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Abstract: People detection in images has many uses today, ranging from face detection algorithms
used by social networks to help the users tag other people, to surveillance systems that can create a
statistic of the population density in an area, or identify a suspect, or even in the automotive industry
as part of the Pedestrian Crash Avoidance Mitigation (PCAM) system. This work focuses on creating
a fast and reliable object detection algorithm that will be trained on scenes that depict people in
an indoor environment, starting from an existing state-of-the-art approach. The proposed method
improves upon the You Only Look Once version 4 (YOLOv4) network by adding a region of interest
classification and regression branch such as Faster R-CNN’s head. The candidate bounding boxes
proposed by YOLOv4 are ranked based on their confidence score, the best candidates being kept and
sent as input to the Faster Region-Based Convolutional Neural Network (R-CNN) head. To keep
only the best detections, non-maximum suppression is applied to all proposals. This decreases the
number of false-positive candidate bounding boxes, the low-confidence detections of the regression
and classification branch being eliminated by the detections of YOLOv4 and vice versa in the non-
maximum suppression step. This method can be used as the object detection algorithm in an
image-based people tracking system, namely Tracktor, having a higher inference speed than Faster
R-CNN. Our proposed method manages to achieve an overall accuracy of 95% and an inference time
of 22 ms.

Keywords: convolutional neural networks; deep neural networks; single-stage object detector; people
detection; regression; classification; Mobility Aids; MOT17Det; YOLO; R-CNN

1. Introduction

Object detection is a computer vision task whose objective is to find certain objects
of interest in an image and assign a bounding box and a category to them. Early object
detection algorithms, such as the one proposed by Viola and Jones [1], were used to identify
preset features (Haar attributes in this case) in an image, which helped with regression
and classification. Starting with R-CNN [2], the deep neural network approach became
popular among researchers, with most state-of-the-art object detection algorithms using
this paradigm nowadays. However, even if a deeper neural network performs better
theoretically, in practice the maximum depth is limited due to vanishing gradients. This
problem was addressed by He et al. [3] with the introduction of residual layers, which
allowed the networks to be much deeper by facilitating the propagation of the gradient
throughout the network. The network the authors proposed, ResNet, is used today as the
backbone of many state-of-the-art detectors.

Different object detection problems require different kinds of algorithms. If accuracy is
the main target, then two-stage detectors such as the R-CNN family [2,4–10] are the better
choice. A two-stage detector consists of a region proposal stage and a classification and
regression stage, hence the name. Thanks to the region proposal, the detections tend to be
sparse, and the algorithm can identify the objects better. On the other hand, if frequent
detections are necessary, then a single-stage detector [11–26] is better since the two-stage
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ones tend to be rather slow. They sacrifice accuracy for detection frequency by skipping
the region proposal stage and detecting the objects directly on the feature maps. Because
of this, the predictions of the network tend to be dense, and this can cause the network to
misclassify an object or omit it altogether. More recent research on dense object detectors
(single-stage detectors) managed to improve their accuracy while maintaining a decent
detection frequency, closing the gap with two-stage detectors.

Other than the aforementioned methods, there have been many different approaches
and researches conducted in recent years in the domain of object detection, amongst which
are salient-based methods, such as the one in [27]. These are not of primary interest to our
paper, but they have been analyzed and described in other literature reviews, such as the
ones in [28–33].

The focus of this paper is to create an algorithm that uses both object detection
paradigms and single-stage and two-stage object detectors. Our method aims to combine
both these approaches in order to obtain higher accuracy when compared to other, similar
methods at similar inference times. To achieve this, starting from the implementation of
YOLOv4 [14], a regression and classification head is added, along with a region of interest
pooling (ROI) layer, like that of Faster R-CNN [4]. The high-confidence candidates that do
not overlap (i.e., IoU < threshold) with those outputted by YOLOv4 are then sent as input
to the ROI pooling layer, which aligns the bounding boxes with the feature maps, each
proposal being then regressed and classified. Finally, the concatenation of the proposals of
both the regression and classification head and YOLOv4 is filtered by using non-maximum
suppression. This method reduces the number of false-positive detections, as only the best
proposals of either YOLOv4 or the regression and classification head are kept after filtering.
Another benefit of this method is that, due to the regression and classification head, this
model can be used in a “people tracking by detection” framework, acting both as a detector,
as well as regressing the position of people in the current frame based on their position in
the previous frame (see Bergmann et al. [34]).

This article is divided into seven sections that are arranged as follows: The Section 1 is
the Introduction, which provides details regarding the importance of people detection in
RGB images as well as our proposed method and contributions. The Section 2 is Related
Work, which describes some of the more common approaches in the field, as well as
presenting some of the more recent approaches in the past years. The Section 3 is Used
Datasets and Training Tricks and details some approaches one could take when training
their CNNs to improve the results, as well as the datasets we considered for our research.
The Section 4 is Materials and Methods, which describes the architecture we implemented
as well as some of the steps we took to ensure our model was properly trained. The
Section 5 is Results, in which we present the results we obtained with our datasets as well
as some of the metrics involved, such as precision, recall, and mean-average precision
(mAP). The Section 6 is Discussions, which analyzes the results we obtained as well as
presenting the main benefits and detriments of our approach when compared to other
state-of-the-art approaches. The Section 7 is Conclusions and Future Directions, which
summarizes what was achieved in this paper, as well as presenting some of the future work
that could be performed regarding improving our method.

