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Abstract: Multi-access edge computing (MEC) has emerged as a promising technology to facilitate
efficient vehicular applications, such as autonomous driving, path planning and navigation. By
offloading tasks from vehicles to MEC servers (MECSs), the MEC system can facilitate computation-
intensive applications with hard latency constraints in vehicles with limited computing resources.
However, owing to the mobility of vehicles, the vehicles are not evenly distributed across the MEC
system. Therefore, some MECSs are heavily congested, whereas others are lightly loaded. If a
task is offloaded to a congested MECS, it can be blocked or have high latency. Moreover, service
interruption would occur because of the high mobility and limited coverage of the MECS. In this
paper, we assume that the task can be divided into a set of subtasks and computed by multiple
MECSs in parallel. Therefore, we propose a method of task migration with partitioning. To balance
loads, the MEC system migrates the set of subtasks of tasks in an overloaded MECS to one or more
underloaded MECSs according to the load difference. Simulations have indicated that, compared
with conventional methods, the proposed method can increase the satisfaction of quality-of-service
requirements, such as low latency, service reliability, and MEC system throughput by optimizing
load balancing and task partitioning.

Keywords: multi-access edge computing; task migration; task partitioning; load balancing

1. Introduction

In the 5G era, the concept of vehicular networks has extended to the Internet of Vehicles
(IoV), in which intelligent and interactive vehicular applications such as autonomous
vehicles, path planning and navigation are enabled by communication and computation
technologies [1–3]. These computation-intensive applications frequently require ultra-
reliability and low-latency (uRLLC). For example, autonomous driving applications need
to process huge amounts of data in real time (as high as 2 GB/s) within about 10 ms, which
is a very low delay constraint [2]. Applications for efficient driving, e.g., path planning or
navigation generate less data than autonomous driving, but tasks from the applications
should be performed within a still-low delay constraint of about 100 ms [4]. Despite
improving the computing power of vehicles, processing such applications on vehicular
terminals is still difficult while ensuring high computing power and quality-of-service
(QoS) requirements, such as low latency.

To overcome these limitations and facilitate efficient application processing, multi-
access edge computing (MEC) has emerged as a promising technology that can satisfy
the demand for the heavy computation of vehicles by providing rapid and sufficient
computational resources to vehicles [5]. Thus, by offloading tasks from vehicles to MEC
servers (MECSs), the MEC system can facilitate computation-intensive applications with
low latency in vehicles with limited computing resources. Meanwhile, compared with con-
ventional centralized cloud computing, offloading computation-intensive tasks to MECSs,
which are geographically closer to vehicles, by deploying them at the network edge, can
further reduce the network delay.
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However, because MECSs have limited computing power, the computing power that
the vehicle can request from the MECS depends on the MECS load level, i.e., the number
of tasks already allocated to the MECS [6]. Due to the mobility of vehicles, vehicles are
not evenly distributed across a MEC system; thus, the number of tasks offloaded to a
MECS may not be evenly distributed among MECSs. Therefore, some MECSs are heavily
congested, whereas others are lightly loaded. If a task is offloaded to a congested MECS, the
task may be blocked or the delay will be prolonged. Thus, the delay requirements may be
violated. Moreover, the mobility of vehicles causes uncertainty in downloading results [7].
Owing to the limited coverage of MECSs, the vehicle can travel out of the coverage of
a MECS that offloads a task during a service session, resulting in a service interruption.
Service interruption occurs because of dynamically changing radio association, which
can significantly increase the total service latency, particularly in urban areas with highly
dense infrastructure.

