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Abstract: In this article, we propose a novel model for facial micro-expression (FME) recognition. The
proposed model basically comprises a transformer, which is recently used for computer vision and
has never been used for FME recognition. A transformer requires a huge amount of data compared
to a convolution neural network. Then, we use motion features, such as optical flow and late fusion
to complement the lack of FME dataset. The proposed method was verified and evaluated using the
SMIC and CASME II datasets. Our approach achieved state-of-the-art (SOTA) performance of 0.7447
and 73.17% in SMIC in terms of unweighted F1 score (UF1) and accuracy (Acc.), respectively, which
are 0.31 and 1.8% higher than previous SOTA. Furthermore, UF1 of 0.7106 and Acc. of 70.68% were
shown in the CASME II experiment, which are comparable with SOTA.

Keywords: deep learning; image processing; facial micro-expression; emotion recognition; vision
transformer

1. Introduction

Facial micro-expression (FME) often faintly occurs for 0.04–0.2 s when people try
hiding their true feelings, unlike macro-expression appearing on the face from 0.75–2 s.
Due to these characteristics of FME, it is cost-intensive to build an FME dataset and there
are few FME datasets. In addition, several existing datasets, such as SMIC and CASME
II [1,2], developed in a strict environment, have a small number of samples.

Because of this nature of FME, most early studies [1,3–6] used handcrafted features
such as local binary patterns on three orthogonal planes and optical flow [7]. However,
as deep learning began to gain prominence in computer vision, there have been many at-
tempts [8–11] to combine deep neural networks with handcrafted features since a study [12]
using convolution neural networks (CNNs) with long short-term memory model (LSTM)
in FME recognition was conducted.

Recently, deep-learning methods have achieved the state of the art (SOTA) using a
vision transformer model, with composed self-attention layer without CNN rather than
using CNN in computer vision. Generally, the vision transformer model outperforms CNN
when using transfer learning with pretrained weights using large number of data rather
than training from scratch. Interestingly, a recent study [13], which injected CNN-like
inductive biases [14], locality and pyramid structure, into transformer models, showed
similar performance to CNN with scratch training on the ImageNet dataset.

However, to the best of our knowledge, no studies have applied a vision transformer
to FME recognition. We assume the transformer’s inductive bias, modeling relations
between input patches might seem more suitable for FME recognition than the inductive
bias of CNN, since the pattern of FME is subtle and appears only in a part of each frame
in the video. Therefore, we propose an FME recognition model using a transformer and
optical flow [7], which is a general feature to represent the motion of video, without
pretrained weights using a large amount of data. We used optical flow as a motion feature
to complement the lack of data [15].
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Since FME datasets were captured by a high-speed camera, we thought the influence
of the optical flow in FME recognition would be different from general video recognition.
Therefore, in ablation we conducted various experiments about that influence and em-
pirically found the proper way to use the optical flow. As a result, our proposed model
achieves the SOTA in the SMIC [1] and comparable performance in the CASME II [2] (see
Table 2).

2. Related Works
2.1. Prior Works of FME Recognition

Previous studies on FME were performed using handcrafted features. They can be
summarized as follows: Li et al. used local binary pattern histograms from three orthogonal
planes (LBP-TOP) to describe the spatiotemporal local textures from cropped face sequences
for feature extraction [1], and interpolated video using a temporal interpolation model
(TIM) [16]. Liong et al. proposed a feature extraction method using bi-weighted oriented
optical flow (Bi-WOOF), variants of optical flow, to encode essential expressiveness of
the apex frame and used only two images per video [4]. Wang et al. used the sparse
part of Robust PCA to extract the subtle motion information of micro-expression and
classified the local texture features of the information extracted by local spatiotemporal
directional features [3]. Xiaobai et al. proposed a new unifying framework [5], where
motion magnification is employed to counter the low intensity of MEs, for ME spotting and
recognition. Yuan et al. designed a hierarchical spatial division scheme for spatiotemporal
descriptor extraction to address difficulty with choosing an ideal division grid for different
micro-expression samples [6].