2. Related Work
2.1. Conventional Approaches

Even though most of the current object detection algorithms use deep learning to fulfill
their task, earlier methods were heavily dependent on handcrafted features. One such
early object detector is the Viola and Jones [1] algorithm, which uses Haar-like functions
to represent features in an image. Using a sliding window approach and comparing the
pixels in that region to the feature templates is very computationally expensive. Because of
this, the authors proposed the usage of a technique called Integral Image, which involves
pre-computing a map of the image starting from the top-right corner as follows: the value
of each cell p′ i, j is equal to the sum of the values of the cells directly above and to the
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left as well as the value of the pixel pi, j With this approach, the sum of the pixels in a

rectangular area can be quickly computed as Srect = p′b, r + p′t, l −
(

p′t, r + p′b, l

)
, where

t = top, b = bottom, l = left, and r = right, making it easier to compare with the templates by
computing the different sums of the rectangular shapes composing them. Examples of such
templates can be seen in Figure 1. The feature selection and matching are performed using
AdaBoost (introduced in Schapire [35]), which automatically finds the best Haar-like filters
to use from a pool of about 180 k templates. However, using the entire set of templates
is computationally expensive. Because of this, the authors proposed the implementation
of a cascade of weaker classifiers, each subsequent classifier testing an increasing number
of features compared to the previous one. Each window is passed through the cascade
network and, if a classifier in the chain considers that no object of interest is present,
the algorithm discards the proposal. In this way, the algorithm manages to decrease the
inference time per image, as many proposals are discarded in the earlier stages of the
cascade network. Figure 2 depicts the flow schematic of the cascade network.
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“Histogram of Oriented Gradients for Human Detection”, another early approach
proposed by Dalal and Triggs [36], achieved robustness towards local illumination and
small geometric transformations by introducing histogram of oriented gradients (HOG)
descriptors, which model an object’s shape and appearance by using the gradients of pixel
intensities. These are computed regarding a sliding window as follows:

1. The entire image is color and gamma normalized to be independent of the color space.
2. The detection window is divided into a grid.
3. For each cell in the grid:

a. The gradients are computed in each pixel;
b. A histogram of the gradients in the cell is computed.

4. The cells are grouped into overlapping blocks.
5. Using the individual cell histograms, a histogram is computed for each block.
6. Compute the histogram of gradients over the blocks, using the histograms of the cells.
7. Normalize the block histograms to obtain illumination invariance.
8. Concatenate the block histograms to obtain the window’s HOG descriptor.

The final step is using a classifier over the window’s HOG descriptor. In the paper, the
authors used a linear support vector machine (SVM) [37] for this task.
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2.2. Deep Learning Approaches
2.2.1. Two-Stage Object Detection Algorithms

The two-stage detectors first propose regions of interest (ROI), which are then fed to a
regressor and a classifier. The most notable algorithms in this category are the ones from the
R-CNN family. The first of its kind is R-CNN [2], which uses selective search [38] for ROI
proposal given an input image, and a pre-trained CNN that is used to extract the features
of each ROI. Finally, an SVM and a regressor are used to output the bounding boxes and
the probabilities of them containing an object. Figure 3a shows the flow of this algorithm.
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The main drawback of R-CNN is that it has a very high inference time, as each ROI is
fed to the CNN independently. To overcome this aspect, Girshick [4] proposed an improved
version called Fast R-CNN. Instead of feeding each ROI to the CNN, Fast R-CNN extracts
the feature maps of the entire input image at once. The ROI proposal method remains the
same, but a new ROI pooling layer is introduced, which divides the ROI into a grid of fixed
size (the number of cells in the grid is independent of the size of the ROI) and then applies
max pooling for each cell. The output of this layer is then sent to Fully Connected (FC)
layers to predict the bounding box and the class of the object. Figure 3b shows the flow of
this algorithm.

Faster R-CNN [5] further improved the performance of this method by introducing
the Region Proposal Network (RPN), which uses anchor boxes (see Appendix A.1) and a
sliding window to predict ROIs. The advantage of this method is that it can be trained to
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predict more accurate bounding boxes, thus resulting in fewer low-quality predictions and
a lower inference time per image. Figure 3c shows the flow of this algorithm.

2.2.2. Single-Stage Object Detection Algorithms

Unlike two-stage detectors, single-stage object detection algorithms do not require
a separate region proposal stage, the ROI proposal, regression, and classification being
performed all at once. Because of this, single-stage detectors are usually faster than their
two-stage counterparts, but at the cost of accuracy. However, more recent algorithms in
this category have managed to bridge the gap in terms of accuracy while still maintaining
their low inference time. A pioneering single-stage object detector is YOLO [11], which
works by dividing the image into an S × S grid and proposing B bounding boxes for each
grid cell. If an object’s center is inside a cell, that cell is said to contain the object. Separate
from the proposed bounding boxes, each grid cell will have associated a class confidence
score. All predictions are performed using only the features of the objects without relying
on an anchor box. An illustration of how YOLO works can be seen in Figure 4. Later
iterations [12–14,39] have adapted the anchor box concept, as well as introduced other
improvements to increase the reliability of the detector. Its latest iteration, YOLOv4 [39], is
currently among the best-performing algorithms in terms of average precision (AP) over
the COCO dataset, according to [40].
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Another well-known single-stage detection algorithm is Single Shot MultiBox Detector
(SSD) [16] which, like YOLO, divides the image into an S × S grid, but innovates by using
k anchor boxes in each grid cell. In addition to the anchor boxes, it also uses a Feature
Pyramid Network (FPN) [41] to capture objects at different scales. According to their
paper, SSD512 performs better than Faster R-CNN on the COCO test-dev2015 dataset, with
a mAP@0.5 of 46.5, 1.2% better than Faster R-CNN, and mAP@0.75 of 27.8% compared
to 23.5%, while also being faster. Advancements in backbone architectures have further
improved these algorithms in both reliability and speed.

