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Abstract: In this paper, we propose a novel algorithm called multiview temporal alignment by
dependence maximisation in the latent space (TRANSIENCE) for the alignment of time series
consisting of sequences of feature vectors with different length and dimensionality of the feature
vectors. The proposed algorithm, which is based on the theory of multiview learning, can be seen
as an extension of the well-known dynamic time warping (DTW) algorithm but, as mentioned, it
allows the sequences to have different dimensionalities. Our algorithm attempts to find an optimal
temporal alignment between pairs of nonaligned sequences by first projecting their feature vectors
into a common latent space where both views are maximally similar. To do this, powerful, nonlinear
deep neural network (DNN) models are employed. Then, the resulting sequences of embedding
vectors are aligned using DTW. Finally, the alignment paths obtained in the previous step are applied
to the original sequences to align them. In the paper, we explore several variants of the algorithm
that mainly differ in the way the DNNs are trained. We evaluated the proposed algorithm on a
articulatory-to-acoustic (A2A) synthesis task involving the generation of audible speech from motion
data captured from the lips and tongue of healthy speakers using a technique known as permanent
magnet articulography (PMA). In this task, our algorithm is applied during the training stage to align
pairs of nonaligned speech and PMA recordings that are later used to train DNNs able to synthesis
speech from PMA data. Our results show the quality of speech generated in the nonaligned scenario
is comparable to that obtained in the parallel scenario.

Keywords: deep learning; multiview learning; dynamic time warping; canonical correlation analysis;
silent speech interface; latent embedding

1. Introduction

Silent speech interfaces (SSIs) are devices that enable speech communication in the
absence of audible speech by decoding speech from other nonacoustic, speech-related
biosignals generated by the human body during the process of speech production [1–3].
These biosignals can range from the neural activity in the speech and language areas of the
brain [4–6], electrical activity driving the facial muscles captured by surface electrodes (i.e.,
electromyography (EMG)) [7–9], or motion capture of the speech articulators by means of
imaging techniques [10] or electromagnetic articulography techniques [11–14].

SSIs have many potential applications, as summarized in [1]. For instance, an SSI could
be used to enhance speech communication in noisy environments as the above-mentioned
biosignals are mostly immune to acoustic noise. Also, SSIs might be used to enable covert
communication to preserve privacy when speaking in public spaces. Yet another potential
application, the one that motivates this work, is to restore oral communication to persons
with speech impairments [3]. Thus, an SSI could be used to decode the words its user
wants to say from the captured biosignals. Because SSIs do not rely on the acoustic speech
signal, they offer a radically new form of restoring oral communication to people with
speech impairments.
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To decode speech from the biosignals, two alternative SSI approaches were pro-
posed [3]: silent speech recognition, which involves the use of automatic speech recognition
(ASR) algorithms to transform the biosignals into text, followed by text-to-speech synthesis
and direct speech synthesis, which transforms the biosignals into a set of acoustic parame-
ters amenable to speech synthesis. In this work, we focus on the latter approach, which
is also known as articulatory-to-acoustic (A2A) synthesis when the biosignals encode
information about the movements of the speech organs.

The most successful direct synthesis techniques so far adopted a data-driven frame-
work, in which supervised machine learning is used to model the mapping y = h(x)
between source feature vectors x extracted from the biosignals and target feature vectors y
computed from the speech signals, as shown in Figure 1. To train this function, a dataset
D = {(X1, Y1), . . . , (XM, YM)} with pairs of sequences of feature vectors (Xi, Yi) extracted
from time-synchronous recordings is used, where Xi ∈ Rdx×Ti and Yi ∈ Rdy×Ti (M is the
number of parallel sequences in the dataset, dx and dy are the dimensionality of the source
and target vector, respectively, and Ti is the length of the i-th sequence pair). The need for
parallel recordings, however, limits the application of direct synthesis techniques to only a
few clinical scenarios, as described in [3]. For instance, people who already lost their voices
could not use this technology because of the impossibility of recording parallel data to train
the machine learning model, as shown in Figure 1.