However, since deep-learning methods have become de facto, studies in FME recogni-
tion have begun to use deep-learning methods: Devangini et al. proposed the first work to
explore the possible use of deep learning for micro-expression recognition task. They solved
the problem of lack of data using transfer learning from objects and facial expression-based
CNN models [12]. Li et al. applied the 3D flow-based CNNs model, which flows consists
of gray color information, and horizontal and vertical optical flow [8]. Xia et al. proposed a
deep model, which is constituted of several recurrent convolutional layers. They exploited
two types to extend the connectivity of convolutional networks across the temporal domain,
in which the spatiotemporal deformations are modeled in views of facial appearance and
geometry separately [9]. Choi et al. proposed a 2D landmark feature map (LFM) obtained
by transforming face landmark information into 2D image information. They also proposed
an LFM-based recognition method that is an integrated framework of CNN and LSTM [10].
Xuan et al. developed a multi-task learning (MTL) method to effectively leverage a side
task: gender detection. Their method GEME [11] recognized micro-expressions by incor-
porating unique gender characteristics and subsequently improved the micro-expression
recognition accuracy.

2.2. Vision Transformer

The transformer is a highly successful model in natural language processing and has
recently been applied to computer vision. The best-known vision transformer is ViT [17],
which replaces word tokens in a sentence with patch tokens in an image. The biggest
difference between the transformer and CNN, which was the mainstream in computer
vision, is that it uses self-attention operations, not convolution operations. Self-attention
is an operation that allows each token to represent contextual information within the
group to which it belongs, rather than representing an individual meaning. For that, self-
attention converts the input token into individual query, key, and value, and calculates
a scaled dot product [18] between them. Because self-attention models the relationship
of patches within the image they belong to, unlike CNN, the vision transformer has a
global receptive field. In addition, each query, key, and value depends on the input data,
so unlike CNN, the transformer has a property of adaptive weight aggregation, making
it more expressive. However, as it has a large capacity, it is necessary to learn with large
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amounts of data to achieve good performance. Many studies have been proposed to
achieve similar performance to CNN with the same amount of data. Among them, the Swin
transformer [13] used in this paper is a study to solve the above problem by borrowing
some of the pyramid structure and locality of CNN.

3. Proposed Method

Figure 1 depicts the structure of the proposed method. First, we linearly interpolate a
different length video x into a fixed length video xfix. Next, we calculate optical flows xopt
from xfix and then throw away the last frame of xfix to match the length of xfix and xopt:

x = [i1, i2, i3, . . . , iM], image i ∈ RH×W×C, (1)

xfix = [i1, i2, i3, . . . , iN ], throw away iN+1 for matching, (2)

xopt = [o1, o2, o3, . . . , oN ], optical flow o ∈ RH×W×C, (3)

where the sequence length M depends on the data sample, N is the desired number of
lengths, (H, W) is the resolution of the video, and C is the number of channels. We explain
this preprocessing in detail later.

Figure 1. Structure of proposed method.

Afterward, grayscale or color images xfix and optical flows xopt are independently passed
through two transformer backbones, face backbone f and motion backbone g. These back-
bones have the same structure but do not share parameters to extract k-dimensional feature
vectors, zface and zmotion. These vectors are then transformed to zfusion via concatenation:

zface = f (xfix), zface ∈ Rk, (4)

zmotion = g(xopt), zmotion ∈ Rk, (5)

zfusion = concat([zface, zmotion]), zfusion ∈ R2k. (6)

Finally, we push zfusion into the classifier h composed of the fully connected layer,
followed by the SoftMax layer, to obtain a class score s and use cross entropy loss using
t ∈ Rc for training:

s = h(zfusion), s ∈ Rc, (7)

Lce(s, t) = −
c

∑
i=1

ti log(si), t ∈ Rc, (8)

where c is the number of target classes and subscript i means the position of the elements
in the vector.
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3.1. Preprocessing

The number of frames for each video must be the same to use it as a transformer
input. A previous study [16] used TIM to equally interpolate the frames of each video.
However, TIM’s assumption that each frame is linearly independent is fragile when using
an FME dataset because the video captured by a high-speed camera (100/200 fps) has a
dimmer pattern compared to the normal-speed video (30 fps). In addition, TIM interpolates
videos using singular value decomposition that require numerous computations to flatten
video vectors.