A common problem among all single-stage object detectors is a class imbalance,
as most of the candidate locations do not contain an object, which affects the training
performance as more predictions are processed and the easy negatives outweigh the other
candidates. This problem is addressed in two-stage detectors by the RPN in the case
of Faster R-CNN (e.g., by using hard negative mining), which filters the easy negatives.
To address this issue in the case of single-stage detectors, Lin et al. [42] proposed a new
loss function based on binary cross-entropy (BCE), called focal loss. In this paper, the
authors also introduced a new network called RetinaNet, which uses an FPN to sample
candidates at different scales and classification and regression subnetworks attached to
every pyramid level. The candidates are selected using anchor boxes, which makes it an
anchor-based method.
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Almost all the previous one-shot detectors covered here were anchor-based. However,
anchors are usually tailored to a certain dataset, which means that they introduce additional
hyperparameters that need to be fine-tuned. Tian et al. [43] proposed a novel anchor-free
method, FCOS, which computes an offset between each location (x, y) on a feature map
and the coordinates of the top, bottom, left, and right side of the target bounding box. A
location (x, y) can have multiple associated targets, but only the one with the smallest
area will be considered. Because this greedy approach can lead to detections that have a
small Intersection over Union (IoU), see Appendix A.2, with the target, a new metric called
‘center-ness’ is proposed, which computes the distance between the candidate bounding
box center and the target center and helps filter these detections in the Non-Maximum
Suppression (NMS) step during inference, as well as during training as an additional loss.

YOLO, SSD, RetinaNet, and FCOS are all center-based detectors, as they use the center
point of an object to define positive samples, either by using anchors or not, and then
regress the bounding boxes. Keypoint-based detectors, on the other hand, learn to detect
certain points of a bounding box and then regress the rest. For example, CornerNet [44]
predicts the top-left and bottom-right points of a bounding box, CenterNet [45] further
improves by also exploring the center of the bounding box, while the algorithm proposed
by Zhou et al. [46] learns to detect the center of the objects and then regresses all the
other properties.

3. Used Datasets and Training Tricks

This category contains methods that improve the model’s accuracy without increasing
the inference time during testing, which is possible thanks to the training phase being
performed offline, as well as the datasets one might consider when training such a model,
which are presented in Section 3.1. Presented in Sections 3.2 and 3.3 are the gradient
descent algorithms and the loss functions that are used in the experiments, these two being
interconnected. Their role is to ensure that the model will converge in a local minimum
point that is as close to the global minimum as possible. As such, depending on the
task, an algorithm (loss function or gradient descent optimization) might lead to a better
performance of the model, or cause it to not be able to learn (e.g., exploding gradients).
In the case of exploding gradients, there are additional methods that help mitigate the
problem, such as gradient clipping or gradient scaling, but these are not covered in this
paper. Lastly, Section 3.4 presents a non-exhaustive list of data augmentation methods that
are used in this paper during the training phase. As machine learning models are extremely
dependent on the data they are trained onto, data augmentation methods are important
for introducing diversity in the dataset, which in turn helps the model better generalize,
especially on small datasets.

3.1. Existing Datasets

The first considered dataset is Mobility Aids, which was created and used by Vasquez
et al. [47]. It contains roughly 17,000 RGB, Depth, and DepthJet images grouped into
sequences. The images are split into a training set containing around 11,000 images and
two test sets, the first one having around 4000 images and being used for testing the object
detection algorithm. The rest of the images (1801), grouped into four sequences, form the
second test set, which is used exclusively for testing tracking algorithms, as it contains
annotations for both visible and occluded people. The dataset features five different ’objects’
of interest that are represented by people with different disabilities (1. person without any
handicap; 2. person using crutches; 3. person in a wheelchair; 4. person in a wheelchair
that is pushed by another person; 5. person using a walking frame). The sequences are
recorded at 15 frames per second (FPS) using both a fixed and a mobile camera placed
on a robotic platform at eye level. Figure 5 shows image samples from this dataset. The
annotations contain information about the position of the top-left and bottom-right corners
of the bounding boxes, the class of the person, and the depth.
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Figure 5. Samples from the Mobility Aids dataset [47]. (a) Scene from a large room with various
actors walking around. (b) Scene of a narrow hallway featuring occlusion and people who are easy
to misclassify.

Another dataset that features images recorded at eye level is MOT17Det [48–50], which
features 14 sequences of images (for a total of 11,235 frames) split into training and test
sets at a ratio of around 50–50%. MOT15 and MOT16 have also been considered, but the
sequences of interest in MOT15 are already contained in this dataset and, as stated in
Milan et al. [50], MOT17 contains all the sequences of MOT16 with more accurate ground
truth. Out of the 14 sequences, only seven contain ground truths (which are necessary for
training/testing), two of which feature an indoor (or close to indoor) environment. This
means that five of the seven sequences with annotations can be used for training and two
for testing, MOT17-09 and MOT17-11, both of which were recorded at 30 FPS with a camera
positioned at eye-level; however, while MOT17-09 uses a static camera, MOT17-11 has a
mobile one. All MOT_Challenge datasets have a single ’object’ of interest and that is people.
The annotations contain information about the bounding boxes (top-left corner, width,
and height), the identity of the detected person, and a visibility ratio in case of occlusion.
Samples from this dataset can be seen in Figure 6. The difference between MOT17 and
MOT17Det is that MOT17Det also provides the ground truth annotations as opposed to
MOT17, whose annotations are the output of an object detection algorithm. This makes
this dataset suitable for training and testing a people detection algorithm.
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Both datasets have been converted to COCO [51] format to use the same data loader.

