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Abstract: To improve the detection efficiency of a long-distance dim point target based on dynamic
programming (DP), this paper proposes a multi-frame target detection algorithm based on a merit
function filtering DP ring (MFF-DPR). First, to reduce the influence of noise on the pixel state
estimation results, a second-order DP named the MFF-DP is proposed. The current states of pixels
on an image plane are estimated by maximizing the addition of the merit functions of the previous
two frames and the observation data of the current frame. In addition, to suppress the diffusion
of the merit function, the sequential and reverse observation data are connected in a head-to-tail
manner to form a ring structure. The MFF-DP is applied to the ring structure, and the merit function
of the MFF-DPR is obtained by averaging the merit functions of the sequential and reverse MFF-DPs.
Finally, the target trajectory is obtained by correlating the extreme points of the merit functions of
the MFF-DPR. The simulation and analysis results show that by merely adding a ring structure,
the detection probability of the traditional DP can be improved by up to 40% when detecting point
targets under the SNR of 1.8. The point target detection algorithm based on the MFF-DPR can achieve
significantly better performance in point target detection compared with the traditional DPs with
or without a ring structure. The proposed algorithm is suitable for radars and infrared point target
detection systems.

Keywords: point target detection; dynamic programming; second-order dynamic programming;
dynamic programming ring; time reversal symmetry; merit function diffusion suppression

1. Introduction

As a very important technology in the field of radar or infrared systems, point target
detection has been widely studied, but its development has still been limited by certain
challenges. First, the point target features, such as texture and color, cannot be captured
because of a far observation distance. Second, the amplitude of a point target may be less
than that of its surrounding background.

The point target detection algorithms can be roughly divided into detect-before-track
(DBT) [1–3] and track-before-detect (TBD) [4–7] algorithms, or single-frame and multi-
frame target detection algorithms. When the signal-to-noise ratio (SNR) of a point target
is low, the DBT algorithms can easily lose the target. In contrast, the TBD algorithms
process a number of frames before making a decision on target existence. Therefore, the
TBD algorithms are particularly useful when the SNR is low. Since Barniv et al. [8] first
proposed the dynamic programming (DP) TBD (DP-TBD) algorithm, the DP-TBD has been
the mainstream method in the field of dim point target detection because DP lowers the
requirements on data storage and search range.

The DP-TBD algorithms can be roughly divided into probability density accumulation-
based algorithms and energy accumulation-based algorithms according to the merit func-
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tion type [9,10]. The merit functions of the probability density accumulation-based algo-
rithms [11] require information on statistical characteristics of a signal and background
noise. However, for non-cooperative targets, this prior knowledge is difficult to obtain.
In contrast, the energy accumulation-based algorithms [12,13] use the gray accumulation
value of each stage of a target as a merit function, which simplifies the iteration steps. For
this reason, the energy density accumulation-based algorithms have a wider application
scope than the probability accumulation-based algorithms. However, both types of DP-
TBD algorithms have the same deficiencies, which can be summarized as follows. First,
a pseudo trajectory is formed when the merit function accumulates to the nearby, strong
noise. At each stage of the DP-TBD algorithms, only one optimal trajectory is retained,
while other trajectories are discarded; thus, the incorrect state transition may occur in each
stage due to the presence of strong noise. Second, the target merit function diffuses in each
stage of the probability density or energy accumulation, which could obscure the target
position. However, diffusions of the merit function cannot be completely avoided because
of inherited characteristics of the DP-TBD.

To address the aforementioned problems, researchers have designed many improved
algorithms for merit function. Succary et al. [14] proposed a merit function with sys-
tem memory coefficient to reduce the influence of noise. However, the system memory
coefficient is dependent on the SNR, and the parameter choice is challenging to detect
non-cooperative targets. In recent years, the DP-TBD algorithms based on state transition
constraints, including trajectory constraints [15–17], amplitude constraints [18], penalty
function constraints [19], and multi-level thresholds [20,21], have been extensively studied.
However, all of the above-mentioned improved algorithms represent first-order Markov
chains. In a state-transition stage, these algorithms use only the merit function of the
previous frame, which often results in a large error of pixel state estimation. Recently,
the second-order DP-TBD has emerged. Unlike the first-order DP-TBD, the second-order
DP-TBD uses the observation data of the previous two frames [22,23] or the subsequent
frame [24,25]. However, for dim point targets, high detection accuracy is challenging to
achieve when unreliable observation data are used directly for state transition decisions.

This study focuses on improving the detection efficiency of dim point targets using
the DP-TBD. First, a second-order DP, named the merit function filtering DP (MFF-DP),
is proposed. Unlike the traditional second-order DP, in the MFF-DP, the current states of
pixels on an image plane are estimated by maximizing the addition of the merit functions of
the previous two frames and the observation data of the current frame. In this way, direct
involvement of the observed data in the state transition decision is avoided, thus reducing
the influence of noise on the state estimation of pixels under the condition of a low SNR.
Then, the symmetry of the DP merit function is determined; namely, the distribution of
merit function at the target position is similar to the shape of a comet after the sequential
or reverse operation of DP. The nuclei of two comets coincide, and the comet tails are
symmetrical about the point target position. On this basis, a merit function diffusion
suppression algorithm is designed using a DP ring (DPR); namely, this algorithm connects
the sequential and reverse observation data in a head-to-tail manner to form a ring structure,
calculates the merit function of the ring structure, and averages the sequential and reverse
merit functions. Finally, the target trajectory is obtained by correlating the extreme points
of the averaged merit function.