Due to these limitations, we use linear interpolation. Linear interpolation is a method
of curve-fitting using linear polynomials to construct new data points within the range of a
discrete set of known data points. Table 1 shows that TIM requires additional computation
and does not yield significant performance improvements compared to linear interpolation.
We measured the time required for interpolation of 31 frames of video into 8 frames. The
interpolation is executed using the CPU, where the RAM capacity is 377 GB, and the CPU
is 64-core AMD EPYC 7702.

Table 1. TIM vs. linear interpolation using Early Fusion Video Transformer.

Method Interpolation Time a
UF1 UAR Acc.

(ms, millisecond) (%)

TIM [16] 602 ± 90.4 0.6516 0.6565 65.85
Linear Interpolation 22.3 ± 29.7 0.6590 0.6629 65.85

In this experiment, we set video length as 8 and do not use Late Fusion. a is the average time measured
500 iterations.

Then, we calculated an optical flow feature from the interpolated video. Optical flow
is the pattern of apparent motion of objects, surfaces, and edges in a visual scene caused
by the relative motion between an observer and a scene. We used dense optical flow
obtained using the Farneback algorithm [19], which is a basic method of calculating optical
flow. In the proposed method, we set N as a quarter of the average video length on the
target dataset.

3.2. Transformer Backbone

The Swin video transformer [20] is a model that performs well without a large amount
of data using a Swin block composed of window or shifted-window multi-head self-
attention, which solves the quadratic complexity problem of the transformer.

In the proposed method, we use Video Swin-B as the backbone. It consists of 4 stages,
which have different Swin block numbers {2, 2, 18, 2} for each stage. Since we han-
dle a token as 2× 4× 4 in the backbone, patch partition first reshapes the input video
N × C× H ×W into the patch tokens (N

2 ·
H
4 ·

W
4 )× (2 · 4 · 4 ·C). Then, a linear embedding

layer is applied to project each token to the dimension of 128 and each stage feeds previous
tokens to the next stage through Swin blocks.

We expect that the face backbone models the spatial and temporal relationships
between patches of all frames for FME recognition, and the motion backbone does same
thing as the face backbone in terms of motion information using optical flows.

3.3. Late Fusion

In prior work [21], researchers called extracting features of each frame through one
shared 2DCNN which could not model the temporal relations, and combining features
before classification, Late Fusion (LF). In contrast to LF, they called extracting a combined
feature of all frames through one 3DCNN early fusion (EF).

The definitions of LF and EF above are slightly different from our research. However,
we used the names because the positions that combine each feature are the same. In
our research, we named LF the process that extracts two features individually from two
different inputs, video and optical flows, through two different backbones and combines
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those features before classification. Additionally, we named EF the process that extracts a
combined feature through one backbone from one input in which video and optical flows
are concatenated channel-wise, and classifies the feature into emotional classes.

In the proposed method, we used LF even though EF has a low amount of computation
due to its shared backbone. This is because we thought that extracting a feature from the
concatenated input would degrade performance due to dependency, caused by the optical
flows calculated from the video.

4. Experimental Results
4.1. Dataset and Metrics for the Whole Experiment

We used the SMIC [1] and the CASME II [2] dataset for the evaluation of the proposed
method. There are 100 Hz 164 videos classified into positive (51), negative (70), and surprise
(43) emotions, built by 16 subjects in SMIC. Each video shows the upper body is different
in length, has 33.7 frames on average. The other dataset, CASME II, consists of 200 Hz 247
videos classified into disgust (64), happiness (32), others (99), repression (27), and surprise
(25), built by 26 subjects. The average number of frames is 67.2. All video has three color
channels: red, green, and blue.

Since the dataset has an imbalance distribution of emotion labels, we used three
balanced metrics to reduce the bias: accuracy (Acc), unweighted average recall (UAR) [22],
and unweighted F1 score (UF1) [23].

Acc. =
∑C

c=1 TPc

∑C
c=1 Nc

, (9)

UAR =
1
C

C

∑
c=1

TPc

Nc
, (10)

UF1 =
1
C

C

∑
c=1

2TPc

2TPc + FPc + FNc
, (11)

where C is the number of classes, and Nc is the number of samples for each class. TP, FN,
and FP are the true positive, false negative and false positive, respectively.