3.2. Gradient Descent Optimization Algorithms

Because the data are iteratively fed to the algorithm in batches instead of all at once,
a gradient optimization method must be employed for the algorithm to be able to learn.
Perhaps one of the most popular and simplest algorithms in this category is the Stochastic
Gradient Descent, which uses the gradient and a parameter called learning rate to update
the weights of the model. The equation of this method is shown below:

θt = θt−1 − η gt, (1)
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where θt is the weight to be updated, η is the learning rate and gt is the gradient computed
at the current step.

Further advancements have been made to this algorithm, such as the addition of
momentum, which smoothens the gradient when close to a local optimum point, or the
Nesterov accelerated gradient, which is a momentum-based gradient method that also
considers where the parameter would be after the update and adapts accordingly.

There are also adaptive gradient methods, a frequently used one being Adam [52].
However, as noted by Loshchilov et al. [53], the weight decay regularization employed is
not equivalent to the L2 regularization as many people think, but is modified during the
optimization steps. To solve this problem for the adaptive methods, Loshchilov et al. [53]
proposed AdamW, in which the weight decay step is decoupled from the optimization step.
Algorithm 1 shows the differences between the two methods, whilst Table 1 shows the
meaning of the parameters used, as well as the default values they are initialized with.

Algorithm 1: Pseudocode Adapted from [1,54]. The Code Written in Red is Used only by Adam
with L2 Regularization, While the One Written in Green Is only for AdamW.

1. Repeat until stopping criterion is met:
1. Increment step time: t← t + 1
2. Update gradients: gt ← ∇ ft(θt−1) + λθt−1
3. Compute the first moment vector: mt ← β1mt−1 + (1− β1)gt
4. Compute the second moment vector: vt ← β2vt−1 + (1− β2)g2

t
5. Correct first moment bias: m̂t ← mt/

(
1− βt

1
)

6. Correct second moment bias: v̂t ← vt/
(
1− βt

2
)

7. Update learning rate: ηt ← SetScheduleMultiplier(t)
8. Update parameters: θt ← θt−1 − ηt

(
αm̂t/

(√
v̂t + ε

)
+ λθt−1

)
Table 1. Parameters used by Adam with L2 regularization and AdamW.

Parameter Type Value Meaning

α input 0.001 learning rate
β1 input 0.9 first moment estimates decay rate
β2 input 0.999 second moment estimates decay rate
λ input 0.01 parameters vector decay rate
t - 0 current time step

mt - mt=0 = 0 first moment estimates vector
vt - vt=0 = 0 second moment estimates vector
ηt input computed learning rate schedule multiplier
θt output θt=0 = random values optimized parameter vector

3.3. Loss Functions

The loss functions are used by machine learning algorithms to compare the difference
between the solution proposed by the model and the ground truth. In this paper, two loss
functions are used: generalized intersection over union and focal loss.

The IoU loss LIoU used for the regression task, computes the dissimilarity between
the proposed bounding box and the ground truth bounding box as LIoU= 1 – IoU. How-
ever, this method does not work properly when the two bounding boxes do not intersect
(IoU = 0), as it does not consider the distance between them. To solve this, Rezatofighi
et al. [54] proposed the generalized intersection over union loss function (LGIoU= 1 − GIoU),
which uses a minimum surface rectangle C that encloses both bounding boxes to compute
the relative distance between them. The equation for the generalized intersection over
union (GIoU) is:

GIoU = IoU − AC − AU
AC

, (2)

where AC is the area of the rectangle C and AU is the area of the union of the two bounding
boxes. Unlike IoU, GIoU outputs values in the range (−1,1), the negative values being
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obtained when IoU = 0, which causes the loss to increase the further the two bounding
boxes are from each other.

For the classification task, focal loss [42] is one of the most popular choices, as it allevi-
ates the problems caused by a class imbalance in an image (foreground vs. background),
especially in the case of single-stage object detectors, and is defined as:

FL(pt) = −αt(1− pt)
γlog(pt), (3)

where:

• pt is the confidence of the model that the bounding box contains an object of class t;
• αt is the weighting factor for class t;
• γ is the focusing parameter.

It addresses the problem of class imbalance by introducing the scaling factor (1− pt)
γ,

which increases the impact of misclassified proposals (hard negatives) on the total loss,
while also decreasing the contribution of correctly classified examples (easy negatives or
true positives).

3.4. Data Augmentation Methods

The dataset is usually limited and iterating over it for multiple epochs would lead to
the model overfitting the data. Because of this, data augmentation methods are usually
employed to help the model better generalize. There are multiple ways in which this can
be done, but for simplicity, they will be grouped into five categories:

• Geometric transformations: scaling, left-right or upside-down flip, rotation, shear.
These transformations must also be done on the ground truth annotations;

• Color space transformations: Hue-Saturation-Value transformations, random noise;
• Kernel filters: Gaussian-blur, sharpening;
• Data loss: Random erasing [55], Dropout [56], CutOut [57], etc.;
• Mixing images: CutMix [58], MixUp [59], Mosaic [60], etc.