The remainder of this paper is organized as follows. Section 2 presents the point target
model. Section 3 introduces the point target detection algorithm based on the MFF-DPR.
Section 4 analyses the result of the simulation experiments to verify the effectiveness of the
point target detection algorithm based on the MFF-DPR and compares the MFF-DPR with
several traditional DPs with or without a ring structure. Section 5 concludes the paper.
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2. Model of Point Target

In this study, it is assumed that point targets are moving relative to the radar or
infrared target detection system, and the detection system obtains an observation sequence
for each full scan, which is called an image, and observes a total of N images.

At time 1 ≤ t ≤ N, the observation data with coordinates of p on an image plane Ω

are denoted by X(t)
p and expressed as [15]:

X(t)
p =

{
A(t) + n(t)

p , target at coordinates of p
n(t)

p , no target at coordinates of p
, (1)

where A(t) denotes the target amplitude, which is assumed to be a positive constant for
simplicity, i.e., A(t) = A > 0; n(t)

p represents additive noise and obeys the zero-mean

Gaussian distribution, i.e., n(t)
p ∼ N

(
0, σ2

n
)
; SNR is defined as A/σn . For more details

about processing a complex background, please refer to the image preprocessing presented
in ref. [26].

3. MFF-DPR-Based Point Target Detection
3.1. MFF-DP

According to the DP-based point target detection [14–26], the merit function of the DP
of a pixel with coordinates of p at time t can be obtained iteratively as follow:

I(t)p = X(t)
p + max‖v‖2≤vmax

{
E(t)

p,v

}
, (2)

where ‖ ‖2 represents the Euclidean norm, v denotes the pixel transition velocity on the

image plane, vmax denotes the maximum speed of the point target, and E(t)
p,v represents the

optimization function.
The main difference between the traditional DPs lies in E(t)

p,v. The optimization function

of the first-order DPs [14–21] can be rewritten as E(t)
p,v = I(t−1)

p−v , which means the state
transition of the first-order DPs depends only on the merit function of the previous frame
(Figure 1a), and the estimation error of pixel state will be large. For traditional second-order
DPs [22–25], the correlation with the observation data (Figure 1b,c) is introduced to E(t)

p,v,
which represents an improvement compared to the first-order DPs. However, for dim point
targets, direct involvement of unreliable observation data in the state transition can affect
the estimation of the pixel state.

To address the aforementioned problems, this study sets the optimization function
E(t)

p,v and depends on the merit functions of the previous two frames, as shown in Figure 1d.
This avoids the direct involvement of observation data in the state transition decision as in
the traditional second-order DPs, thus reducing the noise influence on the state estimation
of pixels.

The trajectory of a point target in the three-dimensional space formed by an image
plane and a time axis is regarded as a continuous curve, and the geometric characteristics
of the trajectory are equivalent to the dynamic characteristics of the point target. When the
observation time is short enough, such as three consecutive frames, the trajectory of a point
target can be approximated as a straight line in a three-dimensional space. In this study, the
locally linearized target trajectory in a three-dimensional space is used as a dynamic model
of a point target. Thus, under the local straight-line trajectory constraints, the optimization
function E(t)

p,v, depending on the merit functions of the previous two frames, can be defined
as follows:

E(t)
p,v =

1
2

w(t)
p,v

(
I(t1)
p1

+ I(t2)
p2

)
, (3)
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Figure 1. Sketchy diagram of the correlation between the observation data X(t)
p of the current frame

(painted green) and the data of the other frames; the regions participating in the state transition
decision process are represented in red. (a) First-order DP; (b) second-order DP with the correlation
with the observation data of the previous two frames; (c) second-order DP with backtracking; (d) MFF-
DP. A point target moves at a speed not greater than vmax = 1 pixel/frame.

where 1
2 represents the normalization coefficient of the merit function, and the velocity

matching label can be expressed as:

w(t)
p,v =

{
1, ‖v− v(t1)

p1
‖∞ ≤ 1

2 and ‖v− v(t2)
p2
‖∞ ≤ 1

2
0, otherwise

, (4)

where ‖ ‖∞ represents the Chebyshev norm; 1
2 indicates that the estimation error of each

velocity component is not larger than the minimum speed resolution of the second-order
DP, i.e., 1

2 pixel/frame; p1 and p2 denote the pixel coordinates at the previous two frames,
namely, at times t1 = t − 1 and t2 = t − 2, respectively, p, p1, and p2 satisfy the local
straight-line constraint, namely, there exists a straight-line trajectory that passes through
coordinates p, p1, and p2 at a velocity of v ∈

{
v
∣∣2v ∈ Z2 }. For a different coordinate p,

a set
{
(v, p1 − p, p2 − p)

∣∣2v ∈ Z2, ‖v‖2 ≤ vmax
}

is the same. To improve the calculation
efficiency, this set is used as the velocity search list of Equation (2).

