case, a stand-alone robot, environment sensors,
and humans communicate and cooperate through a network. The second case brings a
distributed structure of information and decision making, where cloud computing is used
for various calculations to overcome limited onboard storage and computing resources.
In a general case, premises for the efficient realization of a distributed multi-robot system
are the same as for the single robot systems [26]:

• Environment perception as the vital ability of a system to build knowledge about
its surrounding. Collecting information about environment structure and location
of obstacles gives robots the ability to predict their future states. The environment
perception task usually involves infrared (IR), light detection and ranging (LiDAR)
sensors, cameras, etc., and often fused information from these devices.

• Localization as a capability of robots to estimate their position and orientation with
respect to the environment.

• Navigation includes the previous two tasks and combines them with an effective plan-
ning system. Usually, this task is solved by engaging processes of map building and
localization simultaneously, i.e., simultaneous localization and mapping (SLAM) [27].

In order to improve a robot’s sensing, computation and memory resources, the utiliza-
tion of cloud architecture arises as a promising approach in the development of robotics
systems [28,29]. Based on such integration, cloud-enabled robotics has several advantages,
such as the following:

• With increased computational power and storage space, computation-intensive tasks
can be performed in real time, using the cloud infrastructure (computer vision, speech
recognition, object recognition, etc.).

• This infrastructure can hold large data, such as global maps, so particular robot
navigation can be accomplished with improved safety and efficiency.

Moreover, cloud-enabled robotics offers new control strategies for cooperative robots.
Sharing information in the cloud, cooperative robots take advantage of unified processing
of information from multiple sources. As a result, the design and development of novel
mobile robot systems hold a benefit from the fusion of a global route map and local path
planning, sensor fusion, time synchronization, etc. In [30], the authors emphasized the
benefits of sharing and reusing the data independent of specific robot hardware. Leveraging
existing standards in an open architecture framework and network protocols, the RoboEarth
platform allows any robot with a network connection to generate, share, and reuse data.
As the result, combining the cloud service and local knowledge, the platform aims at
increasing the speed of the robot learning process and enabling adaptation in various tasks.
Implementation is based on a three-layered architecture:

• Cloud (server) layer that holds the RoboEarth database containing a global world
model with information about the objects, environments, actions, etc.

• Hardware-independent middle layer that serves as a bridge between global knowledge
and robot-specific skills. This layer contains generic components as a part of the local
robot’s software.

• The layer that represents the robot’s specific skills.
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Automation in factory production lines, warehousing and logistic operations is mostly
based on AGV utilization with centralized, cloud-based management, usually referred to as
warehouse management system (WMS). The role of this system varies according to the type
of action and robot capabilities. One of the attractive fields for the cloud-based application
is SLAM, which is computationally expensive to run massively within the robotic platform
at every point of the unknown environment. In the case of multiple robots, SLAM can be
shared between agents for faster and more accurate mapping. In [31], the authors reported a
framework for grid-based FastSLAM implementation. Within this approach, the Handoop
cluster (called DAvinCi server) is engaged for map estimation, while a distributed ROS
architecture provides sensory data and communication among the robot agents and server.
Similarly to our solution, this cloud service acts as the master node, which maintains the list
of publishers—ROS nodes on robots. The visual SLAM system C2TAM [32] is in line with
this approach. The cloud service is realized as a distributed framework serving expensive
map optimization and storage. As a consequence, the robot on-board computers have
increased autonomy since their role is reduced to a light camera tracking clients.

3. Mobile Robot and Industrial Robot Design

As previously mentioned, our solution is the laboratory setup for the automation of
the factory floor. Robots are designed to transport EURO pallets and to pick and place
objects on the pallet. The mobile robot is designed as a forklift type of a robot to carry
EURO pallets with the boxes (crates) used in the meat industry. A common task in this
industry is the sorting of crates based on clients’ orders. The task of the industrial robot is
to pick crates delivered by a mobile robot and to place them on EURO pallets for different
orders. First, we will describe the mobile robot hardware and software for EURO pallet
transportation followed by a description of the software for controlling the industrial robot
and the design of the tool for crates manipulation.

