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Abstract: In this article, a three-phase modular multilevel converter (MMC) with three-level neutral
point clamped converter (NPC) sub-modules (SMs) along with the placement of transformers in
place of arm inductors is proposed for PV grid integration. Compared to the traditional MMCs, the
proposed configuration reduces the voltage and power rating for the switches and the requirement of
a high capacitor bank. In order to analyze the performance of the proposed converter arrangement,
we have implemented four pulse width modulation schemes, such as Sine PWM with phase-level
shifted carrier (SPWMLSC), Sine PWM with a phase-shifted carrier (SPWMPSC), Sine with the
third harmonic injected level-shifted carrier (STHILSC), and Sine with the third harmonic injected
phase-shifted carrier (STHIPSC). The proposed converter was simulated in the MATLAB/Simulink
platform. Under normal and faulty operation, the results were presented with their performance
indices of voltage and current harmonic distortion and sub-module capacitor voltage ripples at
various modulation indices.

Keywords: modular multilevel converter (MMC); fault-tolerant; voltage source modular multilevel
converter (VSMMC); SPWMLSC; SPWMPSC; STHILSC; STHIPSC

1. Introduction

In order to achieve lower harmonic content in the output waveforms and lower filter-
ing requirements at the grid side, multi-level inverters would have been the future trend in
grid integration applications. To boost the efficiency and performance of grid-connected
systems, multi-level inverters would have been integrated into renewable energy appli-
cations. Recently, a topology, that is, the modular multilevel converter (MMC) evolved
from the multi-level family that has a profound application in photovoltaics, offshore,
onshore wind energy, and medium voltage motor drives STATCOM, and UPQC, etc. The
advantages of MMC are handled for high voltage applications, compact construction,
stability, and reliability, whereas the PV is integrated into the grid. We could see some
special characteristics like peak power capacity, fault ride-through, power quality, and
higher redundancy capabilities popularly in MMC PV-based inverters [1]. One of the key
topics that has been in current research is how to improve the efficiency and performance of
photo-voltaic systems in the field of advanced power electronics for the energy conversion
stages. There are various publications directed toward improvements and future imple-
mentation areas of before and after MMC studies. Many of those studies mostly focused on
the various sub-module arrangements. The idea of a unidirectional sub-module has been
explored in [2]. The efficiency of the MMC has been tested and compared to traditional
two-level cells using various cell configurations, such as neutral point clamped and flying
capacitor topologies. DC-MMC-based systems have been used as PV conversion systems
with two stages with MMC-based HVDC [3,4], where high irradiance is available at longer
distances from the consumption centers. Generally, in some MMC-based PV systems, it is
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required to provide each dc-dc converter without independent MPPT to supply for the SM
capacitor balance, which in turn helps in constant production of output required voltage
levels without any power fluctuations [5]. Having said that, by maintaining lossless energy
conversion, we have had MV grid integration of PV using MMC [6], because the individual
MPPT arrangement in MMC and multi-string central inverter have lower MPPT losses
when compared to a central inverter. In addition, a high-power hybrid-MMC was used for
PV grid integration to provide reliable performance, even though under partial shading
condition, because of the presence of individual MPPTs in each SM [7]. Thus, some of
the MMC-based PV-BESs (photovoltaic-battery energy storage systems) [8] and energy
distribution areas [9] had also been potential options for handling power mismatches
and smoothening the output power. In addition, for applications where high power and
medium voltage requirements, we can have some topologies of inverters without any need
for the line-frequency transformer are given in [10]. The organization of the paper is as
follows: Section 1 deals with the introduction. Section 2 explains the MMC and its sub-
module variants. Section 3 details the control of MMC. Section 4 illustrates the modulation
strategies for MMC. Section 5 discusses the results. Finally, the paper is concluded in
Section 6.