Finally, the velocity corresponding to the maximum value E(t)
p,v is set as a transition

velocity of the pixel with coordinates of p ∈ Ω at the current time t, i.e.,

v(t)
p = argmax‖v‖2≤vmax

{
E(t)

p,v

}
. (5)

The second-order DP proposed in this paper represents the mean of the merit functions
of the previous two frames under the straight-line trajectory constraints. Considering the
difference from the traditional DPs, the above algorithm is named the merit function
filtering DP (MFF-DP).

3.2. MFF-DPR

The MFF-DP shares the same drawback with the traditional DPs. As the merit func-
tion diffuses (Figure 2), the target will be drowned in the diffused bright spots, which
complicates target detection. Therefore, suppressing the merit function diffusion of DP is
of great significance to a point target detection algorithm.

The study on the diffusion of the merit function of the DP-TBD has shown that the
distribution of the merit function at the target position is similar to the shape of a comet
after the sequential or reverse operation. The nuclei of two comets coincide, and the comet
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tails are symmetrical about the position of a point target, as shown in Figure 2a,b,d,e.
In this paper, the above property is named as the time reversal symmetry of DP. If the
merit functions accumulated in sequential and reverse orders are superimposed together
(Figure 2c,f), the merit function of a point target is enhanced after superimposition due to
the coincidence of comet nuclei, and other areas are well suppressed. Consequently, the
target position becomes more pronounced and is consistent with the extreme value position
of the merit function on the local image plane.

Based on the time reversal symmetry of the DPs, this paper connects the sequential
and reverse observation data head to tail to form a ring structure and employs the DP to
update the pixel state on the ring structure, as shown in Figure 3, thus obtaining a DP ring
(DPR) algorithm. Taking the MFF-DP as an example, this paper provides the steps of the
corresponding DPR algorithm, i.e., the MFF-DPR algorithm, as shown in Algorithm 1. The
same approach can be applied to other DPs.

To distinguish the sequential MFF-DP, reverse MFF-DP and MFF-DPR, “+”, “−”, and
“*” are used in time expressions, respectively.
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Figure 2. The distributions of different merit functions. (a,d) Distributions of merit functions with
sequential accumulation at time t = 50; (b,e) distributions of merit functions with reverse accumulation
at time t = 50; (c,f) distributions of averaged merit functions with sequential accumulation and
reverse accumulation at time t = 50; (a–c) the calculation results of the algorithm proposed in Ref. [15];
(d–f) the calculation results of the MFF-DP algorithm; the size of simulation image is 128 × 128 pixels,

the sequence length is N = 100, the background noise is n(t)
p ∼ N(0, 1), the point target is SNR = 1.8,

the initial position is (30, 20), and motion velocity is (0.6, 0.8) pixel/frame.
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Figure 3. Sketchy diagram of the DPR; S(+t)
Ω and S(−t)

Ω denote the pixel state estimation results of the
sequential and reverse DPs at time t, respectively.

Algorithm 1 MFF-DPR

Input: Assume the upper limit of the point target motion speed is vmax, the sequence length is N,
the iteration counter is k = 1, and the present time t = +3.

Output: The merit function of the MFF-DPR I(∗t)Ω .
Step 1: Pixel state updating.

Pixel state S(t)
Ω =

{(
I(t)p , v(t)p

)
|p ∈ Ω

}
is updated weekly along the data ring, as shown in

Figure 3.
If t = +3 or +4, due to the lack of prior information on the velocity, according to Equations (2),

(3) and (5), the state estimation is performed in the following way: v(t)p = argmax‖v‖2≤vmax

{
X(t1)

p1
+ X(t2)

p2

}
I(t)p = X(t)

p + 1
2 max‖v‖2≤vmax

{
X(t1)

p1
+ X(t2)

p2

} , (6)

where p1 and p2 denote the pixel coordinates at the previous two frames, namely, at times
t1 = t− 1 and t2 = t− 2, respectively; p, p1, and p2 satisfy the straight-line constraint.

If t = +(N + 1), let t = −(N − 1), and the first two states of the reverse MFF-DP are
initialized in the following way:{

v(−N)
Ω = −v(+N)

Ω , v(−(N−1))
Ω = −v(+(N−1))

Ω

I(−N)
Ω = I(+N)

Ω , I(−(N−1))
Ω = I(+(N−1))

Ω

. (7)

If t = 0, let t = +2, the first two states of the sequential MFF-DP are defined in the
following way: {

v(+1)
Ω = −v(−1)

Ω , v(+2)
Ω = −v(−2)

Ω

I(+1)
Ω = I(−1)

Ω , I(+2)
Ω = I(−2)

Ω

. (8)

Otherwise, the pixel state S(t)
Ω is updated in the way of iteration using Equations (2)–(5).

The iteration counter increased by one, i.e., k = k + 1; if k ≤ 2N, t = t + 1, the algorithm
returns to the Step 1 of pixel state updating; otherwise, it proceeds to the Step 2 of MFF-DPR merit
function derivation.
Step 2: MFF-DPR merit function derivation.