To improve the satisfaction with QoS requirements, references [8–13] studied service
migration. In [8–10], a service migration that migrates services according to a vehicle’s
trajectory was proposed to minimize the average completion time of tasks. As they only
considered the trajectory of vehicles without considering the load of MECSs, tasks can
simultaneously migrate to a specific MECS. Thus, this MECS becomes overloaded, which
can result in uneven loads among MECSs and reduce system throughput. Service migration
with load balancing was addressed in [11–13]. In [11], a service migration method was
proposed that considered the load difference and migration cost in balancing the loads
of MECSs in a MEC system. In [12], service migration was determined using the traffic
conditions and loads of each MECS to minimize the migration costs and travel times of
vehicles. The load of each MECS in [11,12] was measured using the number of tasks in
the MECS. In [13], the method distributed the load from an overloaded cell to a lightly
loaded cell from its neighbors to increase the utilization of radio resources. The load is
represented by the resource block utilization ratio of the cells. The delay constraint of a task
was not considered in [11–13] when defining the load. In this paper, we define the load as
a computational workload required to complete a task, considering delay constraint. In
addition, unlike in [11–13], in which tasks are migrated to one MECS, tasks in overloaded
MECS may be migrated to one or more underloaded MECSs to distribute the loads evenly
in the MEC system. The authors of [14,15] proposed a load balancing/resource allocation
method in a framework, called dew computing, that integrates smart mobile devices into
distributed and high-performance computing platforms. In [16], their method determined
whether to offload a task or not in order to reduce the processing time, energy consumption
of the smartphone and monetary cost. However, we determine whether/where to migrate
to and partition among MECSs once the vehicles offload their tasks them in order to reduce
the task execution delay and improve the system throughput. Therefore, we address a
method in the collaborative edge computing framework that enables tasks to be processed
outside of the communication coverage of the MECS offloaded from the vehicle.

Thus, we consider task partitioning in which a task can be divided into a set of
subtasks and computed by multiple MECSs in parallel. This can improve service reliability
by reducing the task execution delay. In other words, by reducing the execution delay, a
vehicle can obtain computing results without service interruption before it moves out of
the coverage of a MECS. Resource utilization or energy consumption costs are additionally
incurred in the process of partitioning or gathering the computing results, but there are
more benefits, such as reducing execution time and improving system throughput.

In contrast to the methods used in [8–13] that migrate an entire task to the MECS
without partitioning, the methods used in [17–20] addressed task migration with partition-
ing. In [17], the partitioned tasks were migrated to the serving MECS and cloud server to
reduce the average total delay of tasks. In [18], to reduce the service delay, the partitioned
tasks were migrated from the MECS in which the task was offloaded to the geographically
nearest MECS. The task considered in [17,18] consisted of independent or sequentially
dependent subtasks. In practice, a task is generally composed of multiple threads. For
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example, navigation applications frequently involve threads of graphics, camera preview,
and video processing [21]. Each thread can be considered a subtask, so that computation
tasks of the applications can be partitioned and the task can be modeled using a directed
acyclic graph (DAG). In [19,20], methods were investigated to optimize performance in
terms of delay and energy consumption. However, if the set of subtasks of a task migrates
to the MECS without considering the loads of the MECSs, the total service delay may
increase. This becomes useless if the subtasks migrate to a congested MECS or a specific
MECS simultaneously. By selecting an appropriate MECS to which to migrate the subtasks
and determining the amount of workload required of subtasks, the satisfaction of the
task’s QoS requirements can be improved. Task migration and partitioning methods based
on machine learning were proposed in [6,7,11,14,22]. Generally, methods using machine
learning require a huge amount of data for learning and analysis. However, since we
assume a small clustered area with its own characteristics, the proposed MEC system is
built on each area to optimize the performance, reflecting the characteristics of each area.

Therefore, we propose a method of task migration with partitioning using a heuristic
algorithm to distribute loads among MECSs and execute the task in parallel in a collabora-
tive edge computing framework. The set of subtasks in an overloaded MECS is migrated to
one or more underloaded MECSs depending on the load difference between the overloaded
and underloaded MECSs. Balancing the loads in the MEC system through task partitioning
and migration can increase both the satisfaction of QoS requirements, such as low latency
and service reliability, and MEC system throughput.

The remainder of this paper is organized as follows. In Section 2, we describe the
system model and the problem formulation. In Section 3, we introduce the proposed
method in detail. In Section 4, we present and discuss the simulation results. Finally,
Section 5 concludes the study.

