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Featured Application: Accurate practical measurements of the circadian effectiveness of daylight
and artificial light sources using RGB color sensors for future human-centered lighting control.

Abstract: The three main tasks of modern lighting design are to support the visual performance,
satisfy color emotion (color quality), and promote positive non-visual outcomes. In view of large-
scale applications, the use of simple and inexpensive RGB color sensors to monitor related visual
and non-visual illumination parameters seems to be of great promise for the future development
of human-centered lighting control systems. In this context, the present work proposes a new
methodology to assess the circadian effectiveness of the prevalent lighting conditions for daylight and
artificial light sources in terms of the physiologically relevant circadian stimulus (CS) metric using
such color sensors. In the case of daylight, the raw sensor readouts were processed in such a way that
the CIE daylight model can be applied as an intermediate step to estimate its spectral composition,
from which CS can eventually be calculated straightforwardly. Maximal CS prediction errors of less
than 0.0025 were observed when tested on real data. For artificial light sources, on the other hand, the
CS approximation method of Truong et al. was applied to estimate its circadian effectiveness from
the sensor readouts. In this case, a maximal CS prediction error of 0.028 must be reported, which is
considerably larger compared to daylight, but still in an acceptable range for typical indoor lighting
applications. The use of RGB color sensors is thus shown to be suitable for estimating the circadian
effectiveness of both types of illumination with sufficient accuracy for practical applications.

Keywords: circadian effectiveness; circadian stimulus; RGB color sensors; daylight and artificial light
sources; non-visual effects; human-centered lighting design

1. Introduction

Solid-state lighting considerably increased the possibilities and allowed for a re-
interpretation of modern lighting design. The development and use of light-emitting
diodes (LEDs), in contrast to conventional light sources, has yielded significant advantages
in terms of lifetime, energy savings, environmental benefits, controllability, and spectral
tunability [1,2]. Over the past few years, scientific and technological progress in the design
of LEDs, including significant improvements in the selection of suitable semiconductor
material combinations, the topology of the lattice grid and quantum well structures, the
chip packaging, and the coating materials [3–8], has led to high luminous efficacies of
150 lm W−1 and beyond, depending on the desired level of color quality [9–11]. Typically,
an increase in color rendering capabilities, e.g., expressed in terms of the CIE color rendering
index (CRI) Ra [12–14] or the ANSI/IES TM-30-20 Rf metric [15], occurs at the expense of
luminous efficacy so that an adequate trade-off between color quality considerations and
energy savings has to be found [16]. Thus, numerous studies have been conducted pursuing
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the goal of optimizing the spectral compositions of multi-channel LED light sources for
achieving an optimal color rendering while still maintaining a sufficiently high level of
luminous efficacy [17–30]. At the same time, such multi-channel LED solutions allow for a
dynamic adjustment of the lighting conditions to satisfy the users’ visual, emotional, and
biological needs in support of positive human outcomes [31–36].

Despite these recent technological and conceptual advances in LED and LED-based
lighting design, properly dealing with mixed lighting conditions in environments where
daylight entry through windows supplements the artificial lighting conditions still poses
a defying challenge. Optimizing the latter in some sort of closed-feedback loop under
the impact of a second, dynamically changing (daylight) light source defines a difficult
regulation problem that so far has only been considered rudimentarily in the literature. A
crucial aspect in this context is the proper monitoring of the indoor and outdoor lighting
conditions with regard to the lighting parameters most relevant for an appropriate system
control to always satisfy certain pre-defined visual and non-visual requirements. In ex-
perimental test settings, these kinds of data can be generated straightforwardly by using
expensive spectroradiometers or other sophisticated measurement devices. However, in
view of large-scale applications, where such “laboratory” devices are not an option due to
budgetary constraints, the use of simple and inexpensive RGB color sensors to be applied
for this purpose appears to be quite promising [37–41], yet requires a suitable processing of
the sensor readouts in order to obtain meaningful measures that can eventually be used as
the input for an adequate lighting control [42].

In this context, the present work focuses on the circadian aspects of lighting by propos-
ing a novel sensor-based methodology to assess the circadian effectiveness of the prevalent
lighting conditions caused by artificial and daylight light sources using RGB color sensors.
As discussed by Babilon et al. [43], circadian effectiveness in lighting can be measured
by the physiologically relevant circadian stimulus (CS) metric introduced by Rea and
Figueiro [44]. In order to facilitate its application for the lighting practitioner, Truong
et al. [45,46] recently published a family of computational approximation methods that
can be used to calculate a lighting condition’s CS based on a few easy-to-perform mea-
surements using standard equipment. As will be shown in this work, the sensor readouts
of an RGB color sensor, after some suitable processing, can likewise be used as the input
for Truong et al.’s approximation method to determine the CS of artificial light sources.
For daylight conditions, on the other hand, the RGB output in combination with the CIE
daylight model [47] can be used to estimate the corresponding spectral power distributions
(SPDs), from which the CS values can be calculated without further approximations by
directly applying Rea et al.’s original model.

2. Materials and Methods
2.1. Circadian Stimulus and Its Approximation

The hormone melatonin has proven to be an excellent and widely used biomarker
for assessing how light affects the human circadian system [48–82]. In two independent
studies, Brainard et al. [58] and Thapan et al. [59], for example, consistently found that the
action spectrum for light-induced nocturnal melatonin suppression peaks at 460 nm with an
approximately 110 nm broad absorption band at half-maximum sensitivity. Even though the
results of both studies were in good agreement over much of the probed wavelength regime,
an obvious discontinuity was found in the datasets at about 505 nm, i.e., at a wavelength
that would appear as a unique green stimulus causing the spectrally opponent retinal blue
versus yellow (b–y) color mechanism to signal zero. As argued by Rea et al. [44,83,84], no
single retinal photoreceptor model is capable of adequately describing these observations
on the spectral dependencies of melatonin suppression. Instead, all known photoreceptors,
including rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs), must
be taken into account by explicitly considering their neuroanatomical, neurophysiological,
and operational characteristics in order to properly model the experimental findings of
human circadian phototransduction [85,86]. Under these prerequisites, Rea et al. [44], by
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pooling the available nocturnal melatonin suppression data, were able to develop the most
complete model of the spectral sensitivity of the human circadian system that, in contrast
to single-photopigment-based approaches (e.g., the calculation of α-opic quantities [87–
89], equivalent melanopic lux [90,91], etc.), is capable of adequately describing spectral
opponency effects [62,63,73]. Based on their model formalism, Rea et al. introduced a new
measure called circadian light CLA, which basically gives the model-weighted irradiance.
In order to quantify the circadian effectiveness of arbitrary lighting conditions, they further
defined the CS metric, which represents the functional relationship between the CLA
measure and its theoretically provoked melatonin suppression in percent. The CS metric
has already been applied successfully in various laboratory and field studies to predict
non-visual effects in lighting [92–104], confirming its physiological relevance.

