
����������
�������

Citation: Ma, T.; Wu, L.; Zhu, S.; Zhu,

H. Multiclassification Prediction of

Clay Sensitivity Using Extreme

Gradient Boosting Based on

Imbalanced Dataset. Appl. Sci. 2022,

12, 1143. https://doi.org/10.3390/

app12031143

Academic Editor: Daniel Dias

Received: 4 December 2021

Accepted: 19 January 2022

Published: 21 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Multiclassification Prediction of Clay Sensitivity Using Extreme
Gradient Boosting Based on Imbalanced Dataset
Tao Ma 1, Lizhou Wu 2,* , Shuairun Zhu 1 and Hongzhou Zhu 2

1 College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu 610059, China;
opmatao@163.com (T.M.); zhushuairun@163.com (S.Z.)

2 State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University,
Chongqing 400074, China; zhuhongzhouchina@cqjtu.edu.cn

* Correspondence: lzwu@cqjtu.edu.cn

Abstract: Predicting clay sensitivity is important to geotechnical engineering design related to
clay. Classification charts and field tests have been used to predict clay sensitivity. However, the
imbalanced distribution of clay sensitivity is often neglected, and the predictive performance could
be more accurate. The purpose of this study was to investigate the performance that extreme gradient
boosting (XGboost) method had in predicting multiclass of clay sensitivity, and the ability that
synthetic minority over-sampling technique (SMOTE) had in addressing imbalanced categories of
clay sensitivity. Six clay parameters were used as the input parameters of XGBoost, and SMOTE
was used to deal with imbalanced classes. Then, the dataset was divided using the cross-validation
(CV) method. Finally, XGBoost, artificial neural network (ANN), and Naive Bayes (NB) were used
to classify clay sensitivity. The F1 score, receiver operating characteristic (ROC), and area under the
ROC curve (AUC) were considered as the performance indicators. The results revealed that XGBoost
showed the best performance in the multiclassification prediction of clay sensitivity. The F1 score and
mean AUC of XGBoost were 0.72 and 0.89, respectively. SMOTE was useful in addressing imbalanced
issues, and XGBoost was an effective and reliable method of classifying clay sensitivity.

Keywords: clay sensitivity; imbalanced categories; SMOTE; XGBoost

1. Introduction

Soft clays are widely distributed near lakes, rivers, and coastal areas in countries
such as Sweden, Norway, Canada, Thailand, and China [1–3]. For grain size, clay is a
fine-grained mineral (<2 µm in size), which is the main component of soil [4]. Clay minerals
belong to the family of phyllosilicates and provide information on formation conditions
and diagenesis [4]. Additionally, clay can be used as an additive for green processing tech-
nology and sustainable development, such as medical materials and treatment, agriculture,
building materials, adsorbents of organic pollutants in soil, water, and air, etc. [5–10]. For
engineers, clays are characterized by high compressibility, low shear strength, and high
sensitivity. The sensitivity is defined as the ratio of the unconfined compressive strength of
the undisturbed samples to the strength of the remolded samples [11–13].

Nowadays, in situ and laboratory testing and classification charts are often used to
predict clay sensitivity. Cone Penetration Tests (CPTu) and Field Vane Tests (FVT) are
commonly carried out to obtain the shear strength and classify clay sensitivity [14–18].
Yafrate et al. [19] employed full-flow penetrometers to evaluate the remolded soil strength
and clay sensitivity. Abbaszadeh Shahri et al. [20] proposed a Unified Soil Classification
System (USCS) to assess soils classification and used high-resolution files to detect poten-
tial sensitive clays. Different soil classification charts are widely used to determine clay
sensitivity or types [13,21]. For example, Robertson [22] proposed a few updated charts
to predict soil type based on CPTu data. Gylland et al. [23] used pore pressure ratio and
modified cone resistance to build a set of diagrams identifying sensitive and quick clays.
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However, in situ tests are costly and time consuming [14], and the construction
conditions are complicated. It is difficult to accurately measure the sensitivity of highly
sensitive and quick clays. It is a great challenge if the site clays are not textbook soils in
classification charts, which makes clays sensitivity difficult to determine [13]. Therefore,
advanced methods are required to resolve this issue.