4.2. Training Scheme

All models were trained on 1 GPU with 1 image per GPU. Specifically, we used a
RTX A6000 48 GB. This means that batch size is 1. For backpropagation, we used the
AdamW [24] optimizer of which betas are (0.9, 0.999) and weight decay is 0.05. The initial
learning rate is 10−5.

Since each video shows the upper body, we cropped the face part using a face detection
model [25] and resized its resolution as (224, 224). In addition, the FME appears in a very
faint pattern and can be easily damaged if a strong change is applied. Thus, we used only
simple augmentations such as random scaling and rotation in the range of [0.9, 1.1] and
[−10◦, 10◦], and horizontal flip. Furthermore, since the class distribution of each dataset is
unbalanced, an imbalanced sampler that matches the class distribution was used before
data augmentation to train using the similar amount of data per epoch. We expected the
sampler to reduce the bias of the dataset.

We trained the face backbone f (·), the motion backbone g(·), and the classifier h(·)
using this dataset with the proposed method. We used same scheme for training models of
the ablation study.

4.3. Evaluation Protocol

Each person has a different form of expression on their face. Therefore, to avoid
person-dependent issues, the performance of the model is evaluated with leave-one-subject-
out (LOSO) cross-validation. LOSO measures the performance of the model using one of
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the subjects as a validation set and the rest as a training set. Then, we repeat the training
and validation process as many times as the number of subjects in the dataset.

4.4. Performance of the Proposed Method

Table 2 shows the performance of the proposed method compared to other studies
on SMIC and CASME II. The numerical values of each method are taken from survey [26]
or their own paper. We can find that our method achieves the best accuracy and UF1 on
average in SMIC and shows comparable performance in CASME II. In the case of SMIC,
the proposed method has an improvement of about 0.031 and 1.8% over previous SOTA. In
the case of CASME II, the proposed method did not outperform the previous SOTA, but
while the previous SOTAs, LFM and GEME, demanded additional complex methods for
model learning, our model exhibits comparable performance without such a method.

Table 2. Comparison to other methods on SMIC and CASME II.

Year Method SMIC CASME II
UF1 Acc. (%) UF1 Acc. (%)

2013 LBP-TOP [1] - 48.78 - -
2014 DLSTD [3] - 68.29 - 63.41
2016 CNN-LSTM [12] - 53.6 - 47.3
2016 BI-WOOF [4] 0.6200 62.20 0.6100 57.89
2018 HIGO [5] - 67.21 - 68.29
2018 H-STLBP-IP [6] 0.6126 60.78 0.6110 63.83
2019 3DCNN [8] - 55.49 - 59.11
2019 STRCN [9] 0.6950 72.30 0.7470 † 80.30 †
2020 LFM [10] 0.7134 71.34 0.7165 73.98
2021 GEME [11] 0.6158 64.63 0.7354 75.2
2021 Proposed * 0.7447 73.17 0.7106 70.68

Note: Bold show the best performance in each metric. † was measured using only 4 classes in CASME II. * From
result of Late Fusion in Table 6.

Figure 2 shows the confusion matrices of the proposed method in the validation phase.
In SMIC, the proposed model has difficulty classifying ‘negative’, especially misclassifying
‘negative’ as ‘positive’. This is interesting because the number of samples labeled ‘negative’
is the largest, and other studies classify ‘negative’ relatively well. We believed that these
results are due to using the imbalanced sampler. In CASME II, the proposed method is
relatively poor at classifying ‘others’ and ‘disgust’, which have the most data samples.

Figure 2. Validation confusion matrices of our method. Each matrix is measured using LOSO. (a) is
the result of SMIC and (b) is the result of CASME II.