In order to facilitate the CS calculation for the lighting practitioner, Truong et al. [45,46]
recently published a family of computational approximation methods. While the first
method models CS as a function of illuminance Ev and the chromaticity coordinate z of the
2° standard observer, both measured vertically at eye level, the second method substitutes
the latter by using the correlated color temperature (CCT) instead. Although performing
CCT measurements is common practice in standard lighting design, which was the main
reason for proposing the second approximation method, Truong et al. [46] stated that the CS
estimation based on this quantity becomes significantly inaccurate for lighting conditions
with CCTs ranging from 3220 K to 3710 K and, therefore, is not recommended to be applied
in this range. In contrast, an excellent agreement with Rea et al.’s original CS model could be
confirmed for the complete range of relevant CCTs when applying the first approximation
method. The maximum prediction error |∆CS|max calculated on a comprehensive database
of measured SPDs representing both artificial and daylight light sources was found to
be less than 0.058 [45]. Therefore, the latter should be used in this work, in particular,
since under the assumption that the Luther–Yves condition [42,105–108] is met sufficiently,
a direct mapping from the color sensor’s RGB output to the corresponding CIE XYZ
tristimulus values and, thus, to the required z coordinate given by z = Z/(X + Y + Z) can
be established. The corresponding model expression is given by:

CS(z, Ev) =


0.7−

0.7
1 + 0.016781 · (z · E0.509265

v )2.268904 if z > 0.195

0.7−
0.7

1 + 0.011376 · (z · Ev)
1.109998 if z ≤ 0.195

, (1)

and has been validated for white light sources in the range from 10 lx up to 10 000 lx. It
should be noted that the discontinuity at z = 0.195 represents the spectral opponency
effect of the b–y mechanism as discussed above. Equation (1) has been applied successfully
for the estimation of CS values in a couple of recently published field studies conducted
by Babilon et al. that were intended to provide reliable field measurements of the circa-
dian effectiveness of the prevalent lighting conditions in an office [43] and nursing home
environment [109].

2.2. Processing of RGB Color Sensors

This section summarizes the necessary processing steps that are required to be ap-
plied to simple RGB color sensors to be used for CS measurements. They include (i) the
measurement and determination of the sensors’ spectral sensitivity curves and (ii) the
optimization and application of a suitable color correction matrix in order to properly map
the sensors’ measured RGB output to standardized CIE XYZ coordinates. In addition, a
short introduction to the physical structure and working principle of RGB color sensors
is given.
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2.2.1. Physical Structure and Working Principle of RGB Color Sensors

An RGB color sensor basically comprises three main components including the un-
derlying semiconductor structure of the photodiodes, the array of optical filters defining
its spectral sensitivity, and the electronic circuit used for signal readout [110]. Its physical
principle is illustrated in Figure 1. As incident light hits the surface of the RGB color
sensor, it is filtered by the red, green, and blue optical bandpass filters attached to the
photodiode layer, which combines at least three single photodiodes, i.e., one for each
color channel. Without the bandpass filters, a typical silicon photodiode would be sen-
sitive to wavelengths from the ultra-violet up to the infrared region with an absorption
maximum located in the range from 800 nm to 950 nm. The different transmissive color
filters are therefore intended to reshape and optimize the spectral response of the color
sensor to mimic the trichromatic vision capabilities of the human eye. The correspondingly
transmitted photons are thus converted into respective photocurrents, whose amplitudes
depend on the spectral composition and irradiance of the incident light. These typically
low currents can subsequently be converted into amplified proportional voltage signals
using dedicated electronic circuits, such as transimpedance amplifiers or other suitable
types of current-to-voltage converters. An analog-to-digital converter (ADC) is eventually
applied to convert the amplified voltage outputs into digital signals and, thus, prepare
them for further digital processing. Alternatively, a light-to-frequency integrated circuit
architecture can be used to directly convert the photocurrents into pulse trains or square
waves, whose frequencies are proportional to the irradiance of the correspondingly filtered
light [111], which facilitates multiplexing and increases immunity against noise on signal
transmittance.

Red, blue, green 
filters

Array of photodiodes

Analog to digital 
converter (ADC)

digital output blue

Red, blue, green 
filters

Analog to digital 
converter (ADC)

digital output red

Red, blue, green 

Array of photodiodes

Analog to digital 
converter (ADC)

digital output green

Figure 1. Physical and electronic principle of an RGB color sensor.

For a schematic overview, Figure 2 summarizes the different structural layers of a color
sensor. The first layer comprises the optical elements, such as the housing and aperture,
optical lenses, or diffusor plates, that are indented to guarantee a proper, conceivably
cosine-corrected irradiation of the sensing area or to adjust the color sensor’s angle of view
according to the application requirements. The second layer is composed of the optical
bandpass filters R∗(λ), G∗(λ), and B∗(λ) that determine the sensor’s spectral sensitivities
R(λ), G(λ), and B(λ). The third layer represents the array of underlying photodiodes,
i.e., the actual semiconductor layer, which is responsible for converting the filtered light
into corresponding electrical currents. The fourth layer summarizes the electronic circuitry
required to convert these photocurrents into proportional, usable signals. The fifth or ADC
layer is optional depending on whether a standard current-to-voltage or an integrated
circuit architecture is used. In the case of the former, the ADC layer is required to convert
the amplified voltage outputs into digital signals. The sixth layer comprises the digital and
computational processing of the digital raw sensor signals including the implementation of
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potential compensation and correction strategies (e.g., to correct for changes in temperature
and humidity [112]), which eventually gives the final RGB readouts.

Figure 2. Structural components and functions of the six structural layers of an RGB color sensor.