3.1. Hardware of Mobile Robot

The mobile robot platform, designed in this work, is based on a four wheeled Mecanum
drive (Figure 2). The advantage of using Mecanum wheels is the ability to move in any
direction without changing orientation. The wheels are actuated by four 100 W BDC
motors, powered by Li-ion batteries enabling the robot to operate autonomously for around
16 h. Motors are controlled by motor controllers connected to the main on-board PC. One
motor controller can control a pair of brushed DC motors using USB serial, TTL serial,
RC or analog inputs. Integrated dual quadrature decoders enable easy, closed-loop speed
control system implementation. For this work, a USB serial interface is used to connect the
motor controllers with the main computer. The forklift system consists of a linear actuator
with a BDC motor and a motor controller. The forklift system is controlled with the set of
GPIO signals.

To detect obstacles and navigate through the environment, the mobile robot is equipped
with the laser ranging scanner RPLiDAR-A2, and Intel RealSense D415 depth camera. Li-
DAR and camera sensors are used for both SLAM and path-planning algorithms, whose
implementation is described later. The interface between sensors and the main PC is estab-
lished using the USB 3.0 communication protocol to ensure fast data transfer, without full
bandwidth consumption to prevent data loss.

The RealSense depth camera has a standard field of view and high resolution [33],
which is well suited for applications that require accuracy, such as 3D scanning and
mapping. The standard field of view provides higher quality depth per degree. A relatively
high range, up to 10 m, provides good perception of surroundings.

The main PC integrates the LiDAR sensor, depth camera and motor controllers using
the ROS framework, which will be explained later. To provide reasonable program execu-
tion time, enabling real-time mobile robot control and obstacle avoidance, the main PC has
16 GB DDR4 RAM memory, Ryzen 7 2700U CPU and M.2 NVMe SSD memory.
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Figure 2. The forklift-type mobile robot with Mecanum wheel carrying EURO pallet with eight crates.

3.2. Software of Mobile Robot

Mobile robot software consists of several interconnected ROS packages to provide
navigation in both known and unknown environments. The main packages used for
mapping and navigation are as follows:

• The RTAB-SLAM ROS package, assigned to provide system (mobile robot) with both
map of the environment and robot localization.

• The TEB ROS package provides a path for a robot to follow, based on a map and
odometry from the RTAB-SLAM package.

• The RoboClaw ROS package enables integration of the motor drivers with the rest of
the ROS system.

Additionally, ROS drivers for the LiDAR sensor and RealSense camera are used
to provide communication between them and the rest of the system. Figure 3 shows
connections between the ROS nodes used on the mobile robot. Mobile robot motion and
path planning are provided inside the move_base ROS package. The global_planner node,
upon receiving a goal which is described as the desired position and orientation of a robot,
outputs a path based on the map created by the RTAB-SLAM node, considering only
static obstacles. Obstacle avoidance is provided inside the TEB_planner node, using the
Laser Scan topic acquired from the RPLiDAR node (ROS topics are named buses over
which nodes exchange messages [34]). The final output of move_base gives the RoboClaw
node the desired velocity of the robot base, which is then transformed into corresponding
motor speeds. Topics global_costmap and local_costmap, based on the configuration of
corresponding nodes, provide distances from obstacles which are not considered safe for a
robot to be close to, and path planners adjust trajectories based on those cost maps.

To control the mobile robot platform, the main PC communicates with a motor con-
troller using a dedicated ROS motordriver_ros package. The motordriver_ros package is
implemented in Python programming language, enabling easier and faster modifications.
The ROS driver package for the motor driver is separated in two parts. The first part
communicates with motor controllers using the USB protocol and provides different mea-
surements, such as encoder status, motor current, etc. It also provides a way to set the motor
speed to the desired value. The second part of the motordriver_ros driver communicates
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with the rest of the system, providing information about the robot’s speed and position
and waits for a new speed command to be delivered by a path planner.

Figure 3. Organization of ROS nodes in mobile robot ROS network connections.