The merit function of the MFF-DPR I(∗t)Ω can be obtained by averaging merit functions of
the sequential and reverse MFF-DPs at the same time, which can be expressed as follows:

I(∗t)Ω =
1
2

(
I(+t)
Ω + I(−t)

Ω

)
, 1 ≤ t ≤ N. (9)
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3.3. Multi-Target Detection

After the energy accumulation of point targets based on the MFF-DPR, the point
targets can be detected by correlating the extreme points of the merit function of the MFF-
DPR I(∗t)Ω . However, when there are multiple targets in the field of view, trajectories of
different point targets can intersect, causing the merit functions of multiple point targets
to interfere with each other, so a wrong correlation of target identifications can easily
occur. To address this problem, this paper uses the target coordinates extracted in multiple
iterations to detect the target trajectories one by one, and reduces the target identification
error through trajectory regularization, as shown in Figure 4.

The steps of the multi-target detection algorithm based on the MFF-DPR are given in
Algorithm 2. The same approach can be applied to other multi-target detection algorithms
based on the DP/DPR.

Algorithm 2 Multi-Target Detection

Input: Set the number of iterations to be equal to the target number, i.e., L = Ntar; the sequence
length is N, and the iteration counter is set to l = 1.

Output: The multi-target trajectories
{

p(t)i

∣∣∣1 ≤ i ≤ Ntar, 1 ≤ t ≤ N
}

.
Step 1: Energy accumulation.

Run Algorithm 1 for the merit functions of the MFF-DPR of the lth iteration{
I(l,∗t)Ω

∣∣∣1 ≤ t ≤ N
}

.
Step 2: Merit function maximum value coordinates extraction.

The coordinates corresponding to the maximum value of the merit function of the MFF-DPR
at time t during the lth iteration can be expressed as:

p(l,∗t) = argmaxp∈Ω

{
I(l,∗t)p

}
. (10)

Step 3: Trajectory detection.
To prevent the same trajectory is detected multiple times, in this study, target trajectories are

detected one by one. Step (3) outputs one trajectory at a time, and the trajectory can be generated

by correlating the coordinate set
{

p(l,∗t)
∣∣∣1 ≤ t ≤ N

}
. The specific steps are as follows:

Step 3.1: Trajectory initialization.
For the maximum value coordinate without matching the previous frame, a search window

with a size of (2vmax + 1)× (2vmax + 1) is set by centering it on this coordinate point. If there
exists a maximum value coordinate within the search window, a new trajectory is established, and
the tracking counter is set to two; then, a 3× 3 search window of the next frame centered on the
predicted point is set, and the prediction counter is set to zero; otherwise, the maximum value
coordinate of the previous frame is considered a noise coordinate and thus is deleted.

Step 3.2: Trajectory generation.
For the established trajectory, if there is a maximum value coordinate in the search window,

the tracking counter is increased by one. Then, the trajectory is extended to the matching point, a
3× 3 search window of the next frame centered on the predicted point is set, and the prediction
counter is set to zero. If no matching point is found, the trajectory is extended to the prediction
point, the search window of the next frame centered on the predicted point is set, the size of the
search window is increased by 2 pixels, and the prediction counter is increased by one. If the
prediction counter is greater than five, the point target corresponding to the trajectory has been
lost, and the current trajectory updating process is terminated. In this process, the least squares
linear prediction algorithm with five consecutive frames is used for coordinate prediction.

Step 3.3: The highest-score trajectory selection.
The trajectory coordinates are scored as follows: invalid coordinates as “0”, initial

coordinates as “1”, prediction coordinates as “2”, and matching coordinates as “3”. After batch
processing, as shown in Steps (3.1) and (3.2), the coordinate scores of each trajectory are added to

the trajectory score. The trajectory’s coordinates p(l,t)traj and trajectory score S(l,t)
traj corresponding to

the highest-score trajectory are output.
The iteration counter is increased by one, i.e., l = l + 1. If l ≤ L, the algorithm goes to Step 4;

otherwise, it goes to Step 5.
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Algorithm 2 Cont.

Step 4: Updating observation data.
To prevent the same trajectory is detected multiple times, once the trajectory is detected, the

corresponding pixels in the observation data are replaced by adjacent background pixels.

Define the updating area Ω
(l,t)
traj =

{
q
∣∣∣‖q− p(l,t)traj ‖∞ ≤ 1

}
, and perform 3× 3 median

filtering filling on it as follows:

X(t)
p = med

{
X(t)

q

∣∣∣‖p− q‖∞ ≤ 1
}

, p ∈ Ω
(l,t)
traj , 1 ≤ t ≤ N, (11)

where ‖ ‖∞ represents the Chebyshev norm, and med{ } stands for the operation of calculating
the median of the set elements; go to Step 1.
Step 5: Trajectory regularization.