2.2.2. Determination of the Spectral Sensitivity Curves of an RGB Color Sensor

An accurate and precise measurement of the RGB color sensor’s spectral sensitivity
functions R(λ), G(λ), and B(λ) is necessary to guarantee an adequate sensor processing
for the proper monitoring of the relevant lighting control parameters in mixed lighting con-
ditions as sketched in the Introduction. The literature usually suggests to use a monochro-
mator for this purpose [113–118]. An exemplary illustration of the experimental setup is
given in Figure 3. As can be seen, a bright white light source of broad spectral composition,
e.g., a xenon arc lamp or a Planckian emitter, provides the input to the monochromator.
Within the monochromator, the light passing its entrance slit is projected onto an optical
diffraction grating. Depending on its pre-selected rotation position, only light of a certain
peak wavelength λ is thus projected onto the monochromator’s exit slit. The resulting
narrowband light output is eventually collected by an integrating sphere for spatial and
angular homogenization of its corresponding light distribution [119]. At the same time, it
holds both the (temperature-stabilized) color sensor that needs to be characterized and the
spectroradiometer used to determine the spectral irradiance of the color stimulus registered
by the color sensor.

PC

Temperature Control
Monochromator

Xe-Lamp

ColorSensor

Spectrometer

Figure 3. Schematic illustration of a monochromator setup used for determining the spectral sensitiv-
ity curves R(λ), G(λ), and B(λ) of an RGB color sensor.

Based on this setup, the spectral sensitivity sk(λ) of the kth sensor channel can be
determined from the sensor responses ck(φ(λ)) obtained for a set of selected color stimuli
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φ(λ) provided by the monochromator. According to Myland et al. [42], sk(λ) can be
approximated as follows:

sk(λ) ≈
ck(φ(λ))− nk
δ ·∑ φ(λ)∆λ

, (2)

where nk is the mean value of random noise observed for a no-light condition, i.e., when
the monochromator output is closed and δ is a constant factor representing the sensor’s
gain and integration time settings.

In the present work, an RGB color sensor prototype, which had been developed as part
of the INNOSYS project [120] funded by the German Federal Ministry of Education and
Research, served as the corresponding test device. Its spectral sensitivities were measured
as described above using Equation (2) with a step size of ∆λ = 1 nm, where each of the color
stimuli used for probing exhibited a full-width at half-maximum (FWHM) of approximately
2 nm. The corresponding laboratory setting is shown in Figure 4. The measurements were
performed using a six-inch integrating sphere (Labsphere Inc., North Sutton, NH, USA)
with a highly reflective white PTFE coating, a 300 W xenon arc lamp connected to an MSH
300 monochromator (Quantum Design GmbH, Darmstadt, Germany), and a Spectro 320D
R5 spectroradiometer (Instrument Systems GmbH, Munich, Germany), which was directly
attached to the north-pole port of the integrating sphere via a fiber-optic light guide. The
main exit port of the integrating sphere at 90°/0° concomitantly served as the sensor mount
to ensure a homogeneous light distribution in the color sensor’s field of view.

Figure 4. Image representation of the monochromator setup used in this work.

Due to random errors and systematic uncertainties in the measurement process of the
spectral sensitivities, e.g., caused by measurement noise and the finite spectral bandwidth
of the color stimuli, discrepancies between model-calculated virtual sensor responses and
real sensor measurements must be expected. Thus, in order to improve system performance,
the color sensor’s measured sensitivity curves, which give a flawed spectral sensitivity
(SS) model, should be corrected accordingly by introducing suitable wavelength-specific
correction factors to minimize for each sensor channel the differences in output between the
virtual and the real color sensor for a set of representative test light sources, whose SPDs
are either known or determined spectroradiometrically. In the present case, a four-channel
luminaire prototype [120] consisting of two narrowband monochromatic (red and blue)
and two broadband phosphor-converted (cyan and mint-green) LEDs was used to generate
108 different white light test spectra with Ra > 85 and CCTs in the range from 2700 K
to 6500 K. The corresponding optimization pipeline is illustrated in Figure 5, where the
differences between virtual and real channel responses calculated for the different test light
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spectra serve as feedback for running an interior-point optimization algorithm [121–123] to
iteratively converge on an optimal set of corrected spectral sensitivities R′(λ), G′(λ), and
B′(λ) that yield the same channel outputs as the real color sensor.

For the RGB color sensor used in this work, the corresponding results are summarized
in Figure 6 together with the CIE x(λ), y(λ), and z(λ) color matching functions (CMFs)
representing the chromatic response sensitivities of the standardized CIE 2° observer [124].
As can be seen, the color sensor’s sensitivity curves considerably deviate from the CMFs of
the standard observer. Thus, in order to be able to perform colorimetric measurements, the
sensor’s RGB outputs in response to an arbitrary color stimulus need to be mapped onto
its corresponding XYZ values as calculated from CIE colorimetry. As is shown in the next
section, this mapping can be implemented in the form of a matrix transformation.

Figure 5. Optimization pipeline for correcting the measured spectral sensitivity (SS) model. The
correction is performed on the color sensor’s sensitivity curves by introducing suitable wavelength-
specific correction factors that minimize the differences between real (measured) and virtual (calcu-
lated from the SS model times correction factors) sensor responses.

Figure 6. Corrected spectral sensitivity curves R′(λ), G′(λ), and B′(λ) as a function of wavelength
in comparison to the CIE 2° color matching functions x(λ), y(λ), and z(λ).

2.2.3. Colorimetric Mapping of RGB Sensor Readouts

Based on the measured spectral sensitivities of the specific RGB color sensor used in
this work, a nonlinear matrix optimization procedure is proposed in order to minimize
the mapping error when transforming from the sensor’s RGB to XYZ tristimulus values.
Figure 7 summarizes the optimization workflow. Starting from a training database of n
different test light sources, CIE XYZ tristimulus values are calculated first by using:
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Xi =
∫ 780

380
Srel,i(λ) · x(λ) dλ,

Yi =
∫ 780

380
Srel,i(λ) · y(λ) dλ,

Zi =
∫ 780

380
Srel,i(λ) · z(λ) dλ,

(3)

where Srel,i denotes the relative SPD of the ith test light source. Next, the corresponding CIE
1976 uniform chromaticity scale coordinates (u′CIE,i, v′CIE,i) [125] are calculated by applying
the following set of equations:

u′CIE,i =
4Xi

Xi + 15Yi + 3Zi
,

v′CIE,i =
9Yi

Xi + 15Yi + 3Zi
.

(4)

Figure 7. Optimization workflow used to find an optimal transformation matrix to map from the
color sensor’s RGB output to CIE XYZ tristimulus values.
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A similar processing can be applied to the virtual channel responses of the color sensor.
Thus, the sensor’s readouts RiGiBi for each test light source i of the training set are given by:

Ri =
∫ 780

380
Srel,i(λ) · R′(λ) dλ,

Gi =
∫ 780

380
Srel,i(λ) · G′(λ) dλ,

Bi =
∫ 780

380
Srel,i(λ) · B′(λ) dλ.

(5)

These readout values are then converted to estimated XSS,iYSS,iZSS,i tristimulus values
by applying a matrix transformation of the form:

XSS,i
YSS,i
ZSS,i

 =

m1,1 m1,2 ... m1,n
m2,1 m2,2 ... m2,n
m3,1 m3,2 ... m3,n

 ·


Ri
Gi
Bi
...