The four wheeled Mecanum drive can be controlled in two ways. The first way is the
standard four wheeled drive, where control and path planning algorithms assume that the
mobile platform can move only forward/backward and rotate in place: in other words,
with more movement constraints than the Mecanum drive. The control of such a mobile
platform is done using the standard approach for controlling a differential drive mobile
robot. To provide more flexibility in the mobile robot motion, speed commands provided
by the path planner are converted to four separated motor speeds, each for different motor,
using a motion model with constraints for mobile platforms with the Mecanum wheels
approach described in [35]. Since Mecanum wheels can cause drift that is not sensed by
wheel encoders, we had to rely on localization from SLAM. Based on our experience, we
decided to use the RTAB-SLAM algorithm [15], as it performs good results for indoor
environment accuracy improvements with path loop closure.

In order to evaluate localization from the RTAB-SLAM algorithm and demonstrate
the improvement of localization after the loop closure, we prepared a setup to measure
coordinates of the mobile robot with an external precise measurement system. We used a
motion capture system from the company Vicon, which relied on reflective markers and
eight fast infrared cameras. The motion capture system was set up to capture the location of
the markers placed on a mobile robot to track its location in the environment (cf. Figure 4).

The mobile robot is programmed to move in the environment in such a way to close the
loop after some time. During the motion, the location of the robot is obtained from RTAB-
SLAM and the Vicon motion capture system. Figure 5 shows the obtained localization
data. We can see that the robot accumulated error while moving in the environment until it
closed the loop and corrected significantly the localization estimation. The error after the
loop closure was under 1 cm, which was the targeted accuracy for our experiment.
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Figure 4. Experimental setup with Vicon motion capture and reflective markers for evaluation
RTAB-SLAM localization in the indoor environment.

Figure 5. Comparison of RTAB-SLAM localization against trajectory obtained with motion cap-
ture system.

3.3. Industrial Robot and Environment Setup

The industrial robot system consists of the ABB IRB 140 robotic arm [36], dedicated
end effector and a corresponding IRC5 controller. The external PC with ROS application
is used to instruct the robot arm movements and to integrate the robot arm with the rest
of the system. In order for the robot to know where each crate should be placed, an RFID
sensor is used to identify each industrial crate. The setup of the industrial robotic arm and
its environment was initially designed and simulated in the RobotStudio programming
environment [37]. The developed software for simulation was afterwards used to control
the real robot.

Within the experiment setup, pallets with crates that the industrial robotic arm needs
to sort are placed around the robot (Figure 6). There are six pallets placed around the robot
to perform the palletizing task. Four out of six pallets are “output” pallets that should
be transferred out after sorting is complete. The “input” pallet with unsorted industrial
crates, brought by the mobile robot, is located in front of the robot arm and can contain up
to 24 crates. In addition to the “input” pallet, the transitory pallet is set up to temporarily
accommodate crates that do not currently have a defined location, as well as crates that
have not been successfully identified.
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Figure 6. System setup and the layout in the RobotStudio software environment.

After the spatial arrangement of the station elements was established and the algorithm
was confirmed in the simulation environment, the system was created in the real world.
The physical setup of the system in the laboratory is shown in Figure 7.

Figure 7. Setup of an industrial robot station with surrounding EURO pallets in the laboratory.

For the task of manipulating industrial crates, a specific gripper was designed and
prototyped. It is a two-finger electro-pneumatic gripper. The end effector consists of two
claw-like fingers. They are designed in such a manner as to successfully reach within the
openings on the sides of industrial crates. If the crates are not accurately positioned on the



Appl. Sci. 2022, 12, 1228 11 of 16

pallet, to compensate for this misalignment, there is an elastic link between the fingers and
the base of the gripper.

3.4. Software of Industrial Robot

An increase in the usage of ROS applications in industrial robotics, and its applications
on industrial robotic arms, has contributed to the development of the ROS industrial (ROS-I)
platform [38,39]. In addition to the benefits of the standard ROS platform previously mentioned,
ROS-I provides us with supplementary tools and capabilities specific to industrial robotic arms.
One of the biggest advantages of using the ROS-I platform is the programming of the robotic
arm in conventional programming languages, such as Python and C++, instead of the native
language of the controller, which is company dependent. The ROS packages used in our work
to communicate and control the industrial robot are as follows:

• abb_driver that enables the communication between personal computer and ABB IRC5
industrial robot controller for robot control. The messages being exchanged contain
information about the condition of the robot, such as the position of the robot’s wrists.