5. Ablation Study

Since we performed FME recognition using a transformer, we need to know the
influence of optical flow and distinguish it from the influence of the transformer. Therefore,
we will compare the performance of CNN-based [27], transformer-based [28], and CNN-
like transformer-based [20] models. The CNN-based model represents locality inductive
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bias, the transformer-based model represents inductive bias of global receptive field, and
the CNN-like transformer-based model represents intermediate inductive bias between
them. Inductive biases, broadly speaking, encourage the learning algorithm to prioritize
solutions with certain properties. The comparison with these three models will be a clue to
which inductive bias is more suitable for FME recognition. Furthermore, since the FME
datasets consist of high-speed videos, 100 Hz or 200 Hz, it is different from regular videos
with large changes in each frame. Therefore, we empirically investigate the proper way to
use optical flow.

In ablation 5.1 and 5.2, we do not use the LF method because the LF requires too much
computation. For the model detail, see Table 3. We represent the amount of computation
for each model in multiply–accumulate operations (MACs), which is a common step that
computes the product of two numbers and adds that product to an accumulator.

Table 3. Backbone information.

Backbone Num. of Parameters Num. of MACs a

(million, M) (giga, G)

3DResNext [27] 47.5 42.45
Video Swin [20] 86.7 0.573

TimeSFormer [28] 121.3 8.55
a Calculate MACs in the case of video length 16, frame size (224, 224).

5.1. Influence of the Optical Flow

We examine whether the motion feature yields significant improvements and analyze
the effect of color information, which is considered useless in FME recognition because it is
subject-dependent. To minimize the loss of color information, we use the video length of
32 close to the average number of frames in SMIC as a video length (33.7). It makes the
effect of optical flow less pronounced.

Table 4 shows that incorporated optical flow had higher performance than those using
only grayscale or color information. Interestingly, the 3D-ResNeXt-101, which consists only
of CNN, performs best when using motion information, and video transformer models
perform better when using image information together, contrary to what is generally
known, that color information is meaningless. Therefore, it may be seen that it is effective
to use motion information, and in the video transformer, it is appropriate to use image
information and motion information together.

Table 4. Comparison between using optical flow and not.

Backbone Video Length Preprocess UF1 UAR Acc. (%)

3DResNext [27]

32

RGB 0.5945 0.6101 59.15
RGB + OF 0.6130 0.6107 60.98

GRAY 0.5583 0.5666 55.49
GRAY + OF 0.6487 0.6620 64.63

OF 0.6907 0.6983 69.51

Video Swin [20]

RGB 0.5958 0.5858 62.20
RGB + OF 0.6203 0.6231 62.20

GRAY 0.5984 0.5928 60.37
GRAY + OF 0.6130 0.6177 62.20

OF 0.5762 0.5838 57.93

TimeSFormer [28]

RGB 0.6046 0.6232 60.37
RGB + OF 0.6492 0.6572 64.63

GRAY 0.5061 0.5494 51.22
GRAY + OF 0.6392 0.6465 63.41

OF 0.6465 0.6476 64.63
Note: Bold shows the best performance of each model in each metric.

5.2. Investigation of the Proper Interpolated Length

Since optical flow represents the motion of objects between two frames, meaningful
features may not be extracted for images captured with a high-speed camera, so the
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proposed method interpolated each sample in half the average number of frames in the
dataset to extract meaningful motion information. However, it is unknown whether half
the average number is appropriate in most cases. Therefore, it is essential to interpolate
with an appropriate number of frames. In this experiment, we compared the average, half
of average, and a quarter of average. Based on the above results of comparison using
optical flow, we do not consider using only color and grayscale.

In Table 5, the use of video length as 32 generally showed a similar or worse perfor-
mance to using it as 8 and 16. We think these results are for two reasons. The first reason
is that the number of data is too small to use long frames, so the model is overfitted. In
general, as the dimension of the input vector used for training increases, the number of data
should also increase in proportion to the dimension. However, in the case of FME datasets,
the number of samples is small and thus the model is easily overfitted. The second reason
is that motion information is more useful than color information, as confirmed in ablation
5.1. Increasing the interpolation length reduces the loss of color information and differences
between two frames, which reduces the usefulness of the optical flow and lowers model
performance. Thus, it is desirable to use a smaller video length.

Table 5. Comparison based on the number of frames.