. (6)

From these tristimulus values, corresponding model chromaticity coordinates (u′SS,i, v′SS,i)
can be calculated as follows:

u′SS,i =
4XSS,i

XSS,i + 15YSS,i + 3ZSS,i
,

v′SS,i =
9YSS,i

XSS,i + 15YSS,i + 3ZSS,i
.

(7)

The prediction error between model and CIE calculation is then given by

∆u′v′ =
1
n

n

∑
i

∆u′v′i =
1
n

n

∑
i

√
(u′CIE,i − u′SS,i)

2 + (v′CIE,i − v′SS,i)
2, (8)

which is used as the target function to be minimized as part of the optimization depicted in
Figure 7. Again, the same interior-point optimization algorithm that was used to determine
an optimal set of corrected sensor sensitivities was also applied here in order to find the
matrix coefficients of Equation (6) that yield the smallest prediction errors ∆u′v′ on the
training database of different test light spectra. Instead of using a simple linear 3× 3 matrix,
the additional introduction of higher-order nonlinear polynomials in the applied matrix
transformation may further reduce the prediction errors. Following the studies of Hong
et al. [126] and Cheung et al. [127], various polynomials were tested as detailed in Table 1.

After a suitable matrix transform has been found by means of optimization, a verifica-
tion of the appropriateness of the transform for new light spectra that were not part of the
training set is still pending. Thus, a second set of test light sources that differed from the
initial training set was available for the purpose of validation. Basically, Equations (3) to (8)
were again used to evaluate the final model prediction error for this new set of test light
sources as obtained when applying the optimized matrix transform. A comparison of the
performance for different matrix sizes and arrangements of nonlinear polynomials is given
in Section 3.1.

Finally, it should be noted that the accuracy and predictive performance of this matrix
optimization strategy strongly depends on the suitability of the training database with
regard to the color sensor’s intended application. Depending on whether the sensor is used
for evaluating artificial or daylight light sources, different representative datasets should
be considered for performing the optimization in order to derive case-specific matrices that
exhibit superior performance compared to using “averaged” matrices only.
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Table 1. Overview of different (higher-) orders of (nonlinear) polynomials to be tested in the applied
matrix transformation of Equation (6) according to Hong et al. [126] and Cheung et al. [127].

No. Size Content

1 3 × 3 [R G B]
2 3 × 5 [R G B RGB 1]
3 3 × 7 [R G B RG RB GB 1]
4 3 × 8 [R G B RG RB GB RGB 1]
5 3 × 10 [R G B RG RB GB R2 G2 B2 1]
6 3 × 11 [R G B RG RB GB R2 G2 B2 RGB 1]
7 3 × 14 [R G B RG RB GB R2 G2 B2 RGB R3 G3 B3 1]
8 3 × 16 [R G B RG RB GB R2 G2 B2 RGB R2G G2B B2R R3 G3 B3]
9 3 × 17 [R G B RG RB GB R2 G2 B2 RGB R2G G2B B2R R3 G3 B3 1]
10 3 × 19 [R G B RG RB GB R2 G2 B2 RGB R2G G2B B2R R2B G2R B2G R3 G3 B3]
11 3 × 20 [R G B RG RB GB R2 G2 B2 RGB R2G G2B B2R R2B G2R B2G R3 G3 B3 1]
12 3 × 22 [R G B RG RB GB R2 G2 B2 RGB R2G G2B B2R R2B G2R B2G R3 G3 B3 R2GB RG2B RGB2]

2.3. CIE Daylight Model and CCT Determination for a Daylight Spectral Reconstruction

As shown later in Section 3.1, the combination of the proposed processing for RGB
color sensors and the computational model of Truong et al. given by Equation (1) yields a
high accuracy in the determination of the CS for artificial light sources. In the case of dealing
with daylight light sources, the accuracy can even further be improved by implementing an
additional daylight spectral reconstruction step. Once the daylight spectrum is known, its
corresponding CS value can be determined directly by applying Rea et al.’s original model
as discussed in Section 2.1, which eliminates the need for additional approximations. Thus,
the resulting errors in predicting CS for daylight light sources only depends on the applied
daylight model (Section 2.3.1) and CCT determination algorithm (Section 2.3.1).

2.3.1. CIE Daylight Model

In this work, the CIE daylight model was applied as a well-accepted method of day-
light spectral reconstruction widely used amongst practitioners and scientists. According
to CIE [128], its CCT-dependent formalism is given by:

Sdaylight(λ) = S0(λ) + S1(λ) ·M1 + S2(λ) ·M2, (9)

where the auxiliary functions S0(λ), S1(λ), and S2(λ) are illustrated in Figure 8. Their
function values are tabulated in the corresponding CIE publication [128]. The chromaticity
factors M1 and M2 can be calculated from CCT as follows:

For the CCT range of 5000 K ≤ CCT ≤ 7000 K:

XD =
−4.607 · 109

CCT3 +
2.9678 · 106

CCT2 +
0.09911 · 103

CCT
+ 0.244063, (10)

For the CCT range of CCT > 7000 K

XD =
−2.0064 · 109

CCT3 +
1.9018 · 106

CCT2 +
0.24748 · 103

CCT
+ 0.244063, (11)

YD = −3 · X2
D + 2.87 · XD − 0.275, (12)

M1 =
−1.3515− 1.7703 · XD + 5.9114 ·YD

0.0241 + 0.2562 · XD − 0.7341 ·YD
, (13)

M2 =
0.03− 31.4424 · XD + 30.0717 ·YD

0.0241 + 0.2562 · XD − 0.7341 ·YD
, (14)



Appl. Sci. 2022, 12, 1132 11 of 27

so that the determination of Sdaylight(λ) can be traced back to an estimation of the CCT from
the color sensor’s RGB readouts. The corresponding algorithmic approach is discussed in
the following section.

Figure 8. Basic functions S0(λ), S1(λ), and S2(λ) of the CIE daylight model after [128].