Biosignal feature
extraction

Machine learning

Transformation Vocoder

Speech feature
extraction

Biosignal feature
extraction

Speech 
signal 

Biosignals

Acoustic
features 

Biosignal
features Model
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Figure 1. Block diagram of a typical (data-driven) direct synthesis technique. In training stage,
a machine learning model is estimated, which represents relationship between feature vectors
extracted from speech and nonspeech signals. This model is latter used in conversion stage to predict
speech (acoustic) parameters from biosignals.

A solution to this problem, which we explore in this work, involves the use of pre-
viously available speech recordings from a voice donor (e.g., a relative or recordings of
the patient’s own voice made before the voice loss). Using these recordings, it would
be possible (in principle) to obtain the necessary parallel data by asking the patient to
repeat the speech recordings in silence while the necessary biosignals are captured, which
is similar to karaoke. However, even in this case, it is likely that the captured biosignals
will not be perfectly aligned with the speech recordings, since both modalities would have
slightly different duration, thus preventing the application of standard, supervised ma-
chine learning techniques. Therefore, our problem now becomes concerned with aligning
sequences obtained by sampling the same physical process with different sensors (e.g.,
speech and biosignal data). Once the sequences are aligned, standard machine learning
techniques could be readily applied to model the relationship between the speech and
biosignal data.

The problem stated above is similar to what happens in voice conversion (VC) [15–17],
where the goal is to modify the spectral content (and possibly the prosody, too) of the speech
of a source speaker in a way that it sounds as it was said by a different speaker (target
speaker). To perform this transformation, a machine learning model (e.g., a deep neural
network (DNN)) is trained with pairs of speech signals recorded from the source and target
speakers while reading aloud a set of sentences. Again, a time-alignment procedure is
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necessary to align the source and target speakers’ signals because they might have different
duration. To this end, the well-known DTW algorithm [18] is normally used.

The problem we focus on this work is, in a way, similar to the one described above for
VC, that is, aligning feature sequences with the same phonetic content but possibly different
duration. However, in contrast to VC, the direct application of DTW might not be possible
in our case because the feature vectors extracted from the speech and bio- signals may
have different dimensionality (i.e., dx 6= dy, in general), while the standard DTW algorithm
requires that dx = dy. To address this issue, in this work we propose an extension of the
DTW algorithm called multiview temporal alignment by dependence maximisation in the
latent space (TRANSIENCE) (Code is available at https://github.com/joseangl/transience;
accessed on 30 December 2021), which is based on the theory of multiview learning [19,20].
TRANSIENCE attempts to find the optimal temporal alignment between sequences from
different views (e.g., speech and biosignal data) by first projecting the feature vectors from
the sequences into a common, latent subspace where the resulting embeddings have the
same dimensionality and are maximally similar (we will define later what we mean by
similarity). After that, the sequences of embedding vectors obtained for the different views
are aligned by means of the DTW algorithm.

The remainder of this paper is organized as follows. First, in Section 2, the relevant
related work is reviewed. The details of the proposed temporal alignment technique are
presented in Section 3. Section 4 describes the experimental setup employed to evaluate
the performance of the proposed technique. In particular, the proposed algorithm is
evaluated on an A2A task involving the conversion of articulatory data captured using
permanent magnet articulography (PMA) [21,22] to speech. Experimental results obtained
on this task are shown in Section 5. We conclude in Section 6 and discuss potential future
research directions.

2. Related Work

In the context of temporal alignment between sequences, there are several studies
that have addressed this issue. Moreover, there are a number of real-world problems
where these algorithms found application, e.g., image and video alignment, physiological
signals (electroencephalogram (EEG) and EMG signals), video classification, etc. In the
following paragraphs, we provide a review of previous works on the topic of sequence
temporal alignment.

