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Abstract: An integrated rainwater management system is necessary due to the frequent occurrence of
localized torrential rainfall and heat waves caused by an abnormal climate. It is necessary to develop
a rainwater detention system that can implement rainwater infiltration and detention simultaneously.
In this study, the safety, durability, and eco-friendliness of an eco-friendly rainwater detention system
developed using an eco-friendly inorganic binder, which involves red clay, were evaluated and its
economic feasibility was compared with that of the existing detention system. After 14 days, analysis
of the maximum compression load and computational finite element analysis confirmed that the
strength standard was satisfied and the structure was safe. No heavy metals or organic compounds
were detected in the leaching test. Thus, the eco-friendly rainwater detention system is structurally
safe and eco-friendly with no impact on the soil and groundwater environment, and is economically
feasible because the construction cost and life cycle cost are approximately 30% and 58% lower,
respectively, than those of the existing polyethylene infiltration detention tank system. These results
indicate that improved safety, eco-friendliness, and economic feasibility can be achieved, compared
to those of the existing system, if the eco-friendly rainwater detention system is applied in the field.

Keywords: rainwater detention system; red clay; engineering property; economic feasibility

1. Introduction

In recent years, the carbon neutrality movement has been actively implemented
worldwide to reduce carbon dioxide (CO2) emissions, which constitute the primary cause
of global warming [1]. In South Korea, considerable efforts have been made for greenhouse
gas (GHG) reduction, such as increasing the 2030 Nationally Determined Contribution
(NDC) to 30% [2,3]. GHG reduction is part of the response to climate change; nevertheless,
the impact and damage of climate change caused by GHG emissions in the past are expected
to last for the next 50–200 years [4]. In particular, the construction industry, which accounts
for approximately 40% of all CO2 gas emissions, is closely related to climate change, such
as global warming [5]. Therefore, GHG reduction is expected to become a crucial issue for
the construction industry in the future [6–10].

Despite global efforts to reduce CO2 emissions, abnormal climate events, such as
the sea level rise, heat waves, and heavy snow, have occurred worldwide [11], including
in Korea. Localized torrential rainfall frequently occurs each year, and it is difficult to
maintain river water in urban areas with high impervious pavement rates. Additionally,
the groundwater level decreases due to reductions in precipitation in the spring and autumn
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and the shortening of the drought period caused by the gradual change into a subtropical
climate [12]. Therefore, rainwater management systems that can deal with such extreme
climate change patterns, including floods and droughts, are required.

Recently, integrated rainwater management measures, such as the use, infiltration, and
detention of rainwater, were introduced in Korea. The primary focus was the installation
of large-scale underground detention tanks, which can reduce rainwater runoff during
floods. However, there were limitations in improving the overall water circulation in
the tank, including infiltration and evapotranspiration. The limited installation locations
and high maintenance cost were also limiting factors [13]. Therefore, it is necessary to
develop a more economical and eco-friendly rainwater detention system that can prevent
rainfall-induced floods by implementing both rainwater infiltration and detention and to
ensure the groundwater level through rainwater infiltration in dry seasons.

As part of this development, research has been actively conducted on red clay as an
eco-friendly material. Red clay has long been used in various areas in Korea. Earthen
houses are representative examples of structures built using red clay. Moreover, red clay
is an easily available material in Korea as it covers 35% of its land, which increases the
usability of red clay [14]. Red clay has also been actively researched in fields, such as
beauty, food, and horticulture. In the construction field, methods of using natural materials
to replace cement have been studied [15–18]. For red clay, however, problems with its
properties, such as insufficient strength and cracks caused by drying shrinkage, compared
to cement, have been noted [19]. In addition, to improve the durability of red clay, it has
been used as a building material after being exploited as a ceramic product through the
firing process. This method, however, involves complex work processes and is expensive
because the red clay structure must be melted and sintered by high heat (high-temperature
firing at 1000 °C or higher). Moreover, the energy consumption and generation of toxic
substances by the combustion of fuel to produce a high temperature cause environmental
pollution [20]. To address this problem, non-firing technology to ensure a predetermined
strength through ionic aggregation and pozzolanic reaction using eco-friendly inorganic
binders has been developed [21].