2.3.2. Determination of the CCT from Sensor Readouts

According to CIE definition [128], the indication of a CCT is only valid for white light
sources whose chromaticity coordinates (u′r, 2/3v′r) differ less than:

∆C =

√
(u′r − u′p)2 +

4
9
· (v′r − v′p)2 = 5 · 10−2 (15)

from the chromaticities (u′p, 2/3v′p) of a black body radiator of equivalent temperature.
Note that the latter is determined by dropping a perpendicular from the respective light
source’s chromaticity coordinates to the Planckian locus as plotted in the CIE 1960 uniform
chromaticity scale diagram [129,130].

Thus, the CCT of an arbitrary white light source can be calculated by finding the
minimal distance between the light source’s chromaticity coordinates and the Planckian
locus by means of solving a nonlinear optimization problem and, therefore, finding the
temperature corresponding to the Planckian radiator that causes the most similar color
impression. In this work, the method proposed by Li et al. [131] was applied to solve the
optimization problem. As it is based on Newton’s method of optimization [132], it by
definition only converges locally so that a good initial guess of the optimization’s starting
point is necessary to find the absolute minimum. This initial guess of CCT0 is obtained by
applying McCamy’s CCT approximation method to the transformed color sensor readouts
XSSYSSZSS. The corresponding equations read:

CCT0 = 449 · η3 + 3535 · η2 + 6823.3 · η + 5520.33, (16)

η =
xSS − 0.3320
0.1858− ySS

, (17)

where:

xSS =
XSS

XSS + YSS + ZSS
,

ySS =
YSS

XSS + YSS + ZSS
,

(18)



Appl. Sci. 2022, 12, 1132 12 of 27

give the chromaticity coordinates in the CIE 1931 chromaticity diagram [124]. The trans-
formed sensor readouts are then converted to CIE 1960 uniform chromaticity scale coor-
dinates (u′SS, 2/3v′SS) by applying Equation (7). Using CCT0 as the starting point of the
optimization, applying the method of Li et al. yields the color temperature of a Planckian
radiator whose chromaticities are closest to the chromaticity coordinates of the test light
source under consideration. The derived color temperature eventually defines the light
source’s CCT.

3. Results

This section summarizes the results of the exemplary measurements that were per-
formed at the Laboratory of Adaptive Lighting Systems and Visual Processing of the Techni-
cal University of Darmstadt in order to validate the proposed methodology discussed in the
previous sections. Model performance was evaluated in terms of CS differences between
the color sensor predictions and Rea et al.’s original model calculations for a selection of
both artificial and daylight light sources.

3.1. CS Estimation for Artificial Light Sources

As discussed in Section 2.2.3, RGB sensor responses must be mapped to corresponding
XYZ tristimulus values first to calculate the z coordinate required in Truong et al.’s CS
approximation formula given by Equation (1). Under the assumption of sensor linearity, an
additional linear mapping can be established between the sensor’s green channel output
and the likewise-required vertical illuminance Ev.

The training database of measured light sources used for constructing these mappings
is shown in Figure 9a for a single illuminance level of 750 lx. It comprises different technolo-
gies of artificial white light production, including halogen, xenon, compact, and fluorescent
lamps, as well as phosphor-converted LEDs (pc-LEDs) and multi-channel LED luminaires.
All spectra were measured using a calibrated CSS-45 spectroradiometer (Gigahertz Optik
GmbH, Türkenfeld, Germany) with an optical bandwidth of 10 nm and measurement un-
certainties in the x and y coordinates of ±0.002, in a CCT of ±4 % (between 1700 and 17,000
K), and in illuminance E of ±4 %. Based on the training data, the virtual sensor responses
RiGiBi were then calculated for different illuminance levels, and the matrix optimization
for mapping these sensor responses to XSS,iYSS,iZSS,i tristimulus values was initiated as
discussed in Section 2.2.3.

Table 2 summarizes the optimization results as calculated on the training data for
different sizes of the applied transformation matrix. As can be seen, the overall best
performance (=∧ smallest average prediction error ∆u′v′) was obtained for a simple linear
3× 3 transform. Comparably good results can also be observed for matrices of sizes 3× 19,
3× 20, and 3× 22. respectively. However, due to its simplicity, in particular with regard to
a potential hardware implementation, the 3× 3 approach appears to be most convenient to
be applied in the present case. The corresponding optimized matrix elements, as well as
the derived relationship between the illuminance Ev and the sensor’s green channel output
Gi are depicted in Table 3. In addition, Table 3 tabulates the color sensor’s CS predictions
for the light sources from the training dataset at an illuminance of 750 lx and compares
them to the CS values obtained when applying Rea et al.’s original model directly to the
measured data instead, which was assumed to represent the ground truth. As can be seen,
maximal deviations in CS values of less than 0.028 were observed for this selection of test
light sources, which is less than 10 % of the CS threshold of 0.3 for which positive effects on
sleep quality, mood, and behavior are expected from the literature [43,109]. A sufficiently
high measurement accuracy can thus be concluded.
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Table 2. Remaining color differences after optimization for different sizes of the corresponding
transformation matrix applied to the artificial light sources’ training database

Name/Par. Halogen Xenon2 CFL930 CFL5K FL627 FL645 LEDC3L LEDC3N RGBW4K5

∆u’v’(3 × 3)·103 3.2 7.4 7.7 1.5 4.5 1.5 4.2 2.7 8.3
∆u’v’(3 × 5)·103 43 4.8 48 12 41 12 51 16 16
∆u’v’(3 × 7)·103 0.00 8.5 5.3 0.00 1.6 0.00 7.0 20 6.4
∆u’v’(3 × 8)·103 4.3 6.9 32 11 40 11 48 7 16
∆u’v’(3× 10)·103 0.66 2.9 4.5 0.0 0.92 0.0 12 0.00 3.8
∆u’v’(3× 11)·103 43 7.9 0.00 2.2 37 2.2 42 12 8.1
∆u’v’(3× 14)·103 7.6 7.1 10 0.00 7.8 0.0 0.0 1.7 6.7
∆u’v’(3× 16)·103 0.77 8.4 5.7 0.00 3.3 0.00 2.5 1.9 10
∆u’v’(3× 17)·103 0.77 8.4 5.7 0.00 3.3 0.00 2.5 1.9 10
∆u’v’(3× 19)·103 5.6 7.2 9.1 0.00 4.3 0.00 0.00 5.7 7.5
∆u’v’(3× 20)·103 5.6 7.2 9.1 0.00 4.3 0.00 0.00 5.7 7.5
∆u’v’(3× 22)·103 5.1 6.6 8.9 0.00 2.2 0.00 0.00 3.2 7.2

Table 3. Color sensor’s CS predictions obtained from applying Truong et al.’s approximation method
to the transformed color sensor readouts (CS2018,Truong) in comparison to the CS predictions of Rea
et al.’s original model (CS2018,origin) for a selection of artificial light sources from the training dataset at
an assumed vertical illuminance of 750 lx. The measurement accuracy for CS2018,origin is of the order of
±8 % due to the measurement uncertainties of the used spectroradiometer. Additionally tabulated are
the final 3× 3 transformation matrix, as well as the functional relationship between the illuminance
and the sensor’s green channel output Gi. The annotation “(Meas.− Calc.)” in the “Compared
parameters” section of the table serves as an indication that the accuracy estimate |∆CS2018| for a
given light source is determined by the absolute difference between Rea et al.’s and Truong et al.’s
corresponding CS predictions as derived from the light source’s radiometric measurements (i.e,
“Meas.”) and calculated from the resulting sensor readouts (i.e., “Calc.”), respectively.