Artificial Intelligence (AI) approaches, such as machine learning (ML) and deep learn-
ing, are being rapidly developed. Machine learning methods are data-driven tools that
learn from the relationships of existing data [24]. Hence, ML does not assume a statistical
model [25–27]. Additionally, these techniques have been widely applied in engineer-
ing [28–33]. For example, Zhang et al. [34] used XGBoost and Bayesian optimization to
predict the shear strength of soft clays. Machine learning methods outperform traditional
methods [27,28]. Moreover, XGBoost is an excellent ensemble method, better than conven-
tional ML, and shows great potential in geotechnical engineering [34].

The high sensitivity of clays is one of the main properties in soft clay engineering, and
considerably influences the safety of such structures [35]. For example, the shear strength
decreases due to the excavation disturbance of soft clays, which is related to the sensi-
tivity [3]. Landslides are also related to the sensitivity parameter of geomaterials [36,37].
Therefore, clay sensitivity must be predicted to ensure the safety of geotechnical engineer-
ing. There are a few different methods for clay sensitivity classification [11,38,39], as shown
in Figure 1. The Canadian Foundation Engineering Manual [38] is used to simplify the
classification issue.
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Few studies have focused on sensitivity classification for soft clay using machine
learning methods. Shahri et al. [37] used an optimized ANN to predict clay sensitivity. It
is the first time that machine learning methods have been used to predict clay sensitivity.
However, it would be more convenient and direct if the result were a category value
because clay sensitivity is a category value in Figure 1. Godoy et al. [13] used different
machine learning methods to identify quick and highly sensitive clays, and they found that
classification accuracy was improved significantly despite limited training data. However,
these approaches have a few shortcomings. First, there are more than two sensitivity
categories in different classification charts (Figure 1), but few studies have investigated
the multiclassification prediction of sensitivity. One previous study [13] only considered
two different sensitivity categories, including quick and highly sensitive clays. Therefore,
the multiclassification of clay sensitivity should be further investigated. Second, the
distribution of different sensitivity categories influencing machine learning methods is
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imbalanced, which reduces the prediction accuracy [40]. Therefore, SMOTE has been used
to address the imbalanced classes of the dataset and improve the accuracy of the results [40].
Furthermore, SMOTE has been successfully applied in geotechnical engineering [41].

The objective of this study was to investigate the potential of XGBoost and SMOTE
with regard to predicting the categories of clay sensitivity based on imbalanced datasets.
First, the considered dataset, XGBoost, and SMOTE are introduced. Next, SMOTE is used
to address the imbalanced categories, and the input parameters include the vertical pre-
consolidation pressure (VPP), liquid limit (LL), plastic limit (PL), effective vertical pressure
(EVP), depth (Dep), and moisture content (W). Then, the F1 score and the area under
the receiver operating characteristic (ROC) curve (AUC) are considered as performance
indicators to evaluate the proposed model. Finally, the predictive accuracy of XGBoost is
compared with that of other methods.

2. Materials and Methods
2.1. XGBoost

The XGBoost method provides an advanced boosted tree model [42] and is a common
machine learning method with high accuracy. This method implements a new regularized
learning objective, which is simpler than the regularized greedy forest model. The predicted
function of XGBoost is defined as follows:

ŷ =
K

∑
k=1

fk(xi), fk ∈ Γ (1)

where ŷi is the predicted output value of the ith instance; K is the number of regression
trees; fk is the tree structure; xi is the feature vector of the ith sample; and Γ is the space of
regression trees.

To overcome overfitting problems, a penalty function is used to smooth the learning
weights as follows:

Obj =
n

∑
i=1

l(yi, ŷi) +
K

∑
k=1

Ω( fk) (2)

Ω( fk) = γT +
1
2

λ
T

∑
j=1

w2
j (3)

where Obj is the regularized objective function;
n
∑

i=1
l(yi, ŷi) is the loss function, which

measures the model accuracy; Ω( fk) is a penalty function handling overfitting; yi is the real
value of the ith sample; γ is the complexity cost of introducing additional leaves; T is the
number of leaves; λ is a regular item parameter; and w2

j is the weight of the jth leaf node.
The additive method is used to train the model as follows [42]:

Obj(t) =
n

∑
i=1

l
(

yi, ŷ(t−1) + ft(xi)
)
+ Ω( ft) (4)

where ŷi
(t) is the prediction of the ith sample at the ith iteration, and ft is applied to

minimize the objective. To rapidly optimize the loss function of the first term in Equation (4),
a second-order Taylor expansion can be written as

Obj(t) =
[

l
(

yi − ŷi
(t−1)

)
+ gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft) (5)

where gi = ∂ŷ(t− 1)l
(

yi, ŷ(t−1)
)

and hi = ∂2
ŷ(t−1) l

(
yi − ŷ(k−1)

)
are the first and second

order gradient statistics of the loss function, respectively. The constant term is removed to
obtain the objective function of the ith step as follows:
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Obj(t) =
n

∑
i=1

[
gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft) (6)

The parameters in Equation (6) can be continuously updated until the conditions are
satisfied. More details on XGBoost can be found in ref. [42]. XGBoost has been used to
predict shear strength of clay, and the results demonstrate that XGBoost is a promising
tool for predicting geotechnical parameters [34]. The potential of XGBoost for predicting
multicategory of clay sensitivity will be investigated.