2. System Model and Problem Formulation

The MEC system proposed in this paper is shown in Figure 1. We consider a MEC
system comprising a set of MECSs, M, located in roadside units (RSUs) and a set of vehicles,
N. A MECS can provide seamless communication and computing service coverage for
vehicles on the road. We assume that the MECSs communicate with each other through
wired links, so communication latency and bandwidth can be ignored [20,23]. Each MECS
uses two queues: a waiting queue and computation queue. The waiting queue uses a
limited task buffer to accommodate tasks offloaded from vehicles, and the computation
queue operates in a first-in-first-out manner to process tasks. A MECS controller acts as a
centralized controller with global knowledge of the MECSs in a system and is responsible
for making the decisions for migration and partitioning. Time is divided into slots t, and
each time slot has an equal duration of ∆s. We assume that the vehicle travels at speed s
during the simulation.
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During each time slot, vehicle n offloads its task in which the data size is λn (in bits),
the computation workload is ηn (in CPU cycles), and the delay constraint is Tmax

n , which
can be divided into several interdependent subtasks. The dependency among subtasks
is modeled by a DAG, i.e., G(V , E), where V is the set of dependent subtasks in task n
and E is the set of dependencies between the subtasks in task n. Each subtask i in task
n is associated with a computation workload ηn,i. In this paper, we only consider the
tree-structured task graph, where the out-degree of each vertex is equal to 1, except for that
of the first vertex. The first and last subtasks compute at the serving MECS, to complete the
first subtask and migrate other subtasks simultaneously [18], and to gather and transmit
computing results at the end of the service session [13]. For example, in an autonomous
driving application, recognizing a situation can be the first subtask and driving guidance
can be the last subtask.

We assume that at the beginning of each time slot t, a vehicle offloads its tasks to
the serving MECS, giving it the highest signal, as MECS m. The MECS receives the task
offloaded from the vehicle, then the task is placed at the waiting queue of the MECS to
be partitioned and migrated. At the end of time slot t, the MECS controller gathers the
status information from the MECSs in the system. Based on the information, the MECS
controller makes a decision of task migration and partitioning whether/where to migrate
or partition tasks in the waiting queues of servers. According to the decision made by a
MECS controller, at time slot τ + 1, the tasks stored in the waiting queues are placed into
the computation queues of the servers to which they belong or the computation queues of
other servers. Once tasks or subtasks are placed in the computation queue, they cannot be
partitioned or migrated to another MECS additionally. Assuming that some subtasks in
MECS m are migrated to another MECS m′, the subtasks are performed in MECS m and m′

respectively, the computation results of subtasks are merged by MECS m, and sent to the
vehicle. These operation of a MEC network are shown in Figure 2.
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The data rate for forwarding the task offloaded from a vehicle to a MECS at time slot t
can be calculated as

Rn,m(t) = Bn log2

(
1 +

P·Hn,m

σ2

)
, (1)

where Bn is the bandwidth allocated to a channel, P is the transmission power of the vehicle,
Hn,m is the channel gain between vehicle n and MECS m, and σ2 is the received noise power.
The transmission delay to offload the task from the vehicle to its serving MECS is

Ttrans
n (t) =

λn

Rn,m
, (2)

The load imposed on the MECS by the task is the computational workload required to
complete the task within the delay constraint. As the vehicle has already offloaded its task
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to the serving MECS and the task is placed in its waiting queue, the task must be completed
within a time, excluding the transmission delay under the delay constraint. Therefore, the
CPU cycles required to complete the tasks in the waiting queue are

ln =
ηn

Tmax
n − Ttrans

n
, (3)

The load of each MECS is equal to the sum of the workloads of tasks in the waiting
queue Qw

m(t) of MECS m at the end of time slot t.

ζm(t) = ∑
n∈Qw

m(t)
ln , (4)

To measure whether the load of each MECS is evenly distributed among the MECSs
in the MEC system, the MECS controller calculates the average load difference among the
MECSs in the MEC system.