In theory, complete target trajectories can be extracted from observation data by performing
Steps 1–4. However, target identification errors caused by trajectory intersection could arise, as
shown in Figure 4c. To mitigate the target identification errors, this paper proposes an algorithm
on any two trajectories as follows:

Assume that the trajectory coordinate sets of two trajectories are denoted by{
p(t)1

∣∣∣1 ≤ t ≤ N
}

and
{

p(t)2

∣∣∣1 ≤ t ≤ N
}

; then, if

min
{
‖p(t)1 − p(t)2 ‖2

∣∣∣1 ≤ t ≤ N
}
≥ 5, (12)

then, the two trajectories do not intersect, and the trajectory regularization of the two trajectories
terminates; otherwise, the time of intersecting of the two trajectories is obtained by:

tc = argmin1≤t≤N

{
‖p(t)1 − p(t)2 ‖2

}
, (13)

and trajectory regularization is performed as follows:

Suppose p(tc−t)
1 , p(tc+t)

1 , p(tc−t)
2 , and p(tc+t)

2 denote local trajectories at time tc, and

p̂(tc−t)
1 , p̂(tc+t)

1 ,p̂(tc−t)
2 and p̂(tc+t)

2 are the predicted trajectories obtained by the straight-line fitting

of p(tc+t)
1 ,p(tc−t)

1 ,p(tc+t)
2 , and p(tc−t)

2 , respectively, as shown in Figure 4a; where, 1 ≤ t ≤ TL. The
fitting errors of the two types of trajectories can be calculated by:

E1 = ∑1≤t≤TL
‖∆p(−t)

11 ‖
2

2 + ‖∆p(−t)
22 ‖

2

2 + ‖∆p(+t)
11 ‖

2

2 + ‖∆p(+t)
22 ‖

2

2

E2 = ∑1≤t≤TL
‖∆p(−t)

12 ‖
2

2 + ‖∆p(−t)
21 ‖

2

2 + ‖∆p(+t)
12 ‖

2

2 + ‖∆p(+t)
21 ‖

2

2

, (14)

where ∆p(±t)
ij = p(tc±t)

i − p̂(tc±t)
j , and TL = 10 based on experience.

If E1 < E2, the trajectory correlation is performed using the method shown in Figure 4b;
otherwise, the method shown in Figure 4c is employed.

The probability of target identification errors can be reduced by regularization but
cannot be eliminated completely. For instance, if two trajectories that intersect at time
tc have the same three-dimensional tangent vector, errors of the two types of trajectory
fitting methods will be very close (E1 ≈ E2), making it impossible to perform the trajectory
correlation in the absence of other prior information about the target.
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4. Simulations and Analysis

The DPR-based small target detection algorithm was simulated and verified using the
MATLAB software running on a computer with a processor i5-2400CPU at 3.10 GHz and
3.40-GB memory. The simulation experiment consisted of two parts: detection of a single
target and detection of multiple targets. The MFF-DP was compared with the DP algorithm
proposed by Johnston [15], which represents classic first-order DP (CFO-DP) algorithm
and the DP with backtracking proposed in Ref. [25], which represents the classic second-
order DP (CSO-DP) algorithm. The DPR versions of the three algorithms, i.e., MFF-DPR,
CFO-DPR, and CSO-DPR, were also compared. The comparison algorithms were set to
optimal parameters, and the CSO-DP/DPR algorithm used the trajectory constraint-based
optimization state transition model described in Section 3.1.

4.1. Single-Target Detection Test

The images used in the simulation had a size of 128× 128 pixels; the maximum
sequence length was 100, and the background noise was n(t)

p ∼ N(0, 1). Three types of
trajectories were tested in the single-point target detection experiment, as shown in Figure 5.
The SNRs of the point targets on each trajectory were in the range of 1.5–3.0. For each
group of test data, 1000 rounds of simulations were conducted, and the average detection
probability was calculated by:

Pd =
Number of correctly detected targets

Total number of real targets
(15)

According to the point target detection algorithm described in Section 3.3, only one
round of the DP/DPR signal accumulation was needed, and only a single-pixel coordinate
needed to be extracted from a single image frame. The single-point target detection process
was simplified as follows.

Suppose that the maximum value of the merit function I(t)p at time t corresponds

to the coordinate of p(t)
c = argmaxp∈Ω

{
I(t)p

}
, and the theoretical coordinate of the point

target is p(t)
r , if ‖p(t)

c − p(t)
r ‖∞ ≤ 1; then, it can be deemed that the point target has been

detected at the time t.
To compare the performances of the DP and DPR, we used a concept of detection

probability increment ∆Pd, which is defined as the difference in the detection probability
value between the DPR and DP (∆Pd = Pd,DPR − Pd,DP).



Appl. Sci. 2022, 12, 1151 10 of 18Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 18 
 

 

Figure 5. (a) Test case 1; parameters of the straight-line trajectory were as follows: initial coordi-

nates were (5, 10) and motion velocity was (1.2, 1.1) pixel/frame; (b) test case 2; parameters of the 

straight-line trajectory were as follows: initial coordinates were (30, 20) and motion velocity was 

(0.6, 0.8) pixel/frame; (c) test case 3; parameters of the arc trajectory were as follows: motion speed 

was 1 pixel/frame, arc center coordinates were (64, 64), and arc diameter was 20 pixels. 

The performances of the MFF-DP, CFO-DP, and CSO-DP algorithms in detecting a 

single-point target were tested at first. In the three test cases, different numbers of image 

frames (20, 50, and 100) were used. The upper limit of the motion speed of a target was 

𝑣max = 2pixel/frame in test case 1, and 1 pixel/frame in test cases 2 and 3. 

With the increase in SNR or the number of data frames, the detection performances 

of the three algorithms improved gradually. The results in Figure 6a,b show that the 

smaller the value of 𝑣max was, the smaller the number of state transition searches, the 

lower the noise interference, and the higher the detection probability was. 