The first three categories are straightforward. Random erasing overwrites patches
from the image with random data or a set value. CutMix works the same as CutOut, but
instead of a set value, it uses another image. DropOut works at the layer level, each layer
having a probability to drop some of its output. MixUp interpolates two images. In the case
of both CutMix and MixUp, the labels are modified to include both the classes from the
original image as well as the classes from the additional image used in the process. Mosaic
concatenates 4 images, the annotations of each image being offset to match the position of
the image. Examples of CutOut, CutMix, MixUp, and Mosaic can be seen in Figure 7.
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4. Materials and Methods

Starting from a YOLOv4 implementation, this paper proposes a few modifications:

• AdamW as the new gradient descent optimizer;
• Addition of random noise to the images at runtime during training;
• A second stage regressor and classifier based on the Faster R-CNN classification and

regression head;
• An anchor free module that is attached to every pyramid level, based on the paper

written by Zhu et al. [60] and the implementation of [61];
• Removed MixUp and CutMix augmentations, as they led to poor performance.

The chosen architecture has three pyramid levels that are used for detecting people at
different scales. For example, when the input image is of size 640 × 640, the output feature
maps of the first pyramid level, which is called P3, will be of size 80 × 80, and the detection
head will be responsible for finding people that are far away (smaller objects). The next
two pyramid levels will further downscale the feature maps by a factor of 2 each, resulting
in feature maps of size 40 × 40 on the second pyramid level (P4) and 20 × 20 on the third
pyramid level (P5), with the last pyramid level being responsible for detecting people that
are close to the camera (large objects). Due to the size of the images in the dataset and
the average distance between the camera and the people that were recorded, the addition
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of further pyramid levels is not needed as they would just increase the inference time of
the model.

4.1. Dataset and Data Loader

Having chosen two datasets with very different annotation styles, either a separate data
loader could be implemented for each of them, or both datasets could be converted to use
the same annotation style. Since creating separate data loaders would have increased the
risk of implementation errors, both datasets were converted to COCO annotation format.

The reason for not choosing to train and test on COCO testval dataset is the time
required for the model to train. COCO train set contains around 118 k images, and the test
set has around 5 k. In comparison, HospitalAids dataset, which is used, has around 11 k
train images and 4 k test images and takes around 12 h to train for 80 epochs.

4.2. Gradient Descent Optimizer and Learning Rate Scheduler

Multiple gradient descent optimizers with different parameters were tested: Adam,
AdamW, and AdamS [62]. Both Adam and AdamS led to poor performance on both
datasets, creating many low-accuracy detections during the test phase. On the other hand,
AdamW achieved good results, obtaining comparable results with Vasquez et al. [47,63]
on the MobilityAids dataset and acceptable results on the MOT17Det dataset. More about
these results can be found in Section 5.

As for the learning rate scheduler, there are multiple options available, the most
common one being the step learning rate decay. However, this method requires fine-tuning
the steps at which the learning rate decays, and the decay rate. To avoid these parameters,
the cosine annealing learning rate scheduler proposed by Loshchilov et al. [53] was chosen;
it only requires the starting learning rate, the final learning rate, and the number of epochs
the algorithm will train for. This method changes the learning rate after each epoch,
according to the equation:

ηt =

(
0.2 +

(1.0− 0.2)
2

·(1 + cos(t· π

epochs
))

)
·η0, (4)

which means that the learning rate will range between 100% to 20% of the original value
in accord with a cosine function. Another advantage of cosine decay is that it decreases
the learning rate after every epoch, with smaller changes at the beginning of the training
process when the model should have a higher learning rate to search for minimum points,
and at the end, when it fine-tunes its parameters and more drastic changes in between. In
comparison, step scheduling makes more drastic changes when a certain number of steps
have been reached. An example of how the learning rate varies can be seen in Figure 8.
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4.3. Dataset Augmentation Methods

Different dataset augmentation methods have been tested and the most efficient
ones are:
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• Left-right flips: The model becomes more robust to the different trajectories of people
in the images;

• HSV alterations: The model becomes more robust to changes in illumination;
• ISO noise: An image could always be of lower quality because of the camera’s

sensor limitations;
• Mosaic: Training on multiple images at the same time increases diversity.

Up-down flips are unnatural for the people detection task, as it is highly unlikely that
a person will be upside down in any test image. Rotations could prove useful but would
introduce more hyperparameters that require fine-tuning. Scaling caused trouble when
combined with Mosaic, as it would crop the images to match the original size, without
removing the irrelevant annotations. CutMix and MixUp did not work well with the chosen
datasets, as there was a very high chance of two images being similar. Figure 9 shows an
example of a mixture of these data augmentation methods being applied on four different
images from the MobilityAids dataset, such as Mosaic (top right and bottom left), ISO
noise (top right), HSV alterations (either an increase or decrease in brightness/contrast
in all images), LR flips (most images), as well as the now-removed scaling (top left and
bottom right).
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4.4. A New Classification and Regression Branch

This has been primarily added for regressing the new bounding boxes of the previously
detected people in a sequence of images but can also be used as a second proposal head in
the object detection task. The way it works is as follows:

1. The image is fed to the network composed of CSPDarknet53 and PANet in order to
obtain the initial proposals, which we will denote as P.