This report presents data for the field application of a prefabricated rainwater detention
system. This system provides increased durability by employing eco-friendly red clay
water-permeable blocks created by applying non-firing technology to red clay and improves
the infiltration performance by ensuring detention space. Evaluations of the safety of
raw materials, which constitute the eco-friendly rainwater detention system, and the
durability and eco-friendliness of the unit structure are presented. Furthermore, the
economic feasibility of the system is compared with that of the existing detention system.
Table 1 shows the difference between the existing system (polyethylene (PE) infiltration
facility) and eco-friendly rainwater detention system.

Table 1. Comparison of eco-friendly rainwater detention system with PE infiltration facility.

Item Eco-Friendly Rainwater Detention System PE Infiltration Facility

Example of
application
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2. Experimental Plan and Method
2.1. Experimental Plan

Table 2 presents the experimental plan of this study. The design strength was set
based on the porous revetment blocks of SPS-KCIC0001-0703 (concrete revetment and
retaining wall blocks) [22]. To ensure proper porosity and water permeability, the powder-
to-aggregate ratio and water-to-powder ratio were set to 1:5 and 19%, respectively, by
performing preliminary mixing experiments several times. To investigate the engineering
properties of the material, the compressive strength (7, 14, and 28 days), flexural strength
(7, 14, and 28 days), porosity, and permeability coefficient were measured. In addition, the
compressive load test and computational finite element analysis were conducted to examine
the durability of the unit structure of the eco-friendly rainwater detention system. The
leaching test was conducted to examine eco-friendliness. Finally, the economic feasibility
of the eco-friendly rainwater detention system was evaluated through a comparison with
the existing PE infiltration detention tank.

Table 2. Experimental plan.

Item Values

W/B (%) 19

Raw materials

- Compressive strength (7, 14, and 28 days)
- Flexural strength (7, 14, and 28 days)
- Porosity
- Permeability coefficient

Unit structure *
- Compressive load
- Finite element analysis
- Leaching test

Eco-friendly rainwater detention system - Economic feasibility evaluation

* Unit structure (1000 × 1000 × 1000) mm.

2.2. Materials Used

To test the properties of raw materials, specimens were created using an eco-friendly
inorganic binder (Table 3. Main chemical components of the eco-friendly inorganic binder
(powder) (%)) containing red clay with the components shown in Table 4. An aggregate
with no dust, soil, organic impurities, or chloride (Table 5. Characteristics of the aggregate
used.) was added to the binder, and non-firing technology was applied using clean water
containing no oil, acid, alkali, or organic impurities.

Table 3. Main chemical components of the eco-friendly inorganic binder (powder) (%).

CaO SiO2 Al2O3 Fe2O3 MgO Others

49.6 26.4 12.4 0.62 4.38 6.6

Table 4. Chemical components of red clay (%).

SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O Ig.Loss

40.0 32.9 7.79 0.39 1.54 0.76 1.73 13.7

Table 5. Characteristics of the aggregate used.

Aggregate Type Aggregate Size
(mm)

Dry Density
(g/cm3)

Water Absorption
(%)

Solid Volume
Percentage (%)

Crushed stone 3–5 2.61 1.7 56
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2.3. Experiment on Raw Materials
2.3.1. Strength

Specimens (dimensions: 100 × 100 × 80 mm) for measuring the compressive strength
were fabricated in accordance with SPS-KCIC0001-0703 [22], and specimens (dimensions:
140 × 125 × 80 mm) for measuring the flexural strength were produced in accordance with
KS F 4419 [23]. Measurements were performed at 7, 14, and 28 days of age.

2.3.2. Porosity

Specimens with dimensions of 80 × 80 × 200 mm were fabricated in a prismatic shape
for measuring the porosity. Following the measurement of the volume of each specimen,
we sealed its five sides, except for the top of the block. Water was poured into the block
through the top, after which the volume of the water that was poured into the block was
measured immediately. The porosity was calculated as the ratio of the volume of the poured
water to that of the block (porosity (%) = water volume (cm3)/block volume (cm3) × 100).
Figure 1 depicts the porosity measurement.
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Figure 1. Measurement of porosity.