The most closely related work to our method is that of Trigeorgis et al. [23], in which
an algorithm called deep canonical time warping (DCTW), which combines canonical
correlation analysis (CCA) [24] with DTW, is proposed. The key differences in our approach
with respect to DCTW can be summarized as follows. First, we evaluate different similarity
metrics, not only CCA, to optimize the parameters of the DNNs used to map the feature
vectors extracted from the multiple views into their common, latent subspace. Also, we
introduce an autoenconder-based loss function, which helps to regularize the training
and avoids naive solutions. Finally, inspired by the work in [25], we also propose the
introduction of private latent variables for each view which aim at modeling the specific
peculiarities within each view. Our technique also shares similarities with the generalyzed
canonical time warping (GCTW) technique described in [26]. However, in contrast to
this technique, TRANSIENCE solves the optimal alignment problem with DTW rather
than approximating the temporal warping with a set of predefined monotonic bases and
optimizing the weights of these bases with a Gauss–Newton algorithm. Also, being based
on CCA, GCTW computes the latent variables by applying a linear transformation to the
feature vectors from the different views, while our method uses powerful autoencoders
to nonlinearly transform the data, which could be expected to yield better alignments.
Another technique similar to our proposal is the one presented in [27], which proposes an
extension of CCA, an alignment-agnostic CCA (AA-CCA). AA-CCA models the uncertainty
of alignments using a new data correlation term, and this allows to use not only decently
aligned data (if available) when learning CCA, but also the unaligned ones. It is based on

https://github.com/joseangl/transience
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the optimization of a constrained objective function that combines two terms: a correlation
criterion and a context-based regularizer.

Contrary to now popular sequence-to-sequence (seq2seq) models (e.g., [28,29]), our
method has different advantages. First, our aim is to align sequences of different lengths to
obtain the necessary parallel data to train a machine learning technique, not to model a
full-fledged mapping between sequences. In other words, our technique is only used to
align the training data, while in test time the articulatory data is directly mapped to speech.
Also, it is relatively straightforward to modify our method to process multiple views (more
than 2), while the adaptation of seq2seq models is more involved.

3. Multiview Temporal Alignment

The problem we address in this work can be formulated as finding the optimal
alignment between two time series X = (x1, . . . , xTx ) and Y = (y1, . . . , yTy), where
the feature vectors xi and yj may have possibly different dimensionality. In our case,
X ∈ Rdx×Tx is a sequence of feature vectors extracted from the captured biosignal (what-
ever type the SSI is using) and Y ∈ Rdy×Ty is the sequence of acoustic speech parameters.
We further assume that both sequences encode the same phonetic content (i.e., same words
in the same order) but have, possibly, different duration. Mathematically, this involves
solving the following minimization problem,

argmin
φx ,φy

T

∑
t=1

d(xφx
t
, yφ

y
t
), (1)

where T = max(Tx, Ty), d(x, y) is a distance function, φx ∈ {1 : Tx}T and φy ∈ {1 : Ty}T

are warping functions that map the indices of the original time series to a common time
axis where both series are aligned. This way, xi and yj will be aligned if φx

t = i and φ
y
t = j

for a given t. The goal of the alignment algorithm is to find the warping paths 〈φx, φy〉
that minimize the total sum of distances among all possible alignments between both
time series.

To enable the alignment of sequences with different dimensionality, we assume that
there exists a pair of transformation functions f : Rdx → Rdz and g : Rdy → Rdz , modeled
as DNNs in this work, that project the original feature vectors into a common, latent
space where the data from both views are maximally similar. Thus, the problem in (1)
now becomes,

argmin
φx ,φy

T

∑
t=1

d( f (xφx
t
), g(yφ

y
t
)). (2)

For some fixed mapping functions zx = f (x; Θ f ) and zy = g(y; Θg) (Θ f and Θg
denote the set of parameters for these functions), the problem of temporal alignment of
the latent variable sequences Zx = (zx

1 , . . . , zx
Tx
) and Zy = (zy

1, . . . , zy
Ty
) can be solved

efficiently by means of the DTW algorithm. Conversely, for fixed warping paths φx

and φy, the problem in (2) involves optimizing the functions f (·) and g(·) to minimize
∑T

t=1 d( f (xφx
t
), g(yφ

y
t
)). If the mapping functions are modeled as DNNs, as in our case,

this latter problem can be solved by back-propagation. Thus, TRANSIENCE algorithm
solves (2) by alternating between two phases: (i) finding the optimum set of DNN weights
(Θ f , Θg) by fixing the warping paths, and (ii) applying the DTW algorithm to compute the
optimum alignments 〈φx, φy〉 between the sequences of latent vectors by freezing the DNN
weights. The warping paths are initialized by uniformly aligning the sequences, i.e., φx

t =

1 +
⌈

t−1
T−1 (Tx − 1)

⌉
and φ

y
t = 1 +

⌈
t−1
T−1 (Ty − 1)

⌉
for t = 1, . . . , T and T = max(Tx, Ty).