2. The proposals P are then sent to three separate YOLO heads for two purposes:

a. Extract the feature maps, Fm, and send each of them to the ROI pooling
b. Obtain the proposed detections from YOLOv4 based on P and Fm, denoted as

Pd

3. Send Fm and Pd to the ROI pooling layer and use the classification and regression
head to obtain the new set of proposals Ps.

4. Send Pd and Ps to an NMS layer in order to filter any low-quality proposals and obtain
our final set of proposals Pf.

The proposed architecture can be seen in Figure 10.
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contributes separately to the detection and ROI pooling part.

4.5. Anchor Free Branch

Because some ground truth boxes are either low-quality or are not covered by the
anchor boxes, an anchor-free module attached to the existing architecture has been used.
The method used is the one proposed by Zhu et al. [60]. The targets are processed for
each pyramid level, creating a map of the same size as the feature maps which contains
where the targets should be. The targets are further processed into effective (the area that is
considered to contain the target object) and ignore (the area surrounding the effective zone
and that is considered ambiguous and, as such, is ignored during backpropagation) areas
that are a percentage of the main bounding box. Figure 11 shows what an example target
would look like.
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Figure 11. Classification and regression targets after being processed. The white rectangle inside the
classification target is the effective area of the bounding box, the ignore area is colored in gray, and
the gradients from this zone are not propagated, while the black area does not contain any object.
The same goes for the regression target, but instead of one map, it has four (one for each distance
between the current location and the location of the top, left, bottom and right sides of the original
bounding box).

Because the module is attached to three different pyramid levels and predicting a
low-quality bounding box is not desirable, each module only predicts the targets that
best suit the pyramid level it is attached to. To do this, during training a target is as-
signed to the module whose output loss is the lowest during what the authors call Online
Feature Selection.

Just as with the classification and regression head, this module is fed the feature maps
of the layers before the YOLO head of each pyramid level.

4.6. Test Architecture and Coding Libraries

In order to train and test our network, we used the Python programming language,
version 3.7, and the PyTorch library, version 1.7. Both the programming language and
libraries were chosen for ease of use, as they are amongst the most common approaches in
the field. All the validations were performed on a machine containing an Intel I9-9900k
processor and an NVIDIA RTX2080 graphics card.

5. Results

The metrics used to measure the performance of an algorithm are mAP@0.5 and
mAP@0.5:0.95 (see Appendix A.3). In addition to these, Precision and Recall are also used
to better visualize the strengths and weaknesses of the model.

5.1. Results on the MobilityAids Dataset

On this dataset, there have been three notable experiments. By default, the dataset is
split into a training set (10,934 images) and an evaluation set (4301 images), on which the
authors of [63] have tested their algorithm. This split will be called Hospital1. However,
from our observations, mAP and recall start to stagnate after 40 epochs, even after applying
image augmentations during training, and fine-tuning the model. To test whether it was
a problem of the dataset (insufficient data) or a problem of the train-evaluation split, a
new, random split (11,415 images for training and 3820 images for evaluation) was created.
Given that the dataset is composed of sequences of images, the splitting process had to take
into consideration that a sequence must not contain images in both the train and validation
sets. This split will be called Hospital2. The histograms of the number of images in which
an object with class c appears can be seen in Figure 12.
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person; 4 = person using a walking frame. (a) Hospital1 (b) Hospital2.

The correlation between the number of images that contain class 0 (a person without
any handicap) and the performance of the algorithm (mAP) can be seen in Figures 12 and 13.
However, to be able to compare the performance of this paper’s approach to that of Vasquez
et al. [63], the algorithm must be trained and tested on their split (Hospital1). To close the
gap in performance between the two splits, the dataset could either be augmented with
additional images that contain people of class 0 or use the weights of YOLOv4 pre-trained
on COCO (as it contains such images and can help the algorithm further differentiate
between objects), with the method of choice being the latter. This third experiment was
called Pretrain_Hospital1. This experiment had a better starting accuracy than both pre-
vious experiments, required fewer epochs to reach the plateau, and had better accuracy
overall than Hospital1, but had worse performance in the end than Hospital2, as can be
seen in Figure 13. The performance of this approach compared to the methods proposed by
Vasquez et al. [47,63] can be seen in Table 2. Compared to Vasquez et al. [47,63] methods,
this approach does not use the depth information. Examples of output from this report’s
model can be found in Appendix B.
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Table 2. Accuracy (mAP@0.5) comparison between this paper’s method and those of [47,63].

Algorithm Backbone mAP@0.5 Inference Time (ms)

Fast R-CNN [47] ResNet-50 64.98 43
Fast R-CNN [63] ResNet-50 79.16 43

Faster R-CNN Centroid [63] ResNet-50 96.52 110
Proposed Method CSPDarknet53 95.00 22

5.2. Results on the MOT17Det Dataset

On this dataset there were 2 notable experiments:

• MOT_1, which uses the weights of YOLOv4 that were obtained after training the
algorithm on the MobilityAids dataset (Pretrain_Hospital1);

• MOT_2, which uses the weight of YOLOv4 pre-trained on COCO dataset.

Since MOT17Det only provided ground truth data on the train set, the final train-test
split was the following:

• train set: MOT17-02, MOT17-05, MOT17-10, MOT17-13 (2841 images)
• test set: MOT17-09, MOT17-11 (1425 images)

This split was chosen based on:

• the dynamic state of the camera (stationary or mobile):

# stationary: MOT17-02, MOT17-04, MOT17-09;
# mobile: MOT17-05, MOT17-10, MOT17-11, MOT17-13.

• the location of the scenes:

# indoors: MOT17-09, MOT17-11;
# outdoors: MOT17-02, MOT17-05, MOT17-10, MOT17-13.

• the average number of people in an image (the occluded people were removed from
the annotations).