2.2. SMOTE

The Synthetic Minority Over-sampling Technique (SMOTE) was first proposed by
Chawla et al. [40] and is used to solve the classification problems of imbalanced datasets.
A dataset is imbalanced if the distribution of categories is unequal, which results in low
classification accuracy. A few methods have been proposed to address the imbalance issue,
such as re-sampling the original dataset, over-sampling the minority categories, and under-
sampling the majority class [43]. However, these methods do not considerably enhance
the accuracy of minority class recognition [20]. The SMOTE creates synthetic examples
instead of performing typical over-sampling. First, for each sample xl in the minority class,
the Euclidean Distance between xl and other samples of the minority class is calculated,
and the k neighbors of xl are obtained. Then, a random sample xm from the k neighbors is
selected. Finally, the new sample xn can be expressed as follows:

xn = xl + λ(xl − xm) (7)

where λ is a random number in the range of 0–1.
SMOTE has been utilized to solve imbalanced rock mass classification in tunneling en-

gineering [41]. The categories of clay sensitivity comprise more than two classes (Figure 1),
which may cause imbalanced problems. Therefore, SMOTE could be used to address
imbalanced classes.

3. Preprocessing Data
3.1. Description of Data

The clay dataset was obtained from F-CLAY/7/216 and S-CLAY/7/168 [14,44]. F-
CLAY/7/216 consists of 216 samples and was compiled through field vane tests (FVT)
in Finland; S-CLAY/7/168 was compiled through 168 FVT tests in Sweden and Norway.
Therefore, there are 384 samples in total. Each sample contains six attributes, namely, LL,
PL, W, EVS, Dep, and VPP. The sensitivity (St) is the predicted value. The distribution of
the six attributes is shown in Figure 2, and the statistical information of the input attributes
is listed in Table 1. Python 3.6 and the scikit-learn 0.23.2 library [45] were used to prepare
the data and train the model.

Table 1. Statistical information of clay parameters.

Depth
(m) LL (%) PL (%) W (%) EVS

(kPa)
VPP
(kPa) St

mean 6.97 68.37 28.49 76.47 48.72 79.82 16.27
std 3.95 23.86 7.97 23.32 27.33 48.54 13.26
min 0.50 22.00 2.73 17.27 6.86 15.2 2.00
50% 6.00 68.72 27.02 75.00 43.08 64.88 11.00
max 24.00 201.81 73.92 180.11 212.87 315.64 64.00
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3.2. Data Preparation and Performance
3.2.1. Analysis of Clay Dataset

This study referred to the Canadian Foundation Engineering Manual [38] for the
classification of clay sensitivity. The category distribution is shown in Figure 3, where it
can be seen that the proportion of low sensitivity is close to the proportion of medium
sensitivity. However, the proportion of high sensitivity is particularly smaller compared
with other categories and only accounts for 9.54%. Hence, it is difficult to classify the
minority class [41]. To deal with the imbalanced classes, SMOTE is used to over-sample the
high sensitivity category.
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A heat map is used to show the correlation coefficient among the attributes [34]. The
correlation coefficient is calculated using the Pearson coefficient [24]. The heat map of clay
attributes is shown in Figure 4, where there is no strong linear relationship between the clay
attributes and the sensitivity. However, machine learning methods can effectively solve the
above-mentioned nonlinear issues [26].
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3.2.2. Cross-Validation

The processed data used in machine learning are commonly separated into training
and validation datasets [46]. The machine learning method is trained on the training dataset,
and then the accuracy is tested on the test dataset. However, small datasets may potentially
cause bias. Therefore, k-fold cross-validation (CV) is used to divide the datasets [47,48].
CV does not only increase the training times but also improves the robustness of the
model. The CV method divides the datasets into k mutually exclusive subsets, that is,
D = D1 ∪ D2 ∪ · · ·Dk, Di ∩ Dj = ∅(i 6= j). Next, the set of k − 1 subsets is used as the
training set, the remaining subset is acted as the validation dataset, and training and
validation can be conducted for k times. Then, k results are obtained, and the validation
results are the mean value of the k results. Figure 5 shows the 5-fold CV.
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3.3. Performances

The confusion matrix, F1 score, ROC, and AUC are considered as the evaluation indicators.