A block diagram of the proposed algorithm for temporal alignment of time series is
shown in Figure 2. First, the feature vectors of both time series (denoted as xi; i = 1, . . . , Tx
and yj; j = 1, . . . , Ty in the figure) are projected to a common latent space where the
resulting embedding vectors (zx

i and zy
j ) are maximally similar. To this end, two DNNs are
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employed, one for each sequence. Next, both sequences of embedding vectors are aligned
using the DTW algorithm, and the resulting warping paths 〈φx, φy〉 are employed to align
the original sequences X = (x1, . . . , xTx ) and Y = (y1, . . . , yTy). During the training stage,
the DNN weights are optimized using a combination of different loss functions, as shown
in Figure 2. These losses are described in detail in the following subsections.

Encoder Latent Decoder

...

...

Inputs LossesDTWMulti-view
autoencoder 

Figure 2. Block diagram of proposed TRANSIENCE algorithm for time series alignment. First,
feature vectors of two sequences to be aligned are projected into a common, latent space (represented
with red dots in figure) using DNNs trained for each view. Then, DTW algorithm is used to align
resulting sequences of embedding vectors and, hence, original sequences. To train parameters of
DNNs, different loss functions are employed (see text for more details).

3.1. Latent-Space Similarity Metrics

In this work, we evaluated three alternative loss functions L(zx, zy) used to optimize
the weights of the DNNs shown in Figure 2 during the training stage. While all three
losses attempt to optimize the similarity between pairs of embedding vectors computed by
these DNNs, they differ in the specific metric used to compute this similarity. In particular,
we propose to optimize the correlation, mutual information, and (minimize) a contrastive
loss, respectively, between these vectors. These similarity metrics are described in the
following sections.

3.1.1. Canonical Correlation Analysis

The first loss function we propose attempts to maximize the statistical correlation
between pairs of aligned embedding vectors. Given a minibatch of N pairs of aligned
observations B = {(x1, y1), . . . (xN , yN)}, the CCA loss function maximizes the correlation
between the outputs of the DNNs, f (x) and g(y), as follows,

(Θ∗f , Θ∗g) = argmax
Θ f ,Θg

N

∑
i=1

corr( f (xi; Θ f ), g(yi; Θg)). (3)

As detailed in [19], this equals to maximizing the following loss function,

Lcca =
√

tr(T ′T), (4)

where tr(·) is the trace operator and T = Σ−1/2
xx ΣxyΣ−1/2

yy . The covariance matrices Σxx =
cov( f (x), f (x)), Σxy = cov( f (x), g(y)) and Σyy = cov(g(y), g(y)) are estimated from the
outputs of the DNNs. The DCTW algorithm described in [23] is a specific case of our
TRANSIENCE algorithm when the CCA loss in (4) is used.
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3.1.2. Maximum Mutual Information

As an alternative, we also consider maximizing the mutual information between the
pairs of embedding vectors computed by the DNNs in Figure 2. This results in the following
maximum mutual information (MMI) loss function,

Lmmi =
N

∑
i=1

p( f (xi), g(yi)) log
p( f (xi), g(yi))

p( f (xi))p(g(yi))
. (5)

The probability density functions (pdfs) in (5) are estimated using kernel density
estimation (KDE) [30] as follows,

p(zi) =
1

N − 1

N

∑
j=1,j 6=i

K(zi − zj), (6)

where an isotropic Gaussian kernel with trainable bandwidth σz is used in this work,
i.e., K(z) = N (z; 0, σz I). Thus, three pdfs are estimated, the joint distribution p( f (x), g(y))
and the marginals p( f (x)) and p(g(y)), each one with its own trainable bandwidth.