Name/Par. Halogen Xenon2 CFL3K CFL5K FL627 FL645 LEDC3L LEDC3N RGBW4K5

CS2018 and other parameters directly calculated from the measured artificial light spectra

CCT in K 2762 4100 2640 4423 2785 4423 2640 4580 4500
Ev in lx 750 750 750 750 750 750 750 750 750
CLA,2018,origin 676.11 471.03 640.73 574.68 529.72 574.73 397.04 430.78 710.02
CS2018,origin 0.47 0.40 0.46 0.44 0.43 0.44 0.37 0.39 0.48

CS2018 and other parameters estimated from the color sensor readouts

Ev,processed in lx 748 794 829 806 806 673 690 669 821
CS2018,Truong 0.44 0.40 0.45 0.45 0.45 0.42 0.38 0.40 0.49

Compared parameters

|∆CS2018|
(Meas.−Calc.)

0.0271 0.0072 0.0062 0.0098 0.0234 0.0245 0.0042 0.0105 0.0079

Optimized matrix transformation determined from the artificial light sources training database 5.73 · 105 −4.17 · 105 −2.27 · 105

3.64 · 105 −4.50 · 104 −3.26 · 105

−6.61 · 104 2.04 · 105 1.13 · 106


Functional relationship for calculating illuminance from sensor output

Ev,processed = 683 · (1.554 · Gi + 2.0506); Gi from Equation (5)
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Figure 9. Selection of artificial light sources used in this work (a) for determining the RGB to XYZ
transformation matrix and (b) for model validation.

The same holds true when applying the proposed CS estimation to a similar, yet
different selection of artificial light sources that were not included in the training dataset
used for the determination of the transformation matrix. Their SPDs constituting the
validation data are illustrated in Figure 9b. The corresponding model prediction errors
∆u′v′ and ∆CS were again calculated and are summarized in Table 4 for an illuminance
of 750 lx. As can be seen, even smaller errors are observed for the validation than for the
original training data, emphasizing that the discussed method including the optimized
matrix transform to perform the colorimetric mapping of the sensor responses is most
suitable for the determination of sufficiently accurate CS values over a broad variety of
lighting technologies usually found in the indoor lighting context.

To ease implementation and to give a better overview of the proposed methodology
for the CS estimation of artificial light sources from color sensor responses, Figure 10 depicts
the necessary computational steps as a flowchart.

RGB
RGB sensor

Truong et al. CS
approximation formula

zmapping to XYZ, 
computing x,y,z

Ev, processedmapping G to
illuminance Ev 

estimated CS

Figure 10. CS estimation from RGB sensor responses for artificial light sources. The 3 × 3 transfor-
mation matrix given in Table 3 is used to map RGB sensor responses to XYZ tristimulus values. The
function for the calculation of Ev,processed from G channel responses is also given in that table. Truong
et al.’s CS approximation formula is given by Equation (1).
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Table 4. Comparison between the color sensor’s CS predictions (CS2018,Truong) and Rea et al.’s original
model (CS2018,origin) for a second set of artificial light sources not included in the training data. Again,
the vertical illuminance was assumed to be 750 lx, and the CS2018,origin measurement accuracy is
±8 %. The annotation “(Meas.− Calc.)” in the “Compared parameters” section of the table serves
as an indication that the accuracy estimate |∆CS2018|, as well as the colorimetric prediction error
∆u′v′ for a given light source are determined by comparing the corresponding quantities derived
from the performed radiometric measurements (i.e, “Meas.”) to those calculated from the adequately
processed sensor readouts (i.e., “Calc.”) as described in this work.

Name/Par. H A374 Xenon1 CFL2K9 CFL954 FL927 FL945 LEDHC3L LEDHC3N LEDMulti

CS2018 and other parameters directly calculated from the measured artificial spectra

CCT in K 3300 4058 2785 4390 2640 4390 2797 4870 4000
Ev in lx 750 750 750 750 750 750 750 750 750
CLA,2018,origin 897 471 530 620 641 620 727 763 637
CS2018,origin 0.51 0.40 0.43 0.45 0.46 0.45 0.48 0.49 0.46

CS2018 and other parameters estimated from the color sensor readouts

Ev,processed in lx 673 790 766 878 878 748 738 694 815
CS2018,Truong 0.49 0.39 0.44 0.47 0.46 0.45 0.46 0.47 0.44

Compared parameters

|∆CS2018|
(Meas.−Calc.)

0.0208 0.0126 0.0143 0.0208 0.0038 0.0083 0.0186 0.0198 0.0203

∆u′v′ · 103

(Meas.−Calc.)

2.42 7.50 4.46 7.04 7.73 7.04 6.46 6.10 4.37

Figure 11. Training set of measured daylight spectra and visualization of the CIE model performance.
(a) Daylight spectra as measured in Darmstadt, Hessen, Germany (GPS coordinates 49° 51’ 20.772” N,
8° 39’ 12.528” E) on 19 August 2020 from sunrise (6:22 a.m.) to sunset (8:45 p.m.). (b) Reconstructed
daylight spectra from color sensor readouts by applying the CIE daylight model. (c) Spectral ratios
between the original measurements and the reconstructed spectra. (d) Color differences ∆u′v′

between measured and reconstructed spectra.

3.2. CS Estimation for Daylight Light Sources

As described in Sections 2.3.1 and 2.3.2, the CS estimation for daylight spectra can
be traced back to the determination of the CCT from the color sensor’s readouts. After
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converting its RGB output to chromaticity space by applying a daylight-specific transfor-
mation matrix, the method of Li et al. can be used to determine the light source’s CCT,
which in turn is required to reconstruct its spectral composition by adopting Equations (9)
to (14). Once the daylight spectrum is known, the corresponding CS value can directly be
calculated without further approximations by making use of Rea et al.’s original model.