3.3.1. Confusion Matrix

The confusion matrix consists of the True Positive (TP), False Positive (FP), True
Negative (TN), and False Negative (FN) [49], as shown in Figure 6. In the confusion matrix,
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TP and TN are a correct classification, while FP and FN are an erroneous one. A value
closer to 1 indicates higher accuracy.
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3.3.2. F1 Score

The F1 score is the harmonic mean of Precision (P) and Recall (R). Precision and Recall
are shown in Figure 7. Precision, Recall, and F1 score are defined as follows [50]:

Fscore =
2× P× R

P + R
(8)

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)
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3.3.3. AUC and ROC

The ROC graph helps visualize the classification algorithms [51]. The y-axis of the
ROC graphs is the true positive rate (TPR), while the x-axis is the false positive rate (FPR)
(Figure 8). The TPR and FPR are defined as follows:

TPR =
TP

TP + FN
(11)

FPR =
FP

TN + FP
(12)
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Because the ROC curve is two-dimensional, a single scalar value, such as AUC, can
evaluate the algorithms [51,52]. The AUC value is in the range of 0–1. An AUC value closer
to 1 indicates a better fit for the model.

3.3.4. Evaluation Methods

In this study, the XGBoost method was compared with ANN and NB. To further
investigate SMOTE, the data without SMOTE were also used as the training data of XG-
Boost, which is referred to as XGBoost_NoSmote. The dataset is divided into 260 training–
validation sets (70%) and 112 test sets (30%). Gridsearch is a custom method used to
optimize parameters [45]. To ensure that models could achieve their own best performance,
CV and gridsearch are used to optimize the hyperparameters on a training–validation set,
and the final performance of a given model is evaluated on a test set. These methods are
different from previous studies [13,37] that did not incorporate parameter optimization.
The flow chart of the method is shown in Figure 9. Table 2 lists the optimal parameters
of models.
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Table 2. Optimal parameters of models.

Model Parameters Value

XGBoost n_estimators 360
learning_rate 0.002
max_depth 6

min_child_weight 1
gamma 0.2

colsample_bytree 0.5
subsample 0.8

ANN learning_rate_init 0.0001
activation tanh

hidden_layer_sizes (100, 100, 100)
max_iter 260

NB priors 3
var_smoothing 10−9

XGBoost_NoSmote n_estimators 360
learning_rate 0.005
max_depth 5

min_child_weight 1
gamma 0.3

colsample_bytree 0.7
subsample 0.8

4. Results
4.1. Confusion Matrix and F1 Score Results

Figure 10 shows the confusion matrix of different machine learning methods, and
labels 0–2 represent high sensitivity, low sensitivity, and medium sensitivity, respectively.
When the number in the matrix is closer to 1, the model fits better. The XGBoost matrix
is larger than that of the other models, which indicates that XGBoost outperforms ANN
and NB. Furthermore, the matrix value of XGBoost without SMOTE is smaller than that of
XGBoost with SMOTE.
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Figure 11 presents the F1 score of different machine learning methods. An F1 score
closer to 1 indicates that the model has better performance. Figure 11 shows that XGBoost
achieved the best F1 score, Recall, and Precision (0.72, 0.72, and 0.73, respectively), followed
by NB (0.68, 0.69, and 0.70, respectively), and XGBoost_NoSmote (0.68, 0.66, and 0.71,
respectively). ANN had the worst performance in terms of the F1 score, Recall, and
Precision (0.61, 0.62, and 0.63, respectively). Using SMOTE, the performance of XGBoost
on the F1 score, Recall, and Precision improved by 6.9%, 9.1%, and 2.8%, respectively.
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4.2. ROC and AUC Results

Figure 12 shows ROC and AUC of different machine learning methods. The XGBoost
method achieved the best AUC score for all classes, but it achieved the worst AUC score
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on the data without SMOTE. All indices of the models are listed in Table 3. The XGBoost
method achieved the highest F1 score, followed by NB, ANN, and XGBoost_NoSmote. For
all AUC evaluations, XGBoost achieved the best effect. Compared with XGBoost_NoSmote,
the AUC score of XGBoost improved by 5.43%, 14.47%, and 10.81%, respectively. For
medium and low sensitivity classification, XGBoost performed the best, but the perfor-
mance of ANN and NB was slightly inferior compared with XGBoost. Finally, the perfor-
mance of XGBoost_NoSmote was poor.
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Table 3. Evaluation measures of different models.