2.3.3. Permeability

The permeability was measured in accordance with KS F 4419 [23] to calculate the
permeability coefficient. The prepared specimen, with dimensions of 200 × 200 × 60 mm,
was placed in the permeability test equipment. The equipment was tightly blocked using
a sealing material to enable water flow only through the specimen. The permeability
coefficient was calculated using the equation in Table 6.

Table 6. Permeability coefficient calculation formula.

K = d
h × Q

A×30 s

where
K: permeability coefficient (mm/s)
Q: amount of water drained (mm3)

d: thickness of the block (mm)
h: water level difference (mm)

A: cross-sectional area of the block (mm2)
30 s: measurement time (s)

2.4. Structure Experiment
2.4.1. Maximum Compressive Load of the Unit Structure

To examine the safety of the field application of the eco-friendly rainwater detention
system, the unit structure was fabricated using red clay water-permeable blocks, and the
maximum compressive load test was conducted. Figure 2 shows the algorithm of the
maximum compressive load test.
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Figure 2. Algorithm of the maximum compressive load test.

The red clay water-permeable blocks, with widths, depths, and heights of 1000, 1000,
and 200 mm, respectively, for the test were fabricated through high-pressure vibratory
compaction and high-temperature steam curing that could ensure the strength required
for a short period. The blocks were automatically fabricated using a mold and a vibratory
compaction forming machine after mixing the raw materials. The fabricated blocks were
cured up to an accumulated temperature of 700 (D.D) or higher under the temperature
conditions of 20–65 °C. Figure 3 shows the unit structure forming and curing equipment.
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The unit structure (1000 × 1000 × 1000 mm) was fabricated by assembling five cured
blocks. The maximum compressive load of the unit structure was measured using a
universal testing machine. Figure 4 presents the red clay water-permeable block unit and
the assembly of the unit structure.
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2.4.2. Computational Finite Element Analysis of the Unit Structure

To assess the structural safety of the unit structure, computational finite element
analysis was conducted using ANSYS commercial finite element analysis software [24]
in a static investigation by applying stationary load (self-weight, earth pressure, and
overburden pressure) and vertical load conditions. Considering the experimental load, as
shown in Table 7, the self-weight of the analysis model, earth pressure acting on the contact
surface of the unit structure (depth: 2 m), vertical overburden pressure generated by the
total weight of soil (1 m), and live load acting on the top of the ground (600 kN) were set
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as the conditions of the static analysis (Figure 5). The physical properties of the applied
experimental model are listed in Table 8. Figure 6 depicts the model of the unit structure,
and Figure 7 shows a diagram of the unit structure.

Table 7. Analysis conditions.

Item Values

Stationary load Self-weight + earth pressure (depth: 2 m) + overburden pressure (1 m)

Vertical load Live load (600 kN)
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Table 8. Material properties.

Item Texture Elastic Modulus
(MPa)

Poisson’s
Ratio

Density
(kg/m3)

Maximum Strength
(MPa)

Unit
structure

Permeable
concrete 25,000 0.167 2400

29.0 (compressive
strength)

7.3 (flexural strength)
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2.4.3. Leaching Test of the Unit Structure

Because the eco-friendly rainwater detention system is installed by embedding it in
soil, it was necessary to identify its impact on the environment. Therefore, the amounts
of cadmium, lead, hexavalent chromium, arsenic, and benzene were measured in accor-
dance with the JIS K 0102 [25] test method using the red clay water-permeable block unit
specimen. In addition, the amounts of organic phosphorus, total mercury, and polychlori-
nated biphenyl (PCB; chlorine compound) were measured in accordance with the S49 test
method announced by the Ministry of the Environment. Moreover, the pH was measured
by implementing the pH meter measurement method [26].
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3. Experimental Results and Analysis
3.1. Strength