∂ =
1
M

M

∑
m=1

M

∑
m′ 6=m

|ζm − ζm′ | , (5)

As the number of vehicles associated with each MECS is not evenly distributed, the
number of tasks offloaded to the MECSs is not even. Therefore, because the workloads
imposed on MECSs differ, the loads of some MECSs are high and those of others are low.
If tasks are migrated to an overloaded MECS or a particular MECS simultaneously, the
delay requirements of tasks may be violated because of the increased time spent in the
waiting queue of the MECS. Thus, to increase the satisfaction of QoS requirements and
system throughput, we propose a task migration with partitioning method to balance the
loads among MECSs in the MEC system, as follows:

min. ∂ , (6)

3. Task Partitioning and Migration Methods

In this section, we propose task migration with partitioning methods. To balance the
loads among MECSs in a MEC system, the set of subtasks of tasks in an overloaded MECS
migrate to underloaded MECSs. In addition, we determine the amount of workload of
subtasks that must be migrated to a target MECS to reduce execution delay and improve
system throughput. To increase the satisfaction of QoS requirements of tasks, we try
to reduce the computation time of a task by increasing the concurrency of the clusters’
computations. This is because the constraint of computation time for each cluster is required
to guarantee the satisfaction of the delay constraint of a task but it is difficult to obtain the
information for each cluster.

3.1. Task Partitioning Method

The following describes a task partitioning that divides tasks into a set of subtasks,
i.e., clusters. The task is divided into a set of subtasks, and offloading them increases the
parallelism of task execution, minimizing latency [24]. Therefore, we will apply a scenario
in which the set of subtasks can be migrated to other MECSs, which can balance the loads
among MECSs in the MEC system. In addition, the subtasks are executed collaboratively
by MECSs in the system, which can improve the QoS requirements of tasks by minimizing
the delay for computing and improving system throughput.

We assume that the task can be divided into a set of subtasks. We define the set of
clusters as C, which consists of the subclusters Ci, e.g., C = {C2, C3} (Figure 3). Cluster
Ci is a set that consists of subtasks i and all its successors in the task graph, except for the
last subtask. For example, we have C2 = {2, 4, 5, 8, 9, 10} and C3 = {3, 6, 7}. We also define
cluster Ci, consisting of subcluster Cj, e.g., C5 is the subcluster of C2 (C5 ⊂ C2). At this time,
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subtask j is the direct successor of subtask i. As the clusters in C are not related to each
other, each cluster can be migrated independently.

Appl. Sci. 2022, 12, 1168 6 of 15 
 

by MECSs in the system, which can improve the QoS requirements of tasks by minimizing 
the delay for computing and improving system throughput. 

We assume that the task can be divided into a set of subtasks. We define the set of 
clusters as 𝐶, which consists of the subclusters 𝐶 , e.g., 𝐶 = {𝐶 ,𝐶 } (Figure 3). Cluster 𝐶  
is a set that consists of subtasks 𝑖 and all its successors in the task graph, except for the 
last subtask. For example, we have 𝐶 = {2,4,5,8,9,10} and 𝐶 = {3,6,7}. We also define 
cluster 𝐶 , consisting of subcluster 𝐶 , e.g., 𝐶  is the subcluster of 𝐶  (𝐶 ⊂ 𝐶 ). At this 
time, subtask 𝑗 is the direct successor of subtask 𝑖. As the clusters in 𝐶 are not related 
to each other, each cluster can be migrated independently. 

 
Figure 3. Example of DAG task graph and clusters. 𝐶 may have more than one cluster; therefore, the order of clusters’ migration should 
be determined. We select the order of clusters with large computational workloads, which 
have a large number of CPU cycles to compute the subtasks [20]. We represent the CPU 
cycles required to complete the set of subtasks in a task as 𝑙 , which is calculated as 𝜂 , /(𝑇 −𝑇 ). To balance the load among MECSs, particularly between overloaded 
and underloaded MECSs, the amount of workload of clusters is migrated using the load 
difference of MECSs. By migrating them in descending order cluster size, the load of the 
overloaded MECS and underloaded MECS can be narrowed. If the condition that the clus-
ter workload is lower than the load difference between the overloaded and underloaded 
MECS is not satisfied, the large cluster will be split into smaller ones. 