• paletizer package, developed for sorting/palletizing industrial crates, as well as to
communicate with the rest of the system, e.g., OPIL, from which it receives the
commands for palletization and reports on the state of the task.

• abb_irb140_unal, the package that provides information about the physical representa-
tion of robots, such as URDF and SRDF records.

For controlling the ABB industrial robotic arm, the abb_driver is used [40] (ROS driver
for the ABB industrial robots), as the driver is made for specific hardware. The part of
the driver located on the industrial controller is written in the programming language
RAPID (the native language of the controller), while the part of the driver located on the
personal computer is written in C++. The block diagram of communication between two
applications/two devices is shown in Figure 8.

Figure 8. Block diagram for controlling the ABB IRB 140 robot arm from the ROS application.

Some of the additional features that ROS-I provides in the form of additional packages
are an extended set of robotic arm models that the ROS driver can control (abb_experimental
package [41]). The experimental package expands the capabilities of the ROS driver and
adds the models and parameters of the robotic arms. The most important tool provided
using the ROS-I platform is the MoveIt package [42]. The MoveIt package gives us the
possibility of creating a functional robot from a CAD model, i.e., generates the required
universal robot description format (URDF) and semantic robot description format (SRDF)
files to define the parameters of the robotic arm. Additionally, an additional package for
a visualization RViz provides us the visualization of 3D models of robots, as well as their
movement and coordinate systems.

4. System Integration and Experiment

The integration of the system is obtained by the cloud infrastructure with open plat-
form for innovations in logistics (OPIL). OPIL is the open IoT platform that enables digital
virtualization, automated scenario setup and communication interface for different factory
floor resources. Mobile robots, AGVs, workers, sensors and factory IT infrastructure can be
connected through this platform in order to develop and test factory logistic automation.
Figure 9 shows the high level organization of integration of our robotic systems with the
OPIL platform.
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Figure 9. System architecture of robots integration with OPIL platform.

The connection between robots and the cloud is established with the messaging system
based on the FIWARE open architecture. The deployment scheme for OPIL-based systems
contains the following modules:

• OPIL server as a cloud infrastructure responsible for hosting the modules, such as
task planner, context management, HMI (human–machine interface), SP (sensing
and perception).

• Different nodes in the field, including mobile robots, AGVs, forklifts and sensors.

Generic components of the OPIL server are distributed in a multi-layer architecture,
where the bottom layer (IoT nodes layer) components enable interaction with the physical
world. This layer may include the following components:

• Robotic agent nodes (RAN) as nodes responsible for dealing with the physical actors.
In the OPIL world, that could be manipulation agents (intended for loading and
unloading the goods and products) or moving agents (intended for moving goods or
products from one place to another).

• Human agent nodes (HAN) as nodes in charge of interfacing with humans.
• Sensor agent node (SAN), i.e., nodes that allow data transfer from various sensing

sources to the cloud.

As an illustration of RAN node functionality, let us consider the robot’s motion in
dynamic environments. Robot goals can be acquired from servers on the local network,
or from the cloud. Setting the robot’s target point starts with reading the current desired
position of a robot inside of a facility and publishing that information on an adequate ROS
topic. Upon reaching the destination, a task command is issued to a robot, based on readings
from a server. The message consists of the position and task command, such as the lifting
up or down robot tool. Additionally, the message has the maximum allowed velocity of a
robot, desired acceleration rate, etc. Algorithm 1 describes the process executed inside the
RAN module.

Similarly, it is necessary to provide the main system with current sensor readings of
the robot’s environment. The ROS node tasked with this job is called the sensor agent node
(SAN). SAN feeds sensor readings, such as LaserScan received from a LiDAR sensor, to a
server. Those readings provide the system with the robot’s current environmental status,
based on which the next goal is generated. The new goal is updated over a certain part of
the message body generated on server.
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Algorithm 1 Goal and task reading.

Initialize ROS node;
Open connection to a server
loop

read current assignment from a server
publish goal to ROS topic
if task command issued then

call ROS service for task execution
end if
send current robot pose to server (odometry readings)

end loop

As previously mentioned, abb_driver, written in RAPID and C++ programming
languages, was used to control the robotic arm using the ROS-I platform, while the sorting
algorithm was written in the Python programming language. The application for palletizing
consists of two modules. The sorting/palletizing module (cf. Algorithm 2) and module
for communication with OPIL platform (cf. Algorithm 3). The sorting algorithm serves to
relocate the industrial crates from the input pallet to the appropriate output pallet specified
by the logistics system. The communication algorithm serves to report to the logistics
system the current state of the robot arm and obtain the data from it.