2. Modular Multilevel Converter and Sub Module Variants

Figure 1a is a three-phase MMC, and it consists of the top arm (Tarm) and the bottom
arm (Barm). This arrangement generally could have an N-number of SM in each arm [11].
Each phase consists of arm inductors (Larm) and the submodules to provide better arm-
currents without circulating harmonics and fault currents. Submodule (SM) or power cell
represents a topological connection of IGBTs and could be of any voltage level. Generally,
this SM is half-bridge (HBSM) or full-bridge (FBSM), but some researchers [12] started
using SM with high levels. The SMs in the arms must be identical to get a symmetrical
output wave. In the basic operation of the MMC, there is a chance of two events—sub-
module insertion or by-passing state—whenever all the sub-modules are inserted in series
and would result in arm voltages, respectively, and in turn produces a multilevel output.
During the insertion processes, the SM capacitors were charged to their rated voltage mag-
nitudes in the blocking mode based on the SM variants. The DC-link energy was equally
divided among the SM capacitors; otherwise, there would be an unbalance of voltages and
circulating currents within the phases. Figure 1b is a single-phase equivalent representation
of a conventional MMC. The top and bottom arms’ SM’s total voltage magnitudes constitute
V au and Val, respectively. For many applications, like motor drive, the number of SMs
drastically increased day by day. The ongoing developer has structurally connected multi-
level SM topologies to have dc fault handling capability, dimension reduction, and a higher
number of voltage levels. Table 1 here provides us with the topological variants of SMs.
Two-level SMs: Figure 2a shows the half-bridge submodule (HBSM) to produce the unipo-
lar voltage by chopping the dc-link voltage. It consists of two IGBTs and a capacitor [13]. It
can produce two levels of voltages 0, +VC1 when bypassed and inserted. In the HBSM, the
dc voltage component will be present in the MMC arms [14]. Figure 2b is unipolar voltage
FBSM [12], and this is similar to FBSM but with a slight replacement of a S3 switch with
D3 of the FBSM (Figure 3a); it would be suitable for dc-fault handling capability. Another
two-level variant is the unidirectional SM [15], and it has fewer semiconducting switches,
as shown in Figure 2c. The clamp single submodule (CSSM) configuration is another
configuration [16], which is shown in Figure 2d. The CSSM is derived from the three-level
flying capacitor submodules (TLFCSM) for providing dc-fault handling capability during
unidirectional operation.
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Table 1. Comparison of different submodules [13–20].

Sub-Module (SM) NVL Voltage Level NS MNSC MBV Bipolar DC-Fault
Handling

Two-Level SMs

HBSM 2 0, +VC1 2 1 VC1 No No

Unipolar SM 2 0, +VC1 3 1 VC1 No Yes

Unidirectional 2 0, +VC1 1 1 VC1 No No

CSSM 2 0, +VC1 3 2 VC1 No Yes

Three-Level SMs

FBSM 3 0, +VC1, −VC1 4 2 VC1 Yes Yes

TLFCSM 3 0, +VC2, +(VC1 + VC2) 4 2 VC1 + VC2 No No

TLNPC-1 3 0, +VC2, +(VC1 + VC2) 4 2 VC1 + VC2 No No

TLNPC-2 3 0, +VC2, +(VC1 + VC2) 6 2 VC1 + VC2 No No

TLNPC-3 3 0, +VC2, +(VC1 + VC2) 4 2 VC1 + VC2 No No

DSM 3 0, +VC2, +(VC1 + VC2) 8 4 VC1 + VC2 No Yes

TLCCSM 3 0, +VC2, +(VC1 + VC2) 5 3 VC1 + VC2 No Yes

DBSM 3 0, +VC1, −VC2 2 1 VC1 Yes Yes

IHSM 3 0, +VC1, +(VC1 + VC2) 5 3 VC1 + VC2 No Yes

Four-Level SMs

CDSM-1 4 0, +VC1, +(VC1 + VC2) 5 3 VC1 + VC2 Yes Yes

CDSM-2 4 0, +VC2, +(VC1 + VC2) 7 3 VC1 + VC2 Yes Yes

Asymmetrical 4 0, +VC2, +(VC1 + VC2) 4 2 VC1 + VC2 Yes Yes

Mixed SM 4 0, +VC2, +(VC1 + VC2) 6 3 VC1 + VC2 Yes Yes

SDSM 4 0, +VC2, +(VC1 + VC2) 5 3 VC1 + VC2 Yes Yes

Five-Level SMs

FLCCSM 5 0, +VC1, +VC2, ±(VC1 + VC2) 6 3 VC1 + VC2 Yes Yes

CCSM 5 0, +VC1, +VC2, ±(VC1 + VC2) 8 4 VC1 + VC2 Yes Yes

PCSM 5 0, +VC1, +VC2, ±(VC1 + VC2) 8 4 VC1 + VC2 Yes Yes

Note: SM—Submodule, NVLs—Number of Voltage Levels, NSs—Number of Switches, MNSC—Maximum
Number of Switches in the Conduction Path.