As such, the scenes recorded with a mobile camera in an outdoor environment were
preferred to be used in the train set, as they offer more diversity in terms of background
and illumination. Because of this, MOT17-09 was considered a good candidate for the test
set. MOT17-11 was chosen for the test set due to the higher population density (compared
to MOT17-09) and because it was recorded using a mobile platform. Out of the seven
sequences of images, MOT17-04 had a different perspective (aerial view) and it was not
used at all.

As can be seen in Figure 14, in both experiments the number of false positives de-
creased, while the number of false negatives increased as the model trained, which led to a
decreasing mAP. This was caused by the small size of the dataset and the high instance of
partially occluded people, which the algorithm had difficulty detecting (see Figure A4).

In terms of experiment comparison, MOT_2 had a higher maximum mAP than MOT_1
because in the MobilityAids dataset, on which the algorithm had been previously trained
in the case of MOT_1, people were being differentiated based on their physical handicap,
which was not relevant for this dataset.
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6. Discussion

Two of the main factors when considering object detection are inference time and
accuracy, and most work that is done in the domain requires some trade-off between the
two. With this purpose in mind, most prefer the former over the latter, as the benefits gained
from faster detection times tend to outweigh the detriments of lower overall accuracy. This
is especially the case when considering people detection, and fast response in a critical
situation tends to be the beneficial approach. This does not necessarily mean that a lower
inference time must come with lower accuracy, as can be seen by developments in the field
in recent years.

Papers such as [4–9] tried to improve upon the previous two-stage detector archi-
tecture, managing to improve both inference times and accuracy in a diverse range of
applications. As for the case of single-stage detectors, the approaches have followed a
similar direction, with each version of YOLO seeking to increase the performance by virtue
of a smaller overall architecture [12–14,24].

Something else to note is that there have been various other papers that aimed at im-
proving the overall architecture of YOLOv4 itself, with various different approaches [15,18,21,23].

Another thing of note is that both the resolution of the images used in the training set
and the types of images used can largely affect the end results. Whilst a higher resolution
image can increase the overall inference time, it also tends to produce more accurate
results. Paper [64] shows a comparison between how different architectures perform in this
regard. Variations in the images used in the training dataset tend to be beneficial, as can be
seen in [14,58,59].

Even though most research tends to focus on more minimal architectures in order to
improve overall inference times, our goal was to combine both the versatility of single-stage
detectors with the accuracy offered by that of two-stage object detectors and aim for low
inference times and high accuracy, which, for our dataset, we mostly achieved. One of
the main downsides of our approach, however, was the fact that we could only find new
bounding boxes where the YOLOv4 architecture had already identified them ahead of time,
except they were given a low confidence score. This could improve the odds of some more
obscure objects being detected in certain images; however, it also posed the issue that we
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can run into more incorrect estimates, specifically since the box was given a low confidence
score initially.

Another limitation of our model was the fact that it achieved poor results when trained
on the MOT17Det dataset, most likely since many of the images were highly occluded;
thus, our method was detrimental in this situation.

7. Conclusions and Future Directions

Starting from the architectures of Fast R-CNN and YOLOv4, this paper proposed
a hybrid model of the two, using YOLOv4 as the main object detection algorithm and
attaching the Fast R-CNN head to each pyramid level. The output of the Fast R-CNN head
was then concatenated with that of YOLOv4, and non-maximum suppression was applied
over them, gaining additional possible detections with almost no inference time difference
compared to using just YOLOv4.

This method obtained comparable results with the methods proposed in the paper
that introduced the MobilityAids dataset in terms of mAP@0.5, but at a lower inference
time, as this was a single-stage object detector. On the MOT17Det dataset, on the other
hand, even if the results were good, based on the metrics, there was no comparison with
other existing methods, because the model was trained and tested locally on a split of the
original train set. In the future, the model could be trained and tested on the entire dataset,
but the results posting on the MOT_Challenge website are limited and, as can be seen in
Section 5.2, the model has trouble learning on this dataset. Because of this, different training
strategies must be employed for this dataset. A possibility of why the model is unable to
learn is the high occlusion rate between people. Thus, as a future improvement, a method
that would be able to still detect people in highly occluded images would be desired.

While not perfect, the idea of a regression and classification branch for a single-
stage object detector might be improved upon. For example, in the case of Tracktor, the
regression and classification branches are used to re-detect people from previous frames
while using YOLOv4 for people detection in the current frame to reduce the inference time.
Another possibility that was not tested would be bounding box confidence rescoring for
the bounding boxes that were outputted by YOLOv4.
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Appendix A

Appendix A.1. Anchor Boxes

Anchor boxes are predefined bounding boxes, which are characterized by width and
height. In the case of Faster R-CNN, the anchor boxes are used on a sliding window to
find candidate bounding boxes, while in YOLOv3 they are placed in each grid cell, with
the center coordinates of the bounding box being aligned with the center of the grid cell
or sliding window. A candidate bounding box is said to be found if it overlaps with a
bounding box with an IoU greater than a threshold. Anchors are usually fine-tuned to a
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certain dataset, as the objects in that dataset can have variable sizes and the anchor boxes
must be able to generalize. YOLOv3 uses k-means to find the anchor boxes that best cover
all ground-truth targets in the dataset, so they do not need to be hand-crafted. Starting
from an anchor box, a bounding box is computed via offsetting the center of the anchor box
and scaling it to fit the object of interest. An example of how they work in a single-stage
object detector can be seen in Figure A2.
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Figure A1. Example of how anchor boxes work at different scales. (a) Original padded image taken
from the MobilityAids dataset. (b) Anchor boxes at two different scales. The 4× 4 grid, at the top,
captures bigger objects, while the 8×8 grid, at the bottom, captures finer details. (c) The anchor boxes
are offset and scaled to fit the person at each scale.