The results show that the state transition model of the MFF-DP reduced the target 

state estimation error compared with the first-order DP and also avoided the direct in-

volvement of the observation data in the state transition decision process, which is one of 

the main drawbacks of the traditional second-order DP, thus reducing the influence of 

noise on the point target state estimation. When 𝑆𝑁𝑅 < 2.0, the detection performance of 

the MFF-DP was superior to that of the traditional DPs. The descending order of the al-

gorithms regarding the detection performance was as follows: MFF-DP, CSO-DP, and 

CFO-DP. Particularly, at 𝑆𝑁𝑅 = 1.5, the highest detection probability of the CFO-DP al-

gorithm was only about 20%, which was far lower than that of the MFF-DP algorithm, 

which was 45%. The highest detection probability of the CSO-DP algorithm was between 

those of the two above-mentioned algorithms, and it was about 30%. Above the level of 

2.0, the increase in SNR would lead to higher credibility of the original data of a point 

target, as well as higher efficiency of point target signal accumulation. Particularly, when 

the number of data frames was very small (𝑁  = 20), the detection probability of the 

CSO-DP algorithm was higher than that of the MFF-DP algorithm, as shown in Figure 6a. 

Next, the performances of the MFF-DPR, CFO-DPR, and CSO-DPR algorithms in 

detecting a single-point target were tested. When 𝑆𝑁𝑅 < 2.0 , the DPR algorithms 

achieved significantly higher detection performances than their DP counterparts, as 

shown in Figure 6g–i. The performances of the DPR algorithms regarding the detection 

probability 𝑃𝑑 (Figure 6d–f) can be mainly attributed to the state transition model, target 

motion speed limit, and the number of image data frames.  

Similar to the MFF-DP algorithm, the MFF-DPR algorithm had the best detection 

performance when 𝑆𝑁𝑅 < 2.0. However, under the conditions of 𝑆𝑁𝑅 >  2.0, the detec-

tion probability of the CSO-DPR algorithm could be higher than that of the MFF-DPR 

algorithm, especially when the number of data frames is small (𝑁 = 20), as shown in 

Figure 6d. 

Since the number of single-step state searches determines the upper detection per-

formance limit of the DP/DPR, and this number is approximately proportional to the 

Figure 5. (a) Test case 1; parameters of the straight-line trajectory were as follows: initial coordi-
nates were (5, 10) and motion velocity was (1.2, 1.1) pixel/frame; (b) test case 2; parameters of the
straight-line trajectory were as follows: initial coordinates were (30, 20) and motion velocity was
(0.6, 0.8) pixel/frame; (c) test case 3; parameters of the arc trajectory were as follows: motion speed
was 1 pixel/frame, arc center coordinates were (64, 64), and arc diameter was 20 pixels.

The performances of the MFF-DP, CFO-DP, and CSO-DP algorithms in detecting a
single-point target were tested at first. In the three test cases, different numbers of image
frames (20, 50, and 100) were used. The upper limit of the motion speed of a target was
vmax = 2pixel/frame in test case 1, and 1 pixel/frame in test cases 2 and 3.

With the increase in SNR or the number of data frames, the detection performances of
the three algorithms improved gradually. The results in Figure 6a,b show that the smaller
the value of vmax was, the smaller the number of state transition searches, the lower the
noise interference, and the higher the detection probability was.

The results show that the state transition model of the MFF-DP reduced the target state
estimation error compared with the first-order DP and also avoided the direct involvement
of the observation data in the state transition decision process, which is one of the main
drawbacks of the traditional second-order DP, thus reducing the influence of noise on the
point target state estimation. When SNR < 2.0, the detection performance of the MFF-
DP was superior to that of the traditional DPs. The descending order of the algorithms
regarding the detection performance was as follows: MFF-DP, CSO-DP, and CFO-DP.
Particularly, at SNR = 1.5, the highest detection probability of the CFO-DP algorithm was
only about 20%, which was far lower than that of the MFF-DP algorithm, which was 45%.
The highest detection probability of the CSO-DP algorithm was between those of the two
above-mentioned algorithms, and it was about 30%. Above the level of 2.0, the increase
in SNR would lead to higher credibility of the original data of a point target, as well as
higher efficiency of point target signal accumulation. Particularly, when the number of data
frames was very small (N = 20), the detection probability of the CSO-DP algorithm was
higher than that of the MFF-DP algorithm, as shown in Figure 6a.

Next, the performances of the MFF-DPR, CFO-DPR, and CSO-DPR algorithms in
detecting a single-point target were tested. When SNR < 2.0, the DPR algorithms achieved
significantly higher detection performances than their DP counterparts, as shown in
Figure 6g–i. The performances of the DPR algorithms regarding the detection probability
Pd (Figure 6d–f) can be mainly attributed to the state transition model, target motion speed
limit, and the number of image data frames.

Similar to the MFF-DP algorithm, the MFF-DPR algorithm had the best detection
performance when SNR < 2.0. However, under the conditions of SNR > 2.0, the detection
probability of the CSO-DPR algorithm could be higher than that of the MFF-DPR algorithm,
especially when the number of data frames is small (N = 20), as shown in Figure 6d.