3.1.3. Contrastive Loss

Finally, we also evaluate the contrastive loss (CL) function described in [25,31], which
given a fixed latent variable from the first view f (x+), takes an aligned positive example
g(y+) and an unaligned negative example g(y−) from the second view and attempts to
minimize the difference between the distances for the positive and negative examples:

Lcl =
1
N

N

∑
i=1

max(0, m + d( f (x+i ), g(y+
i ))

− d( f (x+i ), g(y−i ))), (7)

where m is a margin hyperparameter (m = 0.5 is used in this work) and d(zx, zy) =
1− zx ·zy

‖zx‖‖zy‖ is the cosine similarity. The negative examples g(y−) are generated by shuffling
the outputs of the DNN for the second view before the loss is computed. Intuitively,
the distances d( f (x+), g(y+)) in (7) should be small if both views are projected to similar
(closer) representations in the common latent space, whereas the distances to the negative,
unpaired examples d( f (x+), g(y−)) should be bigger because they are projected to different
locations of that space.

3.2. Multiview Autoencoder

to regularize the training of the DNNs and to avoid naive solutions (e.g., f (x) =
g(y) = c, for all x and y, with c being a constant vector), we propose the introduction
of an auxiliary, autoencoder-based reconstruction loss. As shown in Figure 2, this loss
function minimizes the mean squared error (MSE) between the DNNs’ inputs (x, y) and
the reconstructed outputs (x̂ = f−1( f (x)), ŷ = g−1(g(y))), being f−1 and g−1 decoder
networks that estimate the input feature vectors x and y from their latent projections zx

and zy, respectively, as follows:

Lautoencoder =
1
N

(
N

∑
i=1

∥∥∥xi − f−1( f (xi))
∥∥∥2

+
n

∑
i=1

∥∥∥yi − g−1(g(yi))
∥∥∥2
)

. (8)
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The weights of the DNNs in Figure 2 are now optimized by minimizing a weighted
combination of the autoencoder-based loss in (8) and one of the similarity losses Lsim
described in Section 3.1, as follows:

Ltotal = Lsim + λLautoencoder, (9)

where the hyperparameter λ is set to 1 in this work for simplicity.

3.3. Private Latent Variables

A key assumption of our temporal alignment algorithm TRANSIENCE is that the
feature vectors of the sequence pair to be aligned share some common information. Al-
though this is indeed our case, because the speech and bio-signals encode the same phone
sequence, it is also true that each view may have its own unique characteristics, thus making
the reconstruction loss in (8) difficult to optimize when only considering the shared latent
variables. Therefore, it may be beneficial to model the unique characteristics of each view as
well as the common characteristics shared among all the views. Inspired by the work in [25],
we propose the introduction of private latent variables for each view z̃x and z̃y that aim at
modeling the uniqueness of each view, as represented in Figure 2. The private variables
are predicted from the inputs by a set of independent DNNs z̃x = f̃ (x) and z̃y = g̃(y).
These private latent variables are used in (8), in addition to the common, shared variables,
for reconstructing the input data, i.e., x̂ = f−1( f (x), f̃ (x)) and ŷ = g−1(g(y), g̃(y)).

When optimizing the weights of DNNs f̃ and g̃, a standard Gaussian distribution
z̃ ∼ N (0, I) is chosen as the prior distribution for the private variables of each view.
To enforce this distribution, we minimize the Kullback-Leibler (KL) divergence between
the priors and the empirical distribution (modeled as a multivariate Gaussian distribution
with diagonal covariance) estimated from the private variables as follows,

LKL =
1
2

dz̃

∑
i=1

(
σ2

i + µ2
i − 1− log σ2

i

)
, (10)

where the means and variances in (10) (µi, σi, respectively) are estimated for each private
variable in each minibatch.

4. Experimental Setup

In this section, the experimental setup employed to evaluate the performance of the
proposed technique is described. In particular, our algorithm is evaluated on an A2A task
involving the conversion of articulatory data captured from the lips and tongue of healthy
speakers to speech. More details about this can be found in the following subsections.

4.1. Dataset

The proposed alignment algorithm was evaluated on an A2A task involving the
synthesis of speech from articulatory data captured using PMA. PMA is a technique for
capturing the movements of the vocal apparatus during speech. The technique is based on
sensing the changes in the magnetic field generated by the movement of small magnets
attached to the speech articulators (lips and tongue, in our case) as the speaker ’mouths’
words. In the current set-up, a total of six magnets were employed: four on the lips with
dimensions of 1 mm (diameter) × 5 mm (height), one on the tongue tip (2 mm × 4 mm),
and one on the middle of the tongue (5 mm × 1 mm). The three spatial components
(x, y, z) of the magnetic field generated by the magnets were then acquired by four triaxial
magnetic sensors mounted on a rigid frame. Only three of the sensors were used for
capturing articulatory movements, while the remaining sensor was used to compensate the
effects of the earth’s magnetic field on the captured articulatory data. More information
about this technique can be found in [12,22].