The compressive and flexural strength results of the specimen are presented in Figure 8
to indicate the properties of raw materials, indicating that the compressive and flexural
strengths increase with increasing age. The compressive strengths were estimated to be
15.0 MPa (7 days of age), 23.0 MPa (14 days), and 29.0 MPa (28 days), and the flexural
strengths were 4.5 MPa (7 days), 5.8 MPa (14 days), and 7.3 MPa (28 days). When the age
exceeded 14 days, the compressive strength criterion (16.0 MPa) for porous revetment blocks
in SPS-KCIC0001-0703 [22] and the flexural strength criterion (5.0 MPa) for water-permeable
blocks in KS F 4419 [23] are satisfied. In particular, a flexural strength exceeding 7.3 MPa is
developed in 28 days. This value appears to be high considering that sidewalk blocks, as
red clay water-permeable block products, can be easily damaged in the transport process
and on-site installation stage after forming with the existing flexural strength criterion.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 21 
 

 

  
(a) Floor plan (b) Front view 

Figure 7. Drawing of the unit structure (mm). 

2.4.3. Leaching Test of the Unit Structure 
Because the eco-friendly rainwater detention system is installed by embedding it in 

soil, it was necessary to identify its impact on the environment. Therefore, the amounts of 
cadmium, lead, hexavalent chromium, arsenic, and benzene were measured in accordance 
with the JIS K 0102 [25] test method using the red clay water-permeable block unit speci-
men. In addition, the amounts of organic phosphorus, total mercury, and polychlorinated 
biphenyl (PCB; chlorine compound) were measured in accordance with the S49 test 
method announced by the Ministry of the Environment. Moreover, the pH was measured 
by implementing the pH meter measurement method [26]. 

3. Experimental Results and Analysis 
3.1. Strength 

The compressive and flexural strength results of the specimen are presented in Figure 
8 to indicate the properties of raw materials, indicating that the compressive and flexural 
strengths increase with increasing age. The compressive strengths were estimated to be 
15.0 MPa (7 days of age), 23.0 MPa (14 days), and 29.0 MPa (28 days), and the flexural 
strengths were 4.5 MPa (7 days), 5.8 MPa (14 days), and 7.3 MPa (28 days). When the age 
exceeded 14 days, the compressive strength criterion (16.0 MPa) for porous revetment 
blocks in SPS-KCIC0001-0703 [22] and the flexural strength criterion (5.0 MPa) for water-
permeable blocks in KS F 4419 [23] are satisfied. In particular, a flexural strength exceed-
ing 7.3 MPa is developed in 28 days. This value appears to be high considering that side-
walk blocks, as red clay water-permeable block products, can be easily damaged in the 
transport process and on-site installation stage after forming with the existing flexural 
strength criterion. 

 
Figure 8. Strength test results. Figure 8. Strength test results.

3.2. Porosity and Permeability Coefficient

Figure 9 presents the porosity and permeability coefficient measurement results. The
porosity is 22.6%, and the permeability coefficient is 0.86 mm/s. The porosity measurement
results satisfy the porosity mix design target (22.0%), which can increase the amount of
water to be contained in the structure and improve its permeability. The permeability
coefficient was more than eight times higher than the permeability coefficient criterion
(0.1 mm/s) for permeable blocks, according to KS F 4419 [23]. The rainwater detention
structure is expected to drain a large amount of water underground quickly while retaining
it during heavy rainfall.
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3.3. Maximum Compressive Load of the Unit Structure

To examine the safety of the eco-friendly rainwater detention system against the top
load during field application, the maximum compressive load of the unit structure was
measured and the result was found to be 2030 kN. This value represents the stress required
for the uniformly distributed failure load in the vertical direction. Figure 10 shows the
compressive load test of the unit structure.
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Figure 10. Maximum compressive load test of the unit structure (Seismic isolation device test machine
(JKS, Korea)).