3.2. Task Migration Method 
The proposed task migration method is presented in Algorithm 1. The objective of 

our method is to balance the loads among MECSs in the MEC system, particularly be-
tween the overloaded and underloaded MECSs. The MECS controller must determine 
which MECS 𝑚 to migrate from and select the target MECS 𝑚′ to migrate to. If MECS 𝑚 migrates its task to target MECS 𝑚’, the MECS controller must determine the task and 
the amount of workload to be migrated to MECS 𝑚′. At the end of time slot 𝑡, the MECS 
controller monitors the load status of the MECSs. Subsequently, the MECS controller cal-
culates the average load of the MECSs in the MEC system as follows: 𝜁(𝑡) = ∑ 𝜁 (𝑡) , (7) 

The MECS controller classifies the overloaded or underloaded MECSs based on their 
average load. The MECSs whose loads are higher than 𝜁(𝑡) are overloaded compared 
with other MECSs as a set of 𝛼. Similarly, the MECSs whose loads are equal to or lower 
than 𝜁(𝑡) are underloaded compared with other MECSs as a set 𝛽. To balance the loads 
among MECSs in the MEC system, particularly between the overloaded and underloaded 
MECSs, tasks in overloaded MECSs migrate to underloaded MECSs. Therefore, the MECS 
controller determines that each MECS 𝑚 in set 𝛼 migrates its tasks to MECS 𝑚′ in set 𝛽. The MECS controller calculates the load difference between the MECS in set 𝛼 and 
MECS in the set 𝛽. This is expressed as follows: 𝜑 , (𝑡) = 𝜁 (𝑡) − 𝜁 (𝑡), 𝑚 ∈ 𝛼, 𝑚 ∈ 𝛽 , (8) 

Figure 3. Example of DAG task graph and clusters.

C may have more than one cluster; therefore, the order of clusters’ migration should
be determined. We select the order of clusters with large computational workloads, which
have a large number of CPU cycles to compute the subtasks [20]. We represent the CPU
cycles required to complete the set of subtasks in a task as lc

i , which is calculated as
ηn,i/(Tmax

n − Ttrans
n ). To balance the load among MECSs, particularly between overloaded

and underloaded MECSs, the amount of workload of clusters is migrated using the load
difference of MECSs. By migrating them in descending order cluster size, the load of the
overloaded MECS and underloaded MECS can be narrowed. If the condition that the cluster
workload is lower than the load difference between the overloaded and underloaded MECS
is not satisfied, the large cluster will be split into smaller ones.

3.2. Task Migration Method

The proposed task migration method is presented in Algorithm 1. The objective of our
method is to balance the loads among MECSs in the MEC system, particularly between
the overloaded and underloaded MECSs. The MECS controller must determine which
MECS m to migrate from and select the target MECS m′ to migrate to. If MECS m migrates
its task to target MECS m′, the MECS controller must determine the task and the amount
of workload to be migrated to MECS m′. At the end of time slot t, the MECS controller
monitors the load status of the MECSs. Subsequently, the MECS controller calculates the
average load of the MECSs in the MEC system as follows:

ζ(t) =
1
M

M

∑
m=1

ζm(t), (7)

The MECS controller classifies the overloaded or underloaded MECSs based on their
average load. The MECSs whose loads are higher than ζ(t) are overloaded compared
with other MECSs as a set of α. Similarly, the MECSs whose loads are equal to or lower
than ζ(t) are underloaded compared with other MECSs as a set β. To balance the loads
among MECSs in the MEC system, particularly between the overloaded and underloaded
MECSs, tasks in overloaded MECSs migrate to underloaded MECSs. Therefore, the MECS
controller determines that each MECS m in set α migrates its tasks to MECS m′ in set β. The
MECS controller calculates the load difference between the MECS in set α and MECS in the
set β. This is expressed as follows:

ϕm,m′(t) = ζm(t)− ζm′(t), m ∈ α, m′ ∈ β, (8)

Now, the MECS controller determines a target MECS m′ with the highest ϕm,m′(t) for
MECS m. The MECS m then migrates the amount of workload to the target MECS m′ as
according to the load difference between the MECS m and MECS m′. Here, the amount
of workload of subtasks that MECS m migrates to MECS m′ should be less than ϕm,m′(t)
Tasks to be migrated in the waiting queue of MECS m are selected in descending order.
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After partitioning and migrating the subtasks, the MEC controller removes m and m′

from α and β if their loads become similar to the average load of all MECSs or if the load
difference between m and m′ is similar. The MECS controller repeats this procedure until α
or β is empty, or all of the tasks in m are partitioned and migrated.

Algorithm 1. Proposed method

at time slot t, initialize ζ(t) initialize set α = {m|ζm(t) > ζ(t)}
initialize set β = {m′|ζm′ (t) ≤ ζ(t)}
if |α| 6= ∅ and |β| 6= ∅ then

MECS m = argmaxm∈αζm(t)
select task i in the waiting queue of MECS m
a set of subtasks in task i, C = {Ci}, sort by the amount of workload in descending order
for the number of subtasks in C, |C| do
MECS m′ = argmaxm∈α, m′∈β ϕm,m′ (t)
if lc

i ≤ ϕm,m′ (t) then
migrate Ci to MECS m′

update ζm(t) = ζm(t)− lc
i , ζm′ = ζm′ (t) + lc

i
else

break
update ϕm,m′ (t) = ζm(t)− ζm′ (t)
if ϕm,m′ (t) ≤ threshold then

continue
else
α = α\{m}
β = β\{m′}
else

tasks in the waiting queue are placed into its computation queue

4. Simulation Results and Discussion

In this section, we verify the performance of the proposed method compared with
other methods. It is assumed that the MEC system is deployed in a clustered area grouped
by the units of administrative districts in the urban environments where MECSs are densely
deployed and vehicles are not driving at high speed. We randomly distributed 10 MECSs
within a MEC system. The capacity of each MECS was 10 GHz. Vehicles were distributed
in a Poisson distribution on the road. All vehicles had mobility within a random walk
model in an area of 1000 m × 1000 m using the SUMO simulator [25]. The input size
of the task followed a random distribution with 2–10 Kbits. The task graph used in the
simulation was randomly generated, where the workload of each subtask followed a
random distribution with 0.1–0.2 Gcycles. The mobility speed of the vehicle also followed a
random distribution of 1–30 m/s. The parameters used in the simulation are summarized
in Table 1 according to [26–28]. The path loss between the RSU and vehicle was modeled as
128.1 + 37.6 log10(distance(km)). When vehicles offloaded their tasks simultaneously, the
vehicles performed data transmission in different spectral bands via orthogonal frequency-
division multiple access technology, and there was mutual interference among different
subcarrier allocations.

To demonstrate the reason for using task partition and migration in our method, we
compared the Proposed method with No partition and No migration strategies. The Proposed
method uses both task partitioning and migration. The No partition method migrates
an entire task without any task partitioning to the target MECS, and the No migration
method executes a task on the MECS in which the vehicle’s task is offloaded without any
task migration.

The load variance among the MECSs is shown in Figure 4. It shows the load variance
of each time slot when the vehicle arrival rates were 0.3, 0.6 and 0.9. In other words, it
is an indicator of the distribution of the load among MECSs during the simulation. In
the Proposed method, the set of task subtasks in an overloaded MECS was migrated to
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underloaded MECSs. Under No partition method, the all tasks in the overloaded MECS
were migrated to the underloaded MECS. Thus, the Proposed method further reduced
the load difference between overloaded and underloaded MECSs compared with the No
partition method. No migration method had a large load variance, because vehicles were not
evenly distributed geographically and had high mobility; thus, the loads may have been
concentrated in specific MECSs.