Appendix A.2. Intersection over Union (IoU)

Intersection over Union (IoU) is a metric used to determine the similarity between
two bounding boxes b1= ( x 1, y1, w1, h1) and b2= (x 2, y2, w2, h2), in the task of object
detection, and is defined as:

IoU =
Intersection area

Union area
, (A1)

and can have values in the interval [0,1], where 0 means that the two bounding boxes do
not intersect, while 1 indicates that they are identical. Figure A1 shows what each area
represents.

Appl. Sci. 2022, 12, 1225 19 of 24 
 

the center coordinates of the bounding box being aligned with the center of the grid cell 

or sliding window. A candidate bounding box is said to be found if it overlaps with a 

bounding box with an IoU greater than a threshold. Anchors are usually fine-tuned to a 

certain dataset, as the objects in that dataset can have variable sizes and the anchor boxes 

must be able to generalize. YOLOv3 uses k-means to find the anchor boxes that best cover 

all ground-truth targets in the dataset, so they do not need to be hand-crafted. Starting 

from an anchor box, a bounding box is computed via offsetting the center of the anchor 

box and scaling it to fit the object of interest. An example of how they work in a single-

stage object detector can be seen in Figure A2. 

 

  

  
(a) (b) (c) 

Figure A1. Example of how anchor boxes work at different scales. (a) Original padded image taken 

from the MobilityAids dataset. (b) Anchor boxes at two different scales. The 4 × 4 grid, at the top, 

captures bigger objects, while the 8 × 8 grid, at the bottom, captures finer details. (c) The anchor 

boxes are offset and scaled to fit the person at each scale. 

Appendix A.2. Intersection over Union (IoU) 

Intersection over Union (IoU) is a metric used to determine the similarity between 

two bounding boxes  b1 =( x1, y
1
, w1, h1) and  b2 = (x2, y

2
, w2, h2),  in the task of object 

detection, and is defined as: 

𝐼𝑜𝑈 =  
Intersection area 

Union area
, (A1) 

and can have values in the interval [0,1], where 0 means that the two bounding boxes do 

not intersect, while 1 indicates that they are identical. Figure A1 shows what each area 

represents. 

  
(a) (b) 

Figure A2. Examples of different types of bounding box areas; (a) intersection (b) union. Figure A2. Examples of different types of bounding box areas; (a) intersection (b) union.



Appl. Sci. 2022, 12, 1225 20 of 24

Appendix A.3. Average Precision (AP)

An object detection algorithm has two tasks: (1) propose bounding boxes that might
contain objects of interest and (2) identify the contained objects. To test the performance of
the algorithm on a dataset, each prediction (sorted in decreasing order by the confidence
score) is compared to the ground truth bounding boxes for each class and is labeled as:

• True Positive (TP) if:

# The Intersection over Union (IoU) between the predicted bounding box and
the ground truth is greater than or equal to a set threshold (IoU ≥ threshold)
and the bounding box has been classified correctly

• False Positive (FP) if:

# The Intersection over Union (IoU) between the predicted bounding box and
the ground truth is below a set threshold (IoU < threshold) and the bounding
box has been classified correctly

# A detection with a higher confidence score has already been assigned to the
ground truth bounding box

• False Negative (FN) if:

# No detection (IoU = 0)
# The bounding box has been classified incorrectly

After each prediction labeling, the precision (P) and recall (R) over the accumulated
statistics (TP, FP, FN) are computed, where:

P =
TP

TP + FP
=

TP
all detections

, (A2)

R =
TP

FP + FN
=

TP
all ground truths

, (A3)

which are used to construct the precision-recall (PR) curve (for each recall value, find the
maximum precision value).

The Average Precision (AP) metric for a single class is defined as the area below the
PR curve at a set IoU threshold and as such, is usually written as AP@threshold, with the
most common notations being AP@0.50 (AP at IoU ≥ 0.5) and AP@0.5:0.95 (the average
of AP values at 10 different IoU thresholds, ranging from 0.5 to 0.95 in 0.05 increments).
mAP@threshold is the mean AP@threshold over all classes.

Appendix B

Figures A3 and A4 show examples of detection results obtained from different experi-
ments on the MobilityAids dataset.
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of AP values at 10 different IoU thresholds, ranging from 0.5 to 0.95 in 0.05 increments). 

mAP@threshold is the mean AP@threshold over all classes. 

Appendix B 

Figures A3 and A4 show examples of detection results obtained from different ex-

periments on the MobilityAids dataset. 
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Figure A3. Detection results on 4 images from MobilityAids dataset. (a) Original image samples. (b) 

Experiment 1 (Hospital1) output sample. (c) Experiment 2 (Hospital2) output sample. (d) Experi-

ment 3 (Pretrained_Hospital1) output sample. 
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Figure A4. Detection results on 2 images from the MOT17Det dataset. (a) Original image samples. 

(b) Output samples. 
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