Parallel data was recorded by four nonimpaired British subjects (2 males and 2 females)
while reading aloud a subset of the CMU Arctic corpus [32]. Two alignment conditions
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were evaluated: (i) intrasubject alignment, where PMA and speech signals recorded by
the same subject in different sessions are aligned, and (ii) crosssubject alignment, where
PMA signals recorded by a given subject are aligned with speech recorded by a different
subject (with a possibly different gender as well). We also attempted to align PMA signals
recorded from a female laryngectomy patient with a set of speech recordings made by her
before losing the voice. The details of the dataset used for our experiments is summarized
in Table 1.

Table 1. Details of dataset used for experiments.

# Of Sentences

Condition Training Set Evaluation Set

Intra-subject F→ F 103 (11.3 min) 20 (1.2 min)
M→M 134 (8.4 min) 20 (1.1 min)

Cross-subject F→ F 99 (6.0 min) 18 (0.9 min)
F→M 332 (18.7 min) 20 (1.0 min)
M→ F 332 (21.9 min) 20 (1.2 min)
M→M 414 (27.9 min) 20 (1.2 min)

Feature Extraction

The PMA and speech signals were parameterized as a series of feature vectors com-
puted every 5 ms from 25 ms analysis windows. The speech signals were first downsampled
from 48 kHz to 16 kHz and then converted to sequences of 28-dimension vectors using the
WORLD vocoder [33]: 25 mel-generalised cepstral coefficients (MGCCs), 1 band aperiod-
icity (BAP) value, 1 continuous F0 value in logarithmic scale, and 1 U/V decision. log F0
values in unvoiced frames were linearly interpolated from adjacent voiced frames. The 9-
channel, background-canceled PMA signals were first oversampled from 100 Hz to 200 Hz
to match the 5 ms frame rate. Then, segmented features were computed from the raw PMA
signals by applying principal component analysis (PCA) over contextual windows with 11
frames. That is, for each frame of 25 ms, the preceding and succeeding 5 frames, along with
the current one, were concatenated and PCA was applied for dimensionality reduction by
retaining the 99% of the variance. Finally, the PMA and speech features were normalized to
have zero mean and unit variance.

4.2. Implementation Details

Each DNN in TRANSIENCE was modeled as a 3-layer feed-forward neural network
with 200 × 100 × 100 hidden units and leaky rectified linear unit (LReLU) activations
(a = 0.03) following [23]. The neural networks were trained as denoising autoencoders
(σnoise = 0.5) using the Adam algorithm [34] with a fixed learning rate of α = 1× 10−4

and a batch size of N = 512 samples. The dimensionality of the shared latent variables
was set to dz = 20 and fixed dz̃ = 10 for the private variables. Finally, we used the cosine
distance for the DTW algorithm in (2). For temporal alignment, only the MGCCs were used
(augmented with delta and acceleration parameters).

4.3. PMA-to-Speech System

The aligned signals were used to train speaker-dependent A2A systems. We used the
same setting as in our previous work [35]: DNNs with four hidden layers with 400 units in
each layer, and rectified linear unit (ReLU) activations were used. The maximum-likelihood
parameter generation (MLPG) algorithm [36,37] was applied over the DNN outputs to
enhance the acoustic quality of the resynthesized waveforms.

4.4. Performance Evaluation

Because the ultimate goal of our work is the synthesis of speech signals from biosignals
captured from the human body during speech production, we evaluated our alignment
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technique by measuring the quality of the speech predicted from the PMA data. To this
end, the following procedure was adopted. First, TRANSIENCE was applied to align the
PMA and speech signals in the training dataset for each condition in Table 1. The aligned
signals were then used to train PMA-to-speech systems, modeled as DNNs as described
above. Finally, speech signals were synthesized from the PMA signals in the evaluation set
in Table 1 using the DNNs trained in the previous step.