Three-level SMs: The well-known FBSM [16] is depicted in Figure 3a, and it gener-
ates bipolar output voltage levels, and we can use this for bipolar operation systems [17].
Moreover, if we connect two FBSMs in parallel, we could have a four-quadrant opera-
tion [18]. From Figure 3e, we can see that the three-level flying capacitor sub-module
(TLFCSM) [14,15,18] has two capacitors—C1 which is twice in voltage rating with C2. This
configuration does not have dc-fault handling and computationally complex control [19,20].
We see a three-level neutral point clamped submodules (TLNPC) in Figure 3b,d,g [14,18,21].
SMs in Figure 3d and TLFCSM are structurally close and produce 0, +VC2, and +(VC1 + VC2)
magnitudes; SM in Figure 3b contains four switches, two capacitors, and two diodes,
whereas SM in Figure 3g has six switches and two capacitors. Figure 3d, SM will be formed
by the two-series combination of commutation circuits, while Figure 3b can be possible
with the T-connection of switches; the midpoint switch here can block the voltages in both
directions [22].

Even though it has more components, it lacks the dc-link short circuit handling ca-
pability, which results in severe control losses [17]. Two FBSMs are connected, as shown
in Figure 3c, for improving the capacitor voltage performance, while keeping their SM’s
power level the same. This configuration [23] double-submodule (DSM) can improve the
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functionality of the SM without an increment in the semiconducting device’s cost. With
this capacitor, voltage ripples at low frequencies could also be reduced. However, it lacks
the presence of bipolar operation. In [12], another three-level cross-connected SM (TL-
CCSM,) formed by connecting two HBSMs back-to-back with switch and diode, is shown
in Figure 3f. Making the connection like this, we could produce voltage magnitudes 0, VC1,
and (VC1 + VC2). The diagonal-bridge SM (DBSM), shown in Figure 3i, is another variant
that is similar to FBSM but with two diagonal switches that are replaced by diodes [24].
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The last one is the three-level SM that is an improved hybrid SM (IHSM) [14], which
has maximum voltage blocking of (VC1 + VC2), as depicted in Figure 3h. Four-level
SMs: Figure 4a,b shows two kinds of double clamp submodules (CDSM) [12,14,21]. These
configurations are the combination of two HBSMs connected in series. Here the switch S5
is on continuously, so it becomes two HBSMs connected in series under normal operating
conditions. When the IGBTs are in blocking mode, both capacitors form either series or
parallel connections in this CDSM. Further, this SM, operated as FBSM, has undergone
different capacitor voltages as paralleled. To prevent this paralleling issue, diodes presented
in that path could be replaced with IGBT switches. They would make another configuration,
as shown in Figure 4b (CDSM); so far as losses are considered, CDSM is the combination of
HBSM and FBSM. The alternate way of arranging commutation cells is shown in Figure 4c.
This arrangement could be able to provide a dc-fault handling capability and can generate



Appl. Sci. 2022, 12, 1219 6 of 17

four voltage magnitudes. A combination of FBSM and HBSM would result in forming
a hybrid submodule termed an asymmetrical SM [25], and it can perform both unipolar
and bipolar operations, as shown in Figure 4d. The series connected double SM(SDSM) in
shown in Figure 4e, which is obtained by connecting two HBSMs with S5 and D6 [26]. It
has the capability of arc extension whenever a short circuit has taken place, and it could
protect MMCs even when zero impedance current would have been taken place. Five-level
SMs: As shown in Figure 5a, five-level cross-connected SM (FLCCSM) is the same as CDSM.
Structurally FLCCSM is designed with two HBSMs in back-to-back cross-connection with
the help of S5 and S6 [21,27]. Due to the two capacitors of the SM being connected in
series, a blocking effect on the dc-fault current can be created. A different cross-connected
SM (CCSM) [27] is shown in Figure 5b. It has a balanced bipolar voltage output, which
could achieve greater voltage [28]. Similarly, if FBSMs are connected as parallel-connected
SMs [29], which is shown in Figure 5c, they would give a reduced capacitor ripple.
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3. Control Strategy of the Proposed MMC