In order to derive the daylight-specific transformation matrix and to determine again
the relationship between the sensor’s green channel output and Ev for daylight light
sources, a dataset of spectral daylight measurements performed on the 19 August 2020
between 6:32 a.m. and 8:45 p.m. in Darmstadt, Hessen, Germany (GPS coordinates 49° 51’
20.772” N, 8° 39’ 12.528” E) using again the CSS-45 spectroradiometer was available for
training. The corresponding SPDs are depicted in Figure 11a.

As in the previous section, different matrices were tested for optimal model perfor-
mance. The corresponding results are shown in Table 5 for a representative subset of
the training data sampled at different measurement times. From these results, it can be
confirmed that the use of a simple linear 3× 3 matrix again yielded the smallest overall
prediction errors. Comparably good results were observed for nonlinear matrices of sizes
3× 7, 3× 10, and 3× 14, respectively. However, following the same argumentation as in
Section 3.1, the 3× 3 approach, due to its good model performance and simplicity, again
appears to be the method of choice for dealing with daylight spectra.

Table 5. Remaining color differences after optimization for different sizes of the daylight-specific
transformation matrix applied to the respective training set of measured daylight spectra. Note that
only a small, but representative selection of different daylight spectra denoted by their sampling
times is shown here.

Sampling Time 06:32 08:03 10:04 12:01 14:02 16:11 18:23 19:04 20:35

∆u’v’(3 × 3)·103 0.5 0.02 0.094 0.053 0.092 0.16 0.15 0.094 1.2
∆u’v’(3 × 5)·103 38 49 6.6 5.4 4.5 3.1 9.5 9.0 33
∆u’v’(3 × 7)·103 1.4 1.5 0.018 0.55 0.2 0.6 0.038 1.1 0.79
∆u’v’(3 × 8)·103 35 48 6.6 5.4 4.5 3.0 9.6 8.7 29
∆u’v’(3 × 10)·103 0.71 0.054 0.13 0.057 0.065 0.17 0.57 0.061 0.78
∆u’v’(3 × 11)·103 31 48 6.5 5.3 4.4 3.0 9.6 8.4 23
∆u’v’(3 × 14)·103 1.1 0.16 0.27 0.11 0.077 0.14 0.068 0.12 2.2
∆u’v’(3 × 16)·103 0.66 0.21 0.3 0.1 0.039 0.21 0.61 0.11 0.8
∆u’v’(3 × 17)·103 0.66 0.21 0.3 0.1 0.039 0.021 0.61 0.11 0.8
∆u’v’(3 × 19)·103 0.23 0.069 0.093 0.039 0.047 0.05 0.094 0.13 0.64
∆u’v’(3 × 20)·103 0.23 0.069 0.93 0.039 0.047 0.05 0.094 0.13 0.64
∆u’v’(3 × 22)·103 0.48 0.019 0.064 0.083 0.051 0.11 0.26 0.17 0.74

The reconstructed daylight spectra obtained from the color sensor responses by apply-
ing the daylight-specific 3× 3 chromaticity transformation are thus depicted in Figure 11b.
As can be seen from Figure 11c, which illustrates the spectral ratios between the original
measurements from the training set and their reconstructed counterparts, the estimated
and directly measured daylight spectra were in good agreement in the visually and physio-
logically most relevant range from about 440 nm to 630 nm. Larger deviations were only
observed in the long- and short-wavelength regime. For λ ≤ 440 nm, the spectral ratio was
mostly above unity, while for λ ≥ 630 nm, the spectral ratio was mostly below unity. As
can be seen from Figure 11d, the resulting maximal color difference between measured and
reconstructed daylight spectra was ∆u′v′max = 0.006 for lighting conditions captured in the
early morning or late evening hours, i.e., when the corresponding CCTs were larger than
10,000 K, causing a bluish rather than a white color perception. However, for daytime mea-
surements at smaller CCTs, the observed color differences were considerably reduced and
mostly below the acceptance threshold of ∆u′v′accept = 0.003 as established by Bieske [133],
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which indicates that the proposed methodology of daylight estimation from RGB sensor
responses performed sufficiently accurately in the majority of cases.

Table 6. Comparison between the color sensor’s CS predictions (CS2018,reconstr.) and Rea et al.’s
original model (CS2018,origin) for a representative selection of daylight spectra from the respective
training dataset. The measurement uncertainty for CS2018,origin is of the order of ±8 %. Additionally
tabulated are the final 3× 3 daylight-specific transformation matrix, as well as the corresponding
functional relationship between the illuminance and the sensor’s green channel output Gi. Here,
the annotation “(Meas.− Reconstr.)” indicates that the given accuracy estimates |∆CS2018| and
colorimetric prediction errors ∆u′v′ are determined by comparing the corresponding quantities
derived from the performed radiometric measurements (i.e, “Meas.”) and the application of Rea et al.’s
model formalism to those obtained by processing the sensor readouts for the subsequent application
of the CIE daylight reconstruction method (i.e, “Reconstr.”) as proposed in this work. The annotation
“(Meas.− Calc.)”, on the other hand, again denotes the use of Truong et al.’s approximation method
also for daylight spectra.

Sampling Time 06:32 08:03 10:04 12:01 13:02 14:02 16:11 18:23 20:45

CS2018 and other parameters directly calculated from the measured daylight spectra

CCT in K 10,969 14,170 5557 5614 6324 5679 6240 5389 17,815
Ev in lux 871 5046 57,919 80,580 29,407 87,612 33,370 36,472 203
xmeas. 0.2714 0.2610 0.3312 0.3299 0.3162 0.3285 0.3175 0.3351 0.2523
ymeas. 0.2903 0.2756 0.3428 0.3402 0.3278 0.3396 0.3304 0.3470 0.2685
CS2018,origin 0.613 0.690 0.699 0.699 0.698 0.699 0.698 0.698 0.435

CS2018 and other parameters estimated from the color sensor readouts by applying the CIE daylight model

CCTreconstr. in K 10,969 14,170 5557 5614 6324 5679 6240 5389 17,815
Ev,processed in lx 879 5015 578,11 80,315 29,447 87,491 33,519 36,431 200
∆u′v′ · 103

(Meas.−Reconstr.)

4.4 3.3 2.2 3.1 2.9 2.8 2.1 1.7 5.8

CS2018,reconstr. 0.614 0.690 0.699 0.699 0.698 0.699 0.698 0.698 0.433
|∆CS2018|
(Meas.−Reconstr.)