The speech signals resulting from this last step were used as the basis for our per-
formance evaluation. In particular, we conducted two kinds of evaluation to assess the
performance of our temporal alignment algorithm: objective and subjective. In the objective
evaluation, we evaluated the quality of the resynthesized speech signals obtained from the
test PMA signals by comparing them with that of the original speech recordings made by
the subjects in our database. For this task, we used several objective metrics widely used
in speech synthesis. Accuracy of spectral estimation was objectively evaluated using the
mel-cepstral distortion (MCD) metric [38] between the MGCCs from the speech signals
recorded by the subjects and those estimated from PMA data. For the excitation parameters,
we computed the root mean squared error (RMSE) for measuring the estimation accuracy
of the BAP parameter, the error rate for the voicing parameter, and the RMSE between the
estimated and original log F0 contours in the voiced segments. For subjective evaluation,
we conducted a set of listening tests whose details are provided below.

5. Results and Discussion

In this section, we show the performance results obtained by our technique on the
A2A task described above.

5.1. Objective Evaluation

First, we evaluated the quality of speech predicted from the PMA signals in the
evaluation set using the objective metrics described in Section 4.4. For TRANSIENCE, three
variants were evaluated depending on the latent-space similarity loss function employed:
Lcca, Lmmi, andLcl loss functions described in Section 3.1. Furthermore, for each of the three
variants, we also evaluated the effect of the autoencoder-based loss described in Section 3.2
and the introduction of the private variables described in Section 3.3. For comparison
purposes, we also evaluated the canonical time warping (CTW) technique described in [39],
which is a particular case of TRANSIENCE combining standard (linear) CCA with DTW,
thus not being able to model nonlinear latent mappings. We also provide the results
obtained by an oracle system, in which the PMA and acoustic signals in the training dataset
are aligned by using the ideal warping paths computed by applying DTW over the speech
signals recorded by the same subjects. These signals are available for the healthy subjects
in our database because the original recordings contained both (time-synchronous) speech
and PMA signals.

Table 2 shows the objective results for the different systems. TRANSIENCE using the
CL loss yields the best objective results, outperforming the rest of the similarity metrics
and, even, the oracle system. In particular, relative gains of 18.36% and 21.46% are achieved
in the MCD metric w.r.t. using the CCA and MMI losses. Unfortunately, it seems that the
introduction of the autoencoder-based loss and the private latent variables do not improve
the results, which may be due to the dimensionality of the private variables not being
enough to capture the peculiarities of each view. It is also surprising that the simple (linear)
CTW technique outperforms its nonlinear version TRANSIENCE-CCA. In future work, we
should look at this issue.
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Table 2. Summary of the objective results obtained by each alignment technique on an A2A task
where speech was synthesized from PMA data captured from the lips and tongue using DNNs.
The following metrics were computed between the predicted speech signals and the original speech
signals recorded by the speakers: (a) speech spectral envelope distortion (MCD); (b) aperiodic
component distortion (RMSE); (c) speech fundamental frequency (F0) distortion (RMSE); and (d)
voicing error rate (%). Best result for each set of parameters is highlighted in bold face.

MGCC BAP F0 Voicing
Method MCD (dB) RMSE (dB) RMSE (Hz) Err. Rate (%)

Oracle 7.81 0.43 14.75 23.79

CTW 8.55 0.59 15.98 23.08
+autoenc. 9.20 0.88 16.70 25.30
+priv. vars. 8.83 0.58 15.74 21.47

TRANSIENCE-CCA 9.37 0.85 16.40 27.95
+autoenc. 10.02 1.46 15.95 34.08
+priv. vars. 10.48 1.24 15.79 31.88

TRANSIENCE-MMI 9.74 0.69 16.43 22.25
+autoenc. 9.97 1.09 16.92 23.72
+priv. vars. 9.86 1.70 16.41 21.75

TRANSIENCE-CL 7.65 0.12 15.28 24.10
+autoenc. 7.76 0.20 14.98 24.06
+priv. vars. 7.82 0.30 14.58 23.68