The main part is the SM, which is may be a DC-DC or DC-AC power converter.
Selection of better SM can provide fair control complexity, voltage blocking capability, and
bipolar operation at a minimal cost. A new circuit performance of MMC with HB-SM is
discussed in [2] by interchanging inductors with a transformer and also it offers twice the
DC-AC voltage gain. The conventional MMC is having the advantage of power devices
voltage ratings are halved, and the capacitor size of the SM is also lessened.

This paper uses neutral point clamped (NPC) SMs for the converter arrangement. The
schematic (Figure 6) of the proposed MMC has slightly changed the SM with NPC SM
with every single PV-panel, and the DC-DC converter and the DC-link to the MMC has
been maintained by the PV array followed with the DC-DC converter. Figure 7 shows the
controlling structure. For this controller implementation, initially, we are sensing the line-to-
line three-phase voltages, and then these are transformed to two-phase voltage quantities
by alpha-beta park’s transformation. Using these alpha-beta voltages, PLL is implemented,
alpha-beta voltages are then converted into dq voltages using Clark’s transformation. Now
from here, we are sensing the inverter side currents for the controller implementation.
These currents are then transformed to the alpha-beta domain using park’s transformation
and then transformed to the dq domain using Clark’s transformation. Here, Id corresponds
to active current, and Iq corresponds to reactive current. Later Id&Iq are then subtracted
from reference currents to find the error, and the error is fed to the PI controller to produce
Eq and Ed. It is then transformed to abc voltages to get the references for PWM generation
and, finally, we get the PWM generation block.
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index. 

However, in the proposed strategy, we use the transformers instead of arm inductors 

in the traditional MMC. 
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1

𝜔2
{

2(ℎ2 − 1) + 𝑚2ℎ2

8ℎ2(ℎ2 − 1)
} (3) 

𝐶𝑎𝑟𝑚 =
1

(𝐿𝑎𝑟𝑚 + 𝑚𝑢𝑡𝑢𝑎𝑙 𝑖𝑛𝑑𝑢𝑐𝑎𝑛𝑐𝑒). 𝜔2
{

2(ℎ2 − 1) + 𝑚2ℎ2

8ℎ2(ℎ2 − 1)
} (4) 
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Figure 7. Control block diagram.

Generally, arm components in the traditional MMC are designed using the following
equations.

Larm·Carm =
1

ω2

{
2
(
h2 − 1

)
+ m2h2

8h2(h2 − 1)

}
(1)

Carm =
1

Larm·ω2

{
2
(
h2 − 1

)
+ m2h2

8h2(h2 − 1)

}
(2)

where ω is the operating frequency, h is the harmonic order, and m is the modulation index.
However, in the proposed strategy, we use the transformers instead of arm inductors

in the traditional MMC.

(Larm + mutual inducance)·Carm =
1

ω2

{
2
(
h2 − 1

)
+ m2h2

8h2(h2 − 1)

}
(3)

From Equations (1) and (3), the inductance component is more in the proposed strategy,
because of the mutual inductance of the transformer when compared to the traditional
MMC for the same harmonic order and modulation index. Hence, from Equations (2)
and (4), the proposed system requires a lesser value of capacitance when compared to the
traditional MMC.