The whole process can be summarized as follows: After receiving information from
OPIL that the input pallet is present and how many crates are on it, the robot is positioned
above the pallet. The robot picks the industrial crate and transfers it to the RFID sensor
for identification. Depending on the identification, the robot arm places the crate in a
determined position on the corresponding output pallet. When the input pallet is unloaded,
the robotic arm returns to the starting position to wait for the next pallet.

Algorithm 2 Sorting/palletizing module realization.

Input: pallet information and industrial crates identifiers;
Result: Sorts crates onto appropriate pallets depending on their identifier;
Initialization
loop

goto_position(home)
publish_state (waiting_input_pallet)
wait(input_pallet)
read(input_pallet)
publish_state(input_pallet_arrived)
for all crate on input pallet do

publish_state(picking_up_crate)
goto_position(input_pallet)
goto_position(crate)
pick_up_crate()
publish_state(crate_picked_up)
goto_position(RFID_scanner)
publish_state(scanning)
pallet, drop_crate_position := read(crate)
publish_state(scanned)
goto_position (pallet)
goto_position(drop_crate_position)
publish_state(dropping_down_crate)
drop_crate()
publish_state(crate_dropped_down)

end for
end loop
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The algorithm for communication (Algorithm 3) has the role of informing the OPIL
system of the state in which the robotic arm is currently found and to take data for palletiz-
ing task. The states in which the robot can be found are predefined states depending on the
task that it is currently performing. With the help of this module, the robotic arm receives
information about the environment around it through a logistics system.

Algorithm 3 Communication with OPIL module.

Data: The identifier of the task that the robot performs and data about pallets and
industrial crates
Result: Reports the robot arm state to the logistics system and communicate sorting data
to robot
initialization
loop

wait(new_message)
robot_state := read(new_message)
switch (robot_state)
case waiting_input_pallet:

wait(input_pallet)
case input_pallet_arrived:

read(input_pallet)
publish(input_pallet)

case picking_up_crate:
pass;

case crate_picked_up:
write(time&date)

case scanning:
wait(crate)

case scanned:
read(crate);
publish(crate)

case dropping_down_crate:
pass;

case crate_dropped_down:
write(time&date)

end switch
reset robot_state

end loop

5. Conclusions

In this work, we developed a real-world laboratory setup for research in factory
floor automation. The setup consists of two robots: a forklift-type mobile robot with
Mecanum wheels and an ABB IRB 140 industrial robot arm. The integration of robots relies
on the OPIL system, the open industrial IoT platform that enables the complete digital
virtualization of intra-factory logistics automation.

The software and hardware of the mobile robot are described in detail. The important
aspect of the mobile robot is the SLAM algorithm used for navigation in the environment.
For this purpose, we used RTAB-SLAM and we showed the result of the evaluation of the
algorithm on our platform. The precision of the positioning in the laboratory environment
after loop closure was under 1 cm, which was satisfactory for our experiment.

During the development of the laboratory setup (hardware and software develop-
ment), we applied modular architecture which should meet the requirements of the real
factory floor automation. The four-wheeled Mecanum drive provides enough freedom for
flexible path planning algorithms. The software is developed on top of the ROS architec-
ture, divided in different function blocks, so-called nodes. ROS and ROS-I are open-source
frameworks, tailored for robotics development, making this approach independent from a
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particular robotic platform. This enables easy integration with the OPIL cloud platform
through dedicated modules. The use-case experiment showed successful integration and
robotic service orchestrations with cloud service, which manages and distributes tasks on
the factory floor. It receives information from sensors and robots on the current status of the
factory floor, and based on the status and requirements, it issues commands to robots. The
developed system is, thus, proven to be useful for the development of different solutions
for factory floor automation and for the validation of research in this domain.

Author Contributions: Conceptualization, D.M. and M.R.; methodology, M.R.; software, D.M., L.M.
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