3.4. Computational Finite Element Analysis of the Unit Structure

The computational finite element analysis results of the unit structure showed that the
maximum stress of 16.6 MPa occurred on the inner wall in the upper part. The maximum
stress of the top plate was 0.94 MPa, and the maximum stress of the outer wall was
0.83 MPa. The maximum displacement of 4.75 mm occurred in the center of the upper
plate. The maximum stress occurred in the compressed state. Accordingly, the structure
is safe considering the raw material compressive strength result of 29.0 MPa (28 days).
Figures 11 and 12 present the computational finite element analysis results for stress and
displacement. Table 9 summarizes the static analysis results.

3.5. Leaching Test

Table 10 lists the results of the leaching test. The pH is weakly alkaline due to the
inorganic powder, the main component of which is red clay; however, the pH is expected
to become neutral over time. Moreover, we found that there would be no impacts on
the soil and groundwater environment because no toxic substances, such as cadmium,
organic phosphorus, lead, hexavalent chromium, arsenic, total mercury, PCB, and benzene,
were detected.
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Table 9. Summary of static analysis results.

Analysis
Method Maximum Stress (MPa) Maximum

Displacement (mm)
Relevance

Assessment

Static
analysis

Outer wall: 0.83 (compressive strength)
Interior wall: 16.6 (compressive strength)
Top plate: 0.94 (compressive strength)

<29.0 (compressive strength)

4.75 O.K

Table 10. Leaching test results.

Substance Criterion Test Result

Cadmium 0.01 mg/L or less Not detected
Organic phosphorus Not detected Not detected

Lead 0.01 mg/L or less Not detected
Hexavalent chromium 0.05 mg/L or less Not detected

Arsenic 0.01 mg/L or less Not detected
Total mercury 0.0005 mg/L or less Not detected

PCB Not detected Not detected
Benzene 0.01 mg/L or less Not detected

pH - 9.5
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4. Economic Feasibility Analysis

In this study, the rainwater management capacity required for the development of
an apartment complex by private construction companies was calculated based on the
Basic Plan for Rainwater Management in Seoul [27] to evaluate the economic feasibility of
the eco-friendly rainwater detention system. Accordingly, we calculated the design water
quantity through the application of the existing PE infiltration detention tank and the eco-
friendly rainwater detention system. In addition, the economic feasibility was compared
and analyzed by calculating the design construction cost and life cycle cost (LCC). The
overview of the target site is presented in Table 11, and the status of the site is shown in
Figure 13. In this study, the permeable pavement and rainwater utilization facilities of the
target site were incorporated in a similar manner to the existing rainwater detention system.
However, in the case of infiltration facilities, the infiltration gutter, infiltration trench, and
dry well were applied to the existing system, whereas only the rainwater detention tank
was applied to the eco-friendly rainwater detention system.

Table 11. Overview of the target site.

Facility Name OOO Complex Location OO-gu OO-dong

Rainwater share (A) 5.5 m/h: private (large facility)
Site area (B) 13,360 m3 Green area (C) 1400 m3

Building area (D) 2600 m3 Saturated permeability
coefficient 0.01643 m/h

Target area (E) 12,520 m3 (E = B − (C × (3/5)))
※ Under a rainwater share of 5.5 mm/h

Required capacity (F) 68.9 m3/h F = A × E/1000
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4.1. Calculation of the Design Water Quantity

The target site for the economic feasibility analysis in this study was an apartment
complex, where appropriate measures must be undertaken for rainfall runoff of 5.5 mm/h.
Therefore, the required rainwater management capacity was 68.9 m3/h (rainwater
share × target area). The design water quantity was calculated when the required rain-
water management capacity was applied to the existing system PE infiltration detention
tank and the eco-friendly rainwater detention system. The design water quantity was
7.30 m3/h and 73.6 m3/h for the existing system and eco-friendly rainwater detention
system, respectively. Table 12 lists the calculated design water quantities.
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Table 12. Design water quantity of the existing system and eco-friendly rainwater detention system.