4. Modulation Strategies

Pulse width modulation (PWM) is generally used for regulating the power converter
AC output voltage. The desired (reference) AC output voltage is achieved by regulating
the duty cycle of the switching equipment. PWM methods were intended to eliminate
harmonic components in the output voltage and increase the magnitude of the output
voltage at any switching frequency. Figure 8 demonstrates the classification of various pulse
width modulation techniques commonly used in multilevel converters. These are the PWM
techniques adopted in VSC applications based on the switching frequency requirements.
Figure 9 shows the simulation results with the (a) Sine PWM with the level-shifted carrier
(SPWMLSC), (b) Sine PWM with the phase-shifted carrier (SPWMPSC), (c) Sine with
the third harmonic injected level-shifted carrier (STHILSC), and (d) Sine with the third
harmonic injected phase-shifted carrier (STHIPSC).
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Figure 9. Modulation schemes conducted on this converter. (a) Sine PWM with level-shifted carrier
(SPWMLSC); (b) Sine PWM with phase-shifted carrier (SPWMPSC); (c) Sine with third harmonic
injected level-shifted carrier (STHILSC); and (d) Sine with third harmonic injected phase-shifted
carrier (STHIPSC).

5. Results and Discussion

The simulation results of the proposed converter with various PWM schemes are
clearly explained in this section. The parameters chosen for the simulation are given in
Table 2. From Figure 10, we can see that the converter is operated with a modulation index
(MI) of 0.5 from t = 0.8 s to t = 1.2 s, and it is operated with M = 0.95 from t = 0.8 s to t = 1.2 s.
It is observed from Figure 10a,k that the THD in line voltage of the converter with d-q
control and SPWMLSC is 2.58% at 50 Hz. respectively. In addition, from Figure 10b,m, the
THD in line voltage of the converter with d-q control and SPWMPSC is 1.63%. Similarly, the
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THD in line current with d-q control and SPWMLSC is 12.20% and with SPWMPSC is 6.64%
at 50 Hz, as shown in Figure 10c,l, respectively. Figure 10e,g shows the capacitor voltages of
upper arm phase-a SM-1 and lower arm phase-a SM-1 with SPWMLSC modulation scheme.
Figure 10f,h shows the capacitor voltages of the upper arm phase-a SM-1 and lower arm
phase-a SM-1 with SPWMPSC modulation scheme. Figure 10i,j shows the transformer
primary and secondary phase-a currents for both PWM techniques, respectively.

Table 2. Simulated converter parameters.

Number of Cells in Each Arm 3

Ac line inductor 3 µH

Carrier frequency 1 KHz

Transformer resistance 74 m-ohm

Transformer inductor 3.48 mH

Cell capacitance 1000 µF
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Figure 10. Change in modulation index. (a) Line voltages of converter with d-q control and SP-
WMLSC, (b) line voltages of converter with d-q control and SPWMPSC, (c) Line currents of converter
with d-q control and SPWMLSC, (d) line currents of converter with d-q control and SPWMPSC,
(e) SPWMLSC implemented upper arm phase-a SM-1 capacitor voltage, (f) SPWMPSC implemented
upper arm phase-a SM-1 capacitor voltage, (g) SPWMLSC implemented lower arm phase-a SM-1
capacitor voltage, (h) SPWMPSC implemented lower arm phase-a SM-1 capacitor voltage, (i) primary
and secondary phase-a transformer currents when SPWMLSC is implemented, (j) primary and sec-
ondary phase-a transformer currents when SPWMPSC is implemented, (k) SPWMLSC implemented
line voltage THD, (l) SPWMLSC implemented line current THD, (m) SPWMPSC implemented line
voltage THD, and (n) SPWMPSC implemented line current THD.