5.2. Subjective Evaluation

We also conducted an ABX test to subjectively evaluate the quality of the resynthesized
speech signals. To implement the test, we used the web-based BeaqleJS framework [40].
Twenty-seven listeners (recruited among students enrolled in our courses) participated
in the test, who had to judge which of two versions of the same signal produced by any
combination of two of the five systems in Table 2 was more similar to a reference (one of
the signals recorded by the subjects). Each listener evaluated 10 sample pairs for each of
the 10 possible system combinations (i.e., 100 pairs evaluated in total by each listener).
For this task, only the “basic” systems in Table 2 were evaluated (i.e., without the use of the
autoencoder-loss nor the private variables), because this setting produced the best overall
objective results. The test was conducted in a quiet room while listeners wore good-quality
headphones. Listeners were instructed to set the volume at at comfy level at the start of the
test. The total duration of the test was approximately 20 min.

Figure 3 shows the results of the listening test. The most preferred system by a large
margin was our algorithm TRANSIENCE using the CL function, being this system on par
with the Oracle system. Similar to the triplet loss used in applications such as face or voice
biometrics [41,42], we speculate that the CL loss function allows for a more precise way to
measure the similarity between pairs of latent vectors sampled from different views and,
hence, to more accurately training the DNNs used by our algorithm.

Interestingly, the CTW system obtained higher preference scores than its nonlinear
version (TRANSIENCE+CCA) and that of the MMI system. It may be because the opti-
mization process became stuck in poor local-minima for the latter systems. However, more
research is needed to shed some light into this problem.
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Figure 3. Results of the ABX listening test on speech quality.

6. Conclusions

In this paper we proposed a new procedure for the alignment of times series. The pro-
posed method, called TRANSIENCE, can be seen as an extension to the well-known DTW
algorithm, but allowing the alignment of pairs of sequences consisting of feature vectors
with different dimensionality. To enable this feature, powerful DNNs are used to non-
linearly map the feature vectors from the sequences into a common, latent space where
the resulting embedding vectors have the same dimensionality and are maximally similar.
Once these embedding vectors are obtained, the DTW algorithm is used to compute the
optimum alignment between them. We proposed different versions of this algorithm,
mainly affecting the way the DNNs are trained.

To evaluate the proposed technique, an A2A task involving the synthesis of audible
speech from articulatory signals was employed. To this end, articulatory and speech data
recorded from healthy speakers for multiple sessions were used. Our algorithm was then
used to align the articulatory and speech signals and, once aligned, the aligned signals were
employed for training DNNs able to estimate the speech parameters from the articulatory
signals; thus, enabling people with speech impairments to communicate again. Our results
showed that it is feasible to deploy direct synthesis techniques in nonparallel scenarios.
In particular, both the objective and subjective evaluation conducted showed us that the
quality of speech signals obtained by our algorithm approaches (when not outperforming)
the results achieved when using an oracle alignment technique.

Regarding future work, we would like to evaluate our technique using different types
of biosignals (e.g., EEG) and data obtained from clinical population. Furthermore, even
better alignment could be achieved by introducing additional constraints (e.g., phonetic
constraints) or, alternatively, using state-of-the-art neural network architectures, such as
the ResNET [43] or DenseNET [44] architectures.
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A2A Articulatory-to-Acoustic
AA-CCA Alignment-Agnostic CCA
ASR Automatic Speech Recognition
BAP Band APeriodicity
CCA Canonical Correlation Analysis
CL Contrastive Loss
CTW Canonical Time Warping
DCTW Deep Canonical Time Warping
DNN Deep Neural Network
DTW Dynamic Time Warping
EEG Electroencephalogram
EMG Electromyography
GCTW Generalyzed Canonical Time Warping
KDE Kernel Density Estimation
KL Kullback-Leibler
LReLU Leaky Rectified Linear Unit
MCD Mel-Cepstral Distortion
MGCC Mel-Generalised Cepstral Coefficient
MLPG Maximum-Likelihood Parameter Generation
MMI Maximum Mutual Information
MSE Mean Squared Error
PCA Principal Component Analysis
pdf Probability Density Function
PMA Permanent Magnet Articulography
ReLU Rectified Linear Unit
RMSE Root Mean Squared Error
seq2seq Sequence-to-Sequence
SSI Silent Speech Interface
TRANSIENCE multiview Temporal Alignment by Dependence

Maximisation in the Latent Space
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