Category Facility Name
Specific

Infiltration
(m2/m2, m, ea)

Unit Design
Infiltration (1)

Design Water
Quantity (2)

(m2)

Design
Quantity

(m3/h)

Total
(m3/h)

A *

Pavement
Permeable pavement

(T0.24) 1.290 0.017 300.0 5.10

73.0

Permeable pavement
(T0.25) 1.291 0.017 400.0 6.80

C *

Infiltration
gutter

Infiltration gutter
W250 3.888 0.052 200.0 10.4

Infiltration gutter
W300 4.265 0.057 200.0 11.400

Infiltration
trench

Infiltration trench
W300 4.265 0.057 250.0 14.250

Infiltration trench
W400 5.151 0.069 250.0 17.250

Dry well
Circular well

D800A 17.148 0.228 5.0 1.140

Square well
W800A 18.469 0.246 5.0 1.230

Rainwater
utilization Utilization facility - - 100 5.582

B *

Pavement
Permeable pavement

(T0.24) 1.290 0.017 300.0 5.10

73.6

Permeable pavement
(T0.25) 1.291 0.017 400.0 6.80

Rainwater
detention tank

Continuous square
well

W1000A
19.13 1.306 43.0 56.16

Rainwater
utilization Utilization facility - - 100.0 5.582

* A: The existing system, B: Eco-friendly rainwater detention facility, C: Infiltration facility.

4.2. Design and Construction Costs

The construction cost was calculated by applying the material cost, labor cost, and
expenses, based on the design water quantity. When the material cost was calculated based
on the main structure (infiltration facilities) of each system, the labor costs required for
installation and the expenses were compared. The construction costs were found to be
KRW 54,245,120 and KRW 37,807,760 for the existing and eco-friendly rainwater detention
systems, respectively. When the eco-friendly rainwater detention system was applied, the
total construction cost decreased by approximately 30% owing to reduction in the material
and construction costs by approximately 45% and 15%, respectively. This decrease occurred
because of the reduction in production cost caused by the mass-production possibility of
red clay water-permeable blocks, which constitute the primary structure of the eco-friendly
rainwater detention system, and the simple construction through the assembly of the red
clay blocks. Table 13 presents the details of the construction cost.

Table 13. Details of the construction cost.

Item
Existing System Eco-Friendly Rainwater

Detention System Reduced Construction Cost

Facility Design Water
Quantity

Construction
Cost (KRW) ** Facility Design Water

Quantity
Construction

Cost (KRW) **
Construction
Cost (KRW)

Reduction
Rate

A *
A (T0.24) 300 m2 11,663,100 A (T0.24) 300 m2 11,663,100 0

0%A (T0.25) 400 m2 17,082,800 A (T0.25) 400 m2 17,082,800 0
Sub total 700 m2 28,745,900 Sub total 700 m2 28,745,900 0
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Table 13. Cont.

Item
Existing System Eco-Friendly Rainwater

Detention System Reduced Construction Cost

Facility Design Water
Quantity

Construction
Cost (KRW) ** Facility Design Water

Quantity
Construction

Cost (KRW) **
Construction
Cost (KRW)

Reduction
Rate

B *

D (W250) 200 m 7,095,140

H
(W1000) 43 m

37,807,760
(69.6%) 16,437,360 30%

D (W300) 200 m 7,911,940
E (W300) 250 m 10,733,625
E (W400) 250 m 13,142,375
F (D800A) 5 EA 5,861,900
G (W800A) 5 EA 7,138,040

Sub total - 54,245,120
(100%) Sub total - 37,807,760

(69.6%)

C * Utilization
facility 100 m3 12,000,000 Utilization

facility 100 m3 12,000,000 0 0%

Total - - 94,991,020 - - 78,553,660 17,011,920 18%

* A: Permeable pavement, B: Infiltration facility, C: Utilization facility, D: Infiltration gutter, E: Infiltration trench,
F: Circular well, G: Square well, H: Assembly-type red clay rainwater infiltration facility. ** For the labor cost,
material cost, and expense for each facility, standard estimates for civil-engineering work in Jecheon City in 2015
were applied.