Further, the converter’s dynamic performance is analyzed when there is a step-change
from time t = 1 s to t = 1.2 s in the current magnitude of I = 7.25 A to I = 17.5 A at 50 Hz
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frequency. It is observed from Figure 11a,k that the THD in line voltage of the converter
with d-q control and STHILSC is 1.26% at 50 Hz, respectively, and from Figure 11b,m the
THD in line voltage of the converter with d-q control and STHIPSC is 1.18%. Similarly,
the THD in line current with d-q control and STHILSC is 10.26% and with STHIPSC is
8.84% at 50 Hz, as is shown in Figure 11c,l and Figure 11d,n respectively. Figure 11e,g
shows the capacitor voltages of upper arm phase-a SM-1 and lower arm phase-a SM-1 with
STHILSC modulation scheme. Figure 11f,h shows the capacitor voltages of upper arm
phase-a SM-1 and lower arm phase-a SM-1 with STHIPSC modulation scheme. Figure 11i,j
shows the transformer primary and secondary phase-a currents for both STHILSC and
STHIPSC PWM techniques, respectively.
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Figure 11. Change in current. (a) Line voltages of converter with d-q control and STHILSC, (b) line
voltages of converter with d-q control and STHIPSC, (c) line currents of converter with d-q control and
STHILSC, (d) line currents of converter with d-q control and STHIPSC, (e) STHILSC implemented
upper arm phase-a SM-1 capacitor voltage, (f) STHIPSC implemented upper arm phase-a SM-1
capacitor voltage, (g) STHILSC implemented lower arm phase-a SM-1 capacitor voltage, (h) STHIPSC
implemented lower arm phase-a SM-1 capacitor voltage, (i) primary and secondary phase-a trans-
former currents when STHILSC is implemented, (j) primary and secondary phase-a transformer
currents when STHIPSC is implemented, (k) STHILSC implemented line voltage THD, (l) STHILSC
implemented line current THD, (m) STHIPSC implemented line voltage THD, and (n) STHIPSC
implemented line current THD.

Now, the performance of the MMC is analyzed when it is operating in open and
short circuit conditions. The Figure 12a,b shows the line voltages with d-q control and
SPWMLSC and SPWMPSC respectively, when one of the phases is open-circuited from
time t = 1 s to t = 1.2 s at 50 Hz frequency. Figure 12c,d is the line currents with d-q control
and SPWMLSC and SPWMPSC. During the faulty open-circuited operation, Figure 12e–h
shows the capacitor voltages of the upper arm and lower arm of phase-a SM-1 with
SPWMLSC and SPWMPSC modulation schemes, respectively. Further, the primary and
secondary phase-a transformer currents, when SPWMLSC and SPWMPSC schemes are
implemented, are shown, respectively, in Figure 12i,j. Similarly, Figure 13a,b shows the
line voltages with d-q control and STHILSC and STHIPSC respectively, when one of the
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phases is open-circuited from time t = 1 s to t = 1.2 s at 50 Hz. Figure 13c,d shows the
line currents with d-q control and STHILSC and STHIPSC respectively. During the faulty
open circuit condition, Figure 13e–h shows the STHILSC implemented upper arm and
lower arm phase-a SM-1 capacitor voltages, respectively, and STHIPSC implemented
upper arm and lower arm phase-a SM-1 capacitor voltages, respectively. The primary and
secondary phase-a transformer currents when implementing STHILSC STHIPSC are shown
in Figure 13i,j. Further, the short circuit condition is created from time t = 1 s to t = 1.2 s. At
this time interval, the converter performance is visualized, with simulation results shown
in Figure 14. Figure 14a,b shows the line voltages with d-q control and SPWMLSC and
SPWMPSC respectively. Furthermore, Figure 14c,d shows the line currents with d-q control
and SPWMLSC and SPWMPSC respectively. During the faulty short circuit condition,
Figure 14e–h shows the upper arm mad lower arm phase-a SM-1 capacitor voltages with
SPWMPSC and SPWMLSC schemes, respectively. Furthermore, the primary and secondary
phase-a transformer currents SPWMLSC and SPWMPSC modulation schemes are shown
in Figure 14i,j, respectively.
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Figure 12. Converter when one phase is open circuited. (a) Line voltages of converter with d-q control
and SPWMLSC, (b) line voltages of converter with d-q control and SPWMPSC, (c) line currents of
converter with d-q control and SPWMLSC, (d) line currents of converter with d-q control and
SPWMPSC, (e) SPWMLSC implemented upper arm phase-a SM-1 capacitor voltage, (f) SPWMPSC
implemented upper arm phase-a SM-1 capacitor voltage, (g) SPWMLSC implemented lower arm
phase-a SM-1 capacitor voltage, (h) SPWMPSC implemented lower arm phase-a SM-1 capacitor
voltage, (i) primary and secondary phase-a transformer currents when SPWMLSC is implemented,
(j) primary and secondary phase-a transformer currents when SPWMPSC is implemented.
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Figure 13. Converter when one phase is open circuited. (a) Line voltages of converter with d-q
control and STHILSC, (b) line voltages of converter with d-q control and STHIPSC, (c) line currents of
converter with d-q control and STHILSC, (d) line currents of converter with d-q control and STHIPSC,
(e) STHILSC implemented upper arm phase-a SM-1 capacitor voltage, (f) STHIPSC implemented
upper arm phase-a SM-1 capacitor voltage, (g) STHILSC implemented lower arm phase-a SM-1 capac-
itor voltage, (h) STHIPSC implemented lower arm phase-a SM-1 capacitor voltage, (i) primary and
secondary phase-a transformer currents when STHILSC is implemented, (j) primary and secondary
phase-a transformer currents when STHIPSC is implemented.
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Figure 14. Converter during short circuited condition. (a) Line voltages of converter with d-q control
and SPWMLSC, (b) line voltages of converter with d-q control and SPWMPSC, (c) line currents
of converter with d-q control and SPWMLSC, (d) line currents of converter with d-q control and
SPWMPSC, (e) SPWMLSC implemented upper arm phase-a SM-1 capacitor voltage, (f) SPWMPSC
implemented upper arm phase-a SM-1 capacitor voltage, (g) SPWMLSC implemented lower arm
phase-a SM-1 capacitor voltage, (h) SPWMPSC implemented lower arm phase-a SM-1 capacitor
voltage, (i) primary and secondary phase-a transformer currents when SPWMLSC is implemented,
(j) primary and secondary phase-a transformer currents when SPWMPSC is implemented.