Since the number of single-step state searches determines the upper detection perfor-
mance limit of the DP/DPR, and this number is approximately proportional to the square
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of the motion speed limit vmax of a target, the detection performance will be low if vmax is
high. When vmax = 2 pixel/frame and SNR = 1.5, even the MFF-DPR algorithm, which
is currently the algorithm with the highest performance, could achieve only a detection
probability Pd of less than 40%, as shown in Figure 6d. For the long-distance point target
detection, it is necessary to eliminate the influence of the detection platform motion or to
improve the image frame rate. The motion speeds of the straight-line and curve trajectories
were both v2 = 1 pixel/ frame. However, compared with the straight-line trajectory, the
prediction error of the curve trajectory was larger; therefore, the merit function of the curve
trajectory diffused faster. In addition, both the detection probability Pd (Figure 6f) and the
detection probability increment ∆Pd (Figure 6i) of the curve trajectories were lower than
those of the straight-line trajectories (Figure 6e,h).

As the number of image frames increased, the peak value of ∆Pd tended to move
toward the low end of SNR, as shown in Figure 6g–i. However, with the increase in the
number of image frames, the growth rate of detection probability gradually decreased,
as shown in Figure 6d–f, indicating that blindly increasing the number of image frames
could not significantly improve the detection performance. Therefore, it is necessary to
select an appropriate number of image frames according to the target SNR so as to reduce
unnecessary calculation while ensuring a reasonably high detection probability.

Finally, the single-frame processing time was used as an evaluation measure of the
operating efficiency of the algorithms, and the obtained results are given in Table 1. The
main affecting factor of the single-frame processing time was the number of single-step
state searches, i.e., the length of the velocity search list. As the CFO-DP and DPR are
the first-order algorithms, they require fewer single-step state searches and have higher
operating efficiency than the CSO-DP and DPR algorithms, as well as the MFF-DP and
DPR algorithms. The data structure of DPR defines that DPR algorithms require about
twice longer processing time than the corresponding DP algorithms.

Among the six algorithms, the MFF-DPR algorithm exhibits good detection perfor-
mance but requires a long processing time. When the image size was 128× 128 pixels and
vmax = 2 pixel/frame, the MFF-DPR algorithm needed about 0.5 s to process a single frame,
which made it difficult to realize real-time processing. Thus, a balance must be stricken
between the operating efficiency and detection performance in real-world applications.

Table 1. Comparison of the computational efficiencies of the DP/DPR algorithms in single-target
detection.

CFO-DP/DPR CSO-DP/DPR MFF-DP/DPR

Number of single-step
state searches

vmax = 1pixel/frame 9 49 49
vmax = 2pixel/frame 25 165 165

Single-frame processing
time (ms)

vmax = 1pixel/frame 15/29 57/117 75/155
vmax = 2pixel/frame 32/63 165/343 227/449
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Figure 6. Single-target detection probabilities of different DP/DPR algorithms. (a–c) Detection
probabilities of the DP algorithms; (d–f) detection probabilities of the DPR algorithms; (g–i) detection
probability differences between the DPR and DP algorithms; (a,d,g) test case 1; (b,e,h) test case 2;
(c,f,i) test case 3.
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4.2. Multi-Target Detection Test

In the multiple point targets detection test, the size of the simulation images was
128× 128 pixels, the sequence length was 100, and the background noise was n(t)

p ∼ N(0, 1).
In this test, three types of test cases were used, as shown in Figure 7. In each type of test case,
the SNR of point target was in the range of 1.5–3.0, and 1000 simulations were performed
for each data group.

After the target trajectories were generated using the DP/DPR point target detection
algorithms described in Section 3.3, the multi-target detection performance of each algo-
rithm was evaluated using the detection probability given by Equation (15) and false alarm
rate that is given by:

Pf =
Number of non− target ponts in all trajectories

Number of pixels in image sequence
. (16)

First, a few common features of the proposed multi-target detection algorithm were
analyzed. Because only one coordinate point was extracted from each frame image in each
round, and only one trajectory was retained in each round, the correlation complexity of the
generated trajectory was significantly reduced; the algorithm complexity was O(Ntar). As
the relative amplitude of the multi-target merit function (Figure 8a) can vary, and when the
trajectories of multiple targets intersect, it is difficult to extract a complete target trajectory
after one round of the DP/DPR algorithm. However, since median filtering was used
to replace the observation data corresponding to the trajectory segment, the trajectory
segment could not be extracted repeatedly. In theory, a complete target trajectory can be
pieced together after multiple rounds of trajectory detection. In the case of straight line 1,
the complete trajectory segment was obtained after three rounds of trajectory detection, as
shown in Figure 8b. Target identification errors caused by trajectory intersection could be
reduced by trajectory regularization, as shown in Figure 8c.