Backbone Video Length Preprocess UF1 UAR Acc. (%)

3DResNext [27]

8
RGB + OF 0.5954 0.5938 62.80

GRAY + OF 0.6087 0.6082 64.63
OF 0.5955 0.5939 62.80

16
RGB + OF 0.6476 0.6540 65.24

GRAY + OF 0.6888 0.6773 71.34
OF 0.6924 0.6790 71.95

32
RGB + OF 0.6130 0.6107 60.98

GRAY + OF 0.6487 0.6620 64.63
OF 0.6907 0.6983 69.51

Video Swin [20]

8
RGB + OF 0.6481 0.6647 64.63

GRAY + OF 0.6977 0.6958 69.51
OF 0.6678 0.6947 66.46

16
RGB + OF 0.6301 0.6416 62.80

GRAY + OF 0.6226 0.6168 62.80
OF 0.6528 0.6471 66.46

32
RGB + OF 0.6203 0.6231 62.20

GRAY + OF 0.6130 0.6177 62.20
OF 0.5762 0.5838 57.93

TimeSFormer [28]

8
RGB + OF 0.6271 0.6440 62.20

GRAY + OF 0.6632 0.6834 65.85
OF 0.6723 0.6750 67.07

16
RGB + OF 0.7038 0.6953 71.34

GRAY + OF 0.6471 0.6703 64.63
OF 0.7038 0.6953 71.34

32
RGB + OF 0.6492 0.6572 64.63

GRAY + OF 0.6392 0.6465 63.41
OF 0.6465 0.6476 64.63

Note: Bold show the best performance of each model in each metric.

5.3. Effect of the Fusion Location

The proposed model extracts two features individually using grayscale information
and optical flow, but it is unknown whether this yields improvement because there is no
research on the transformer. Therefore, we compare the performance of EF and LF.

From Table 6, it is difficult to determine which is better. However, when using LF, it
needs one more backbone, which requires about twice as much additional operation as EF.
In addition, except for Swin, the highest performance of each model comes from EF, so EF
can be considered better. However, since the highest performance among all models comes
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from LF, it is still difficult to determine superiority and inferiority. As a result, it is still an
open problem.

Table 6. Comparison of early vs. late fusion.

Backbone Video Preprocess Fusion UF1 UAR Acc
Length (%)

3DResNext [27]

8

RGB + OF
Early 0.6291 0.6403 64.02

Late 0.6759 0.6624 68.90

GRAY + OF
Early 0.6087 0.6082 64.63

Late 0.6142 0.6096 62.20

16

RGB + OF
Early 0.6476 0.6540 65.24

Late 0.6598 0.6464 67.07

GRAY + OF
Early 0.6888 0.6773 71.34

Late 0.6034 0.6151 61.59

Video Swin [20]

8

RGB + OF
Early 0.6481 0.6648 64.63

Late 0.7027 0.7309 70.12

GRAY + OF
Early 0.6977 0.6958 69.51

Late 0.6638 0.7005 66.46

16

RGB + OF
Early 0.6301 0.6416 62.80

Late 0.7013 0.7208 70.12

GRAY + OF
Early 0.6226 0.6168 62.80

Late 0.7447 0.7377 73.17

TimeSFormer [28]

8

RGB + OF
Early 0.6632 0.6834 65.85

Late 0.6914 0.6983 68.90

GRAY + OF
Early 0.6632 0.6834 65.85

Late 0.6536 0.6499 65.24

16

RGB + OF
Early 0.7038 0.6953 71.34

Late 0.6474 0.6452 64.02

GRAY + OF
Early 0.6471 0.6703 64.63

Late 0.6615 0.6594 66.46
Note: Bold show the best performance of each model in each metric.

6. Conclusions

Recently, various studies have been proposed to solve FME recognition, but no studies
have used transformers. In this research, we focused on whether the transformer model
can be suitable for FME recognition. Since transformers generally require a large amount
of data but there is no sufficient dataset for FME recognition, our main purpose is to train
the transformer model successfully. We achieve the purpose using the optical flow, which
was mainly used by video processing models, and LF with the transformer. As a result, our
model becomes the SOTA in SMIC and achieves comparable performance in CASME II,
although we do not use methods specialized for FME recognition as in other studies.
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