Here, the proposed converter’s performance is analyzed with sin third harmonic
injection for both levels—shifted and phase-shifted PWM schemes—when the converter
has been short-circuited from t = 1 s to t = 1.2 s at 50 Hz. Figure 15a,b shows the line voltages
with d-q control and STHILSC and STHIPSC respectively. Figure 15c,d shows the line
currents with d-q control and STHILSC and STHIPSC respectively. During short-circuited
operation, Figure 15e–h shows the capacitor voltages of the upper arm and lower arm phase-
a SM-1 with STHILSC modulation scheme. The primary and secondary phase-a transformer
currents with STHILSC and STHIPSC schemes are shown in Figure 15i,j respectively.
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Figure 15. Converter during short circuited condition. (a) Line voltages of converter with d-q control
and STHILSC, (b) line voltages of converter with d-q control and STHIPSC, (c) line currents of
converter with d-q control and STHILSC, (d) line currents of converter with d-q control and STHIPSC,
(e) STHILSC implemented upper arm phase-a SM-1 capacitor voltage, (f) STHIPSC implemented
upper arm phase-a SM-1 capacitor voltage, (g) STHILSC implemented lower arm phase-a SM-1 capac-
itor voltage, (h) STHIPSC implemented lower arm phase-a SM-1 capacitor voltage, (i) primary and
secondary phase-a transformer currents when STHILSC is implemented, (j) primary and secondary
phase-a transformer currents when STHIPSC is implemented.

6. Conclusions

In this paper the performance of the proposed MMC with NPC sub-modules in PV
grid-connected applications was investigated under steady and transient conditions by
employing various PWM techniques. The proposed MMC with NPC sub-modules with
various SPWMLSC, SPWMPSC, STHILSC, and STHIPSC modulation techniques reports
the voltage THDs were 2.58%, 1.63%, 1.26%, and 1.18%, and the current THDs were
12.20%, 6.64%, 10.26%, and 8.84%, respectively. The phase-shifted carrier modulation
scheme has features like a low computational burden, can manage fault tolerance, and
provides superior voltage balance under abnormal conditions when it comes to the digital
controllers. From the results it is clearly revealed that the modulation schemes, such as
STHILSC and STHIPSC, give superior performance in terms of lower output voltage and
current harmonic distortions. The proposed arrangement achieves any volage level with
lower rating of power switches when compared to the conventional neutral point clamped
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converter. This strategy can also significantly reduce the requirement of the high rating
capacitor bank due to the presence of the mutual inductance component in the transformers,
which is not present in the traditional MMC. Hence it can used for many high-power and
medium-voltage grid-connected applications.
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