Table 1. Parameters used in the simulation.

Parameter Value

subcarrier bandwidth 12.5 kHz

transmission power of a vehicle (Pn ) 1 W

received noise power
(
σ2) 10−11 mw

duration of a time slot (∆) 0.1 s

delay constraint of a task (tmax
n ) 0.1–0.6 s

radius of a MECS 250 m

waiting queue size of a MECS 5 tasks

computation queue size of a MECS 5 tasks
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The task completion rates within the delay constraints and task reliability rates are
shown in Figures 5 and 6, respectively. The rate of task completion within the delay
constraint is defined as the ratio of the number of completed tasks while satisfying the
delay constraint to the total number of offloaded tasks. The task reliability rate is defined
as the ratio of the number of completed tasks to the total number of offloaded tasks
while receiving the result without the service interruption. The task completion rates
within the delay constraints and task reliability rates are affected by the task execution
delay. For example, for a congested MECS, the load of the MECS becomes overloaded.
This can increase the waiting time of the MECS queue, resulting in an increase in a task
execution delay. As shown in Figure 5, depending on the load balancing among MECSs,
the task completion rates within the delay constraints had a high rate. Thus, if the task
execution delay is prolonged, service interruption occurs when receiving its result. To
receive the result without service interruption, the vehicle must obtain the result quickly
before it moves out of the coverage of the MECS to which the task is offloaded. If the load
balancing among MECSs is appropriate, the task execution delay will be reduced, and the
reliability rate will be high. Therefore, the Proposed method had the highest rate, and the No
migration method had the lowest rate in terms of the task completion rates within the delay
constraints and task reliability rates. Therefore, it was better to perform migration than not,
and migration with partitioning performed better than full migration. Therefore, in this
study, we considered task migration with partitioning.
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To verify the performance of our proposed method, we compared it with four other
methods: IPSO [20], Nearest, Least and Random. IPSO aims to minimize the service failure
probability by considering task execution delay. It is a method of migrating tasks to MECSs
that meet the latency constraint of the subtasks. IPSO defines the workload of the subtasks
as the ratio of the sum of the required CPU cycles to the sum of its input and output data.
Nearest is a method of migrating tasks in overloaded MECSs to the nearest MECS among
underloaded MECSs. Least is a method of migrating tasks in overloaded MECSs to the
least loaded MECS among underloaded MECSs. Random is a method of migrating tasks in
overloaded MECSs to randomly selected MECSs among underloaded MECSs.

The task completion rates within the delay constraints under different values of delay
constraints are shown in Figure 7 for a vehicle arrival rate of 0.6. Proposed achieved the
highest completion rate for different values of the delay constraint, a value of approximately
35–60% higher than that of other methods. The task reliability rate under different values
of mobility speed of vehicles is shown in Figure 8 for a vehicle arrival rate of 0.6. Service
interruption occurs when the vehicle can travel out of the coverage of the MECS that is
offloaded during a service session, which significantly increases the total service latency.
We observed that Proposed achieved the highest task reliability rate for different values of
mobility speed, approximately 20–51% higher than that of other methods. A comparison
of the environment with high and low speeds indicated differences of approximately 8%
for Proposed, 11% for IPSO, 15% for Nearest, 17% for Least, and 13% for Random. Under
conditions with different delay constraints and mobility speed, Proposed performed better
than that of others by optimizing the load balancing, which reduces the task execution
delay. Therefore, we conducted the experiment by setting the delay constraints to 0.1–0.6 s
and the mobility speed to 1–30 m/s.
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Figure 9 shows the load variance among the MECSs when the arrival rates were 0.3,
0.6 and 0.9. In Proposed, the set of subtasks in the task was migrated to one or more target
MECSs depending on the load difference. In Nearest and Random, the set of subtasks in the
task was migrated to the target MECSs based on distance and randomness. In Least, the
set of subtasks in the task is migrated to the least loaded MECS, which indicated a scenario
in which the least loaded MECS was concentrated. Therefore, depending on which MECS
was selected as the target MECS, the loads of the MECSs varied. In IPSO, the set of
subtasks was migrated based on delay constraint. Proposed shows better performance
than IPSO in terms of load variance because proposed considers load difference to
determine the task migration. IPSO shows better performance than Nearest, Random and
Least, because it is affected by the delay, especially the queueing delay associated with
the load of the MECS.