4.3. LCC Analysis

For LCC analysis, all the costs necessary for an appropriate life cycle based on one
ton of the product, including the acquisition cost, dismantling cost, and sediment removal
cost required for maintenance, were compared. In the design criteria for concrete structure
durability, a compressive strength of 27 MPa or more suggests a useful life standard of
65 years or more and less than 100 years [28–30]. Because the eco-friendly rainwater
detention system is a secondary concrete product and the compressive strength at 28 days
of age is 29.0 MPa, its lifetime was set to 80 years. The lifetime of the existing system was
set to 40 years because it uses PE materials and has low durability due to the surrounding
earth pressure and creep. Tables 14 and 15 present the LCC analysis and sediment removal
cost analysis results, respectively.

Table 14. LCC analysis.

Category

Cost
Reduction Rate (%)

(Eco-Friendly/Existing)
RemarkEco-Friendly

Rainwater
Detention System

Existing
System

Lifetime 80 years 40 years - -
Acquisition cost 1,040,552 2,500,976 - Based on 80 years
Dismantling cost 14,947 29,894 - Based on 80 years

Total 1,055,499 2,530,870 −58.29% -
Sediment removal

cost 118,910 155,773 −23.66% -

The acquisition cost of the eco-friendly rainwater detention system is 58.3% lower than
that of the existing system. In addition, the cost to remove sediments that are inevitably
generated in rainwater detention facilities according to the “standards on the types, struc-
tures, installation, and maintenance of rainwater runoff reduction facilities (2010, National
Fire Agency)” [31] is 23.7% lower than that of the existing system. This difference exists
because the sediment removal process of the eco-friendly rainwater detention system is
simpler than that of the existing system, reducing direct material and labor costs.
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Table 15. Sediment removal cost analysis.

Category Expense Rate

Cost

RemarkEco-Friendly
Rainwater

Detention System

Existing System
(PE Infiltration

Facility)

Direct material
cost - 357 1944

Expense rate: standard
expense rate in 2015 for

calculating civil engineer-
ing/landscape/industrial

and environmental
facility construction costs

Labor cost - 84,425 109,361
Expense - 3942 5106
General

maintenance
cost

6% 5323 6984

Profit 15% 14,053 18,217
Total - 108,100 141,612
VAT 10% 10,810 14,161

Accordingly, the eco-friendly rainwater detention system has higher economic feasi-
bility than the existing PE infiltration detention tank.

5. Conclusions

In this study, we evaluated the engineering properties of an eco-friendly rainwater
detention system in terms of the material and the safety of a red clay water-permeable
block structure and compared the economic feasibility of the system with that of an existing
PE infiltration detention tank. The results of this study can be summarized as follows.

• We analyzed the durability of an eco-friendly red clay water-permeable block fabri-
cated by applying non-firing technology to red clay and found that the compressive
strength criterion (16.0 MPa) for porous revetment blocks in SPS-KCIC0001-07038 [12]
and the flexural strength criterion (5.0 MPa) for water-permeable blocks in KS F
4419 [13] were satisfied at 14 days of age.

• During heavy rainfall, the red clay water-permeable block is expected to drain a large
amount of water underground while retaining it because its porosity and permeability
coefficients are 22.6% and 0.86 mm/s, respectively.

• The maximum compressive load of the unit structure, comprising red clay water-
permeable block units, was 2030 kN, indicating that it is safe against fracturing caused
by the uniformly distributed failure load in the vertical direction.

• The computational finite element analysis of the unit structure confirmed its structural
safety, with its maximum stress and maximum displacement being 16.6 MPa and
4.75 mm, respectively.

• The results of the leaching test conducted to evaluate eco-friendliness showed that
there will be no impact on the soil and groundwater environment because no heavy
metals, such as cadmium, lead, chromium, arsenic, and mercury, or organic com-
pounds, such as benzene and PCB, were detected.

• Furthermore, the economic feasibility of the existing system (PE infiltration detention
tank) and the eco-friendly rainwater detention system was compared. The results
showed that the eco-friendly rainwater detention system has excellent economic
feasibility because the construction cost and LCC are reduced by approximately 30%
and 58%, respectively, compared to those of the existing system.

Based on the above results, it is expected that improved safety, eco-friendliness, and
economic feasibility can be achieved, compared to the existing system, if the eco-friendly
rainwater detention system is applied in the field.
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