Next, the performances of six DP/DPR detection algorithms in multi-target detection
were tested. The multi-target detection performances of the three DP algorithms in the
descending order were as follows: MFF-DP, CSO-DP, and CFO-DP, as shown in Figure 9a–c,
and for the three DPR algorithms, the descending order was MFF-DPR, CSO-DPR, and
CFO-DPR, as shown in Figure 9d–f. Compared with the DP algorithms, the DPR algorithms
had significantly higher multi-target detection performance, as shown in Figure 9g–i.
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Figure 7. (a) Test case 1; (b) test case 2; (c) test case 3. Straight-line trajectory 1 is marked in red, and
its initial coordinates were (24,34) and its motion velocity was (0.8, 0.6) pixel/frame; straight-line
trajectory 2 is marked in blue, and it had the initial coordinates of (66, 73) and the motion velocity
of (−0.6, −0.7) pixel/frame; the arc trajectory is marked in green, and it had the motion speed of
1 pixel/frame, arc center of (64, 46), and the arc radius of 20 pixels. The two straight-line trajectories
intersect at (48, 52), while the straight-line trajectory 1 and arc trajectory intersect at (67, 66).
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The detection performance of the multi-target detection algorithms was lower com-
pared to that of the single-target detection algorithms (Figure 6), especially the DP algo-
rithms. The two main reasons for this result were identified through analysis, and they are
as follows. First, in the single-target detection algorithms, the only required task after the
target points have been obtained is to determine whether the target points are correct. In
contrast, in multi-target detection algorithms, it is needed to consider targets with trajectory
correlation, but when trajectories are discontinuous, only some trajectory segments can be
identified. Second, the mutual influence between multiple target trajectories can affect the
detection result.

With the increase in SNR, the false alarm probabilities of the six multi-target detection
algorithms exhibited a downward trend, as shown in Figure 10. Moreover, a comparison
of results presented in Figure 10a–c reveals that the false alarm probabilities exhibited an
upward trend as the number of target trajectories increased. Under SNR > 1.8, the false
alarm probabilities of the DPR multi-target detection algorithms were lower than those of
DP multi-target detection algorithms. However, when SNR was close to 1.5, the false alarm
probabilities of the DPR multi-target detection algorithms could be higher than those of
the DP multi-target detection algorithms. This was because the DP multi-target detection
algorithms could difficultly extract targets under such a condition, so they could not form
trajectories most of the time, which resulted in no incorrect target extraction results.

Finally, the single-frame processing times of different algorithms in single-target
detection were compared, as shown in Table 1. In multi-target detection, most time was
spent on the DP/DPR merit function updating, as shown in Table 2. The time required
for the target extraction, trajectory correlation, original data updating, and trajectory
regularization was about 10% of the merit function updating time. Therefore, developing a
method to reduce the algorithm complexity in the merit function updating task effectively
will be a future research direction.
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Figure 8. Test results for test case 3, in which all the three targets had an SNR level of 1.8. (a) Coordi-
nates extracted by the MFF-DPR algorithm in the first, second, and third rounds are marked in red,
blue, and green, respectively; (b) trajectories formed by correlating the coordinate points extracted in
each round; (c) target trajectories after regularization.
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Figure 9. Multi-target detection probabilities of different DP and DPR algorithms. (a–c) Detection
probabilities of the DP algorithms; (d–f) detection probabilities of the DPR algorithms; (g–i) differ-
ences in detection probabilities between the DPR and DP algorithms; (a,d,g) test case 1; (b,e,h) test
case 2; (c,f,i) test case 3.
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Figure 10. False alarm rates of different DP and DPR algorithms in multi-target detection. (a) test
case 1; (b) test case 2; (c) test case 3.

Table 2. Comparison of the computational efficiencies of the DP/DPR algorithms in multi-target
detection.

CFO-DP/DPR CSO-DP/DPR MFF-DP/DPR

Single-frame
processing time (ms)

Test case 1 34/65 118/236 161/315
Test case 2 34/65 119/237 155/313
Test case 3 53/95 175/353 235/485

5. Conclusions

Aiming to improve the point target detection performance of DP, this paper proposes
an MFF-DPR to improve the point target detection probability. First, a second-order DP
named the MFF-DP is proposed to reduce noise influence on the pixel state estimation. The
current states of pixels on the image plane are estimated by maximizing the addition of
the merit functions of the previous two frames and observation data of the current frame.
Second, a merit function diffusion suppression structure is proposed. The sequential and
reverse observation data are connected head to tail to form a ring structure according to
the time reversal symmetry of the DP-TBD. The MFF-DP is constructed to run on the ring
structure, and the sequential and reverse merit functions of the MFF-DPs are averaged
to obtain the merit function of the MFF-DPR. Finally, the target trajectory is obtained by
correlating the extreme points of the merit functions of the MFF-DPR. The simulation and
analysis results show that the point target detection algorithm based on the MFF-DPR
can achieve a significantly higher performance in point target detection compared with
the traditional DP-TBD algorithms. The results also indicate that by merely adding a ring
structure, the detection probability of the traditional DP-TBD algorithms can be improved
by up to 40% when detecting point targets under the SNR of 1.8.

The MFF-DPR has the same drawback as the traditional second-order DP-TBD. Due
to the large search space, calculating the merit function of the MFF-DPR is time-consuming.
Fortunately, the processing of each pixel on the image plane based on the MFF-DPR is
almost the same; thus, using parallel computing optimization and implementing the GPU
programming, the computational speed can be significantly improved. The MFF-DPR is
also a batching processing algorithm, which is not suitable for application scenarios with
high requirements for real-time performance. Therefore, to enhance the state-of-the-art
performance of the current radars and infrared point target detection systems, an improved



Appl. Sci. 2022, 12, 1151 17 of 18

version of the MFF-DPR is needed; thus, reducing the complexity of the MFF-DPR based
on the GPU programming could be a future research direction.
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