Evaluation
Measures

Models

XGBoost ANN NB XGBoost_NoSmote

Precision 0.73 0.63 0.70 0.71
Recall 0.72 0.62 0.69 0.66

F1 score 0.72 0.61 0.68 0.68
AUC of high sensitivity 0.97 0.95 0.93 0.92

AUC of medium sensitivity 0.82 0.72 0.72 0.74
AUC of low sensitivity 0.87 0.78 0.84 0.76

Mean AUC of classification 0.89 0.82 0.83 0.81

4.3. Compared with Previous Studies

The results of Sections 4.1 and 4.2 indicate that XGBoost performs best on all evaluation
indices, and the performance is identical to refs. [33,53], which proves that XGBoost is a
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powerful tool to classify the properties of engineering materials. This study also produces
some valid and new results that are different from other studies. The results in this study
are category values and are consistent with the clay sensitivity standards [37], as shown in
Figure 1. Second, the results of XGBoost are better than those of XGBoost_NoSmote, which
indicates that SMOTE is good at solving imbalanced problems, and it is the first time that
SMTOE has been adopted to address imbalanced clay sensitivity problems. Moreover, the
results of Godoy et al. [13] are a binary classification, i.e., the clays are divided into quick
and highly sensitive groups. In this study, multiclass of clay sensitivity is predicted using
XGBoost, and the results are more satisfactory.

5. Discussion

Clay sensitivity is not only important to the safety of geotechnical engineering, but
it also influences the feasibility of such projects. However, it is difficult to classify clay
sensitivity, which is greatly influenced by disturbance. There are more than two sensitivity
categories under different classification charts. Moreover, the distribution of clay sensitivity
categories is often imbalanced. Therefore, new methods are needed. However, XGBoost is
rarely used for multiclassification problems, such as predicting the sensitivity categories of
soft clays. Additionally, it is necessary to deal with imbalanced problems.

In this study, NB, ANN, and XGBoost were used to predict the multiple classes of clay
sensitivity. SMOTE was applied to address the imbalanced classes of data. Additionally, a
set of performance indices were developed to evaluate accuracy.

The evaluation indices of XGBoost incorporating SMOTE were better compared with
those of other machine learning methods, based on the classification results. Compared
with XGBoost_NoSmote, the mean AUC of classification for XGBoost improved by 9.9%,
which indicates that SMOTE improves the model performance of imbalanced datasets.
The best classification performance was achieved for high sensitivity, followed by low
sensitivity and medium sensitivity. This study did not only investigate multiclassification
with regard to clay sensitivity, but it also employed SMOTE to handle imbalanced issues.
The results prove that the combination of XGBoost and SMOTE is a simple and quick way
to classify imbalanced clay datasets. Furthermore, more accurate indices for evaluating the
model performance, such as the AUC and F1 score, were applied to assess the models.

However, this study has a few limitations. For the AUC of medium sensitivity (Table 3),
all models performed slightly worse compared with other categories. The possible reason
is that the medium sensitivity is between the low sensitivity and high sensitivity cate-
gories, which results in a particularly unclear boundary and affects the model performance.
Other studies have also proven that the overlap between different classes can influence
classification performance [54,55]. Therefore, new methods should be developed to solve
these issues.

6. Conclusions

In this study, NB, ANN, and XGBoost were employed to predict the multiple classes
of clay sensitivity and evaluate their performance, respectively. SMOTE was first applied to
address the imbalanced classes of clay sensitivity. The conclusions demonstrated that the
XGBoost achieved the best performance, according to all performance indices. The results
obtained by XGBoost were better than those of XGBoost_NoSmote, which means that
SMOTE can improve model performance. Therefore, the proposed XGBoost is an effective
and low-cost method for the multiclassification prediction of clay sensitivity, and the
proposed SMOTE is useful for addressing the imbalanced classes of clay datasets. However,
models may perform better on the AUC of medium sensitivity. It is recommended that
SMOTE could be improved according to the distribution of clay sensitivity. Additionally,
XGBoost predicts more than three clay sensitivity categories, which makes the classification
results more delicate.
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