Figure 10 depicts the average blocking rate and standard deviation of the blocking rate
with varying arrival rates. The blocking rate is defined as the ratio of the number of tasks
blocked by the MECS to the total number of offloaded tasks. The task is blocked by the
MECS when the task is offloaded to a MECS whose queue is full. In Nearest and Random,
the target MECS may be another overloaded MECS or may become overloaded owing to
concentrating tasks on it. In Least, because tasks in overloaded MECSs are migrated to the
least loaded MECS, the least-loaded MECS becomes overloaded. Therefore, because some
MECSs have a high load, the task may be blocked when it is offloaded to the MECS with a
high load. In IPSO, when all MECSs in MEC system do not meet the delay constraints for
the subtasks, the subtasks migrate to the MECS that minimizes the computing delay. In
this case, since only the processing delay is considered, there is likely that the overloaded
MECS is selected. Proposed not only had the lowest blocking rate but also the smallest
standard deviation compared with the other methods because the load was relatively well
distributed. The system throughput with varying arrival rates is shown in Figure 11. The
system throughput is defined as the multiplication of the number of tasks completed per
time slot by the average task size. When the loads are balanced among the MECSs, the
block rate decreases. In addition, if the block rate decreases, more tasks can be performed;
thus, the system throughput increases.

Figures 12 and 13 show the rate of task completion within the delay constraints and
task reliability rate, respectively. The task completion rate within the delay constraints
is affected by the task execution delay consisting of transmission, queueing, execution,
and migration delay. Similarly, task reliability is affected by the task execution delay. A
migration delay is the time a task is migrated to another MECS, which does not account for
most of the total delay because it uses wired links. The queueing delay is affected by the
load of the MECS, that is, the length of the queue of the MECS. Increasing the parallelism
of task execution reduces the execution delay. Therefore, the better the loads of MECSs
are distributed, the less the queuing delay affected by the MECS load and queue length,
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increasing the task completion rate within the delay constraints. The task completion
rate of Proposed was approximately 18–58% higher than that of other methods. If the task
execution delay is prolonged, the vehicle may move out of the coverage of the MECS, which
is offloaded to the task during a service session. Thus, service interruption may occur more
often in receiving its result. To receive the result without the service interruption, the loads
of the MECS must be appropriately distributed to reduce the task execution delay. The
reliability rate of Proposed was approximately 12–46% higher than that of the other methods
because it distributed the loads of MECSs well.
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5. Conclusions

In this paper, we investigated task migration with partitioning method in vehicular
networks to balance loads among MECSs in a MEC system. We considered a scenario in
which the vehicle can offload its task to a serving MECS and the task could be divided
into a set of subtasks. To balance the load among MECSs, overloaded MECSs migrated
the set of subtasks to one or more underloaded MECSs, depending on the load difference
of the overloaded and underloaded MECSs. We compared the proposed method with
conventional methods through simulations, and the results indicated that the proposed
method distributed the load appropriately among MECSs. In addition, the proposed
method increased the completion rate within the delay constraints and system throughput.
In addition, the blocking rate and service interruption caused by vehicle mobility were
reduced. In future research, we will consider task scheduling when selecting a task to be
partitioned or when executing the task to reduce the task execution delay. Furthermore,
we will expand the proposed method in a distributed manner to reduce the complexity of
the MECS controller in a more dynamic environment. We will investigate the multi-agent
learning or federated learning methods to determine the optimal migration and partitioning
strategy in the extended MEC system.
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