0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002

CS2018 and other parameters estimated from the color sensor readouts by applying Truong et al.’s model

Ev,processed in lx 879 5015 57,811 80,315 29,447 87,491 33,519 36,431 200
∆u′v′ · 103

(Meas.−Calc.) 6.8 ×
10−4

4.1 ×
10−6

6.8 ×
10−5

6.7 ×
10−5

4.9 ×
10−5

8.1 ×
10−5

1.3 ×
10−4

1.8 ×
10−4

1.0 ×
10−3

CS2018,Truong 0.607 0.688 0.698 0.699 0.697 0.699 0.697 0.697 0.414
|∆CS2018| (Meas.−Calc.) 0.006 0.002 0.001 0.000 0.001 0.000 0.001 0.001 0.021

Optimized matrix transformation determined from the daylight light sources training database 1.8558 −1.6603 1.4322
1.1084 −0.23047 0.53993
0.53135 −0.97596 6.0956


Functional relationship for calculating illuminance from sensor output

Ev,processed = 683 · (1.7175 · Gi − 19.752); Gi from Equation (5)

From the reconstructed daylight spectra, CS values can now be determined by adopt-
ing Rea et al.’s original model definition. At this point, it should be noted that rather than
estimating the daylight’s spectral composition from the sensor responses, Truong et al.’s
CS approximation method can be used in the same manner as discussed in Section 3.1
for artificial light sources. Hence, Table 6 summarizes for a representative subset of the
training data sampled at different measurement times the corresponding results of both



Appl. Sci. 2022, 12, 1132 18 of 27

approaches and compares them to those obtained for Rea et al.’s original model when being
directly applied to the measured daylight spectra without any further sensor processing,
which as in the case of artificial light sources, was taken as the ground truth. As can
be seen, excellent model performance in terms of predicting CS must be stated for the
daylight reconstruction method, where maximal deviations were observed to be of the
order of 0.002, which is about ten-times smaller than the maximal CS differences observed
for Truong et al.’s approximation method. Thus, even though the latter gives somewhat
smaller chromaticity differences ∆u′v′, the combination of RGB sensor output and CIE
daylight model yields a significantly better performance in terms of predicting CS values
from color sensor readouts with an almost perfect accuracy.

Figure 12. Validation set of measured daylight spectra and visualization of the CIE model perfor-
mance. (a) Daylight spectra as measured in Darmstadt, Hessen, Germany (GPS coordinates 49° 51′

20.772′′ N, 8° 39′ 12.528′′ E) on 23 September 2020 from sunrise (7:14 a.m.) to sunset (7:21 p.m.).
(b) Reconstructed daylight spectra from color sensor readouts by applying the CIE daylight model.
(c) Spectral ratios between the original measurements and the reconstructed spectra. (d) Color
differences ∆u′v′ between measured and reconstructed spectra.

The reason for the somewhat larger chromaticity differences obtained by applying
the spectral reconstruction method can be identified in the way Sdaylight(λ) is determined.
As can be seen from Equations (9) to (14), the calculation of spectra defining the CIE
daylight locus is solely based on the CCT parameter and, therefore, neglects chromaticity
information. However, as the true chromaticities of the measured daylight spectra may
differ from those modeled by the CIE daylight locus (even when the CCT is found to be the
same), non-negligible chromaticity errors are likely to occur. Nonetheless, with regard to
the main goal of the present work, i.e., the proper estimation of the circadian effectiveness
of the prevalent lighting conditions from color sensor responses, the spectral reconstruction
approach still appears to be the favored method because of its high accuracy in terms of
predicting CS values for daylight light sources.

As for the case of artificial light sources, a validation of the proposed methodology
should be performed on a second dataset of measured daylight conditions that were not
included in the training data. Corresponding measurements were taken on 23 September
2020 between 7:27 a.m. and 19:15 p.m. at the same measurement location and by using
the same measurement device as for the first round of spectral daylight acquisitions. The
measured SPDs of the second round are thus visualized in Figure 12a, where the same
daylight-specific 3× 3 transformation matrix as optimized for the training data was used
to convert the resulting color sensor responses to the chromaticity space for the CCT
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calculation and subsequent spectral modeling. The corresponding CIE model results are
depicted in Figure 12b. Compared to the training data, similar findings can be reported
on the spectral ratios between the original measurements of daylight spectra used for
validation and their reconstructed estimations illustrated in Figure 12c. A good agreement
(=∧ spectral ratio close to unity) can again be confirmed in the wavelength range from
440 nm to 630 nm, while considerably larger deviations were obtained for shorter or longer
wavelengths. As can be seen from Figure 12d, the maximal chromaticity difference ∆u′v′max
was of the same order as observed for the training set, where again the greatest differences
occurred in the early morning and late evening hours. However, in general, the resulting
chromaticity differences for the validation data were well below the acceptance threshold
defined by Bieske, which again emphasizes the suitability of the proposed approach.

Table 7. Comparison between the color sensor’s CS predictions (CS2018,reconstr.) and Rea et al.’s
original model (CS2018,origin) for a second set of measured daylight spectra not included in the
training data. The measurement uncertainty for CS2018,origin is of the order of ±8 %. Here, the anno-
tation “(Meas.− Reconstr.)” indicates that the given accuracy estimates |∆CS2018| and colorimetric
prediction errors ∆u′v′ are determined by comparing the corresponding quantities derived from
the performed radiometric measurements (i.e, “Meas.”) and the application of Rea et al.’s model
formalism to those obtained by processing the sensor readouts for the subsequent application of
the CIE daylight reconstruction method (i.e, “Reconstr.”) as proposed in this work. The annotation
“(Meas.− Calc.)”, on the other hand, again denotes the use of Truong et al.’s approximation method
also for daylight spectra.

Sampling Time 07:27 10:03 11:06 12:03 13:05 14:07 15:10 16:12 19:14

CS2018 and other parameters directly calculated from the measured daylight spectra

CCT in K 12,464 8033 6313 5651 5914 5853 5470 8174 16,066
Ev in lux 401 9397 23,940 58,212 39,463 43,150 71,006 15,058 4613
xmeas. 0.2652 0.2942 0.3163 0.3291 0.3236 0.3248 0.3332 0.2919 0.2568
ymeas. 0.2831 0.3066 0.3293 0.3413 0.3364 0.3376 0.3449 0.3081 0.2705
CS2018,origin 0.528 0.693 0.697 0.699 0.698 0.699 0.699 0.696 0.561

CS2018 and other parameters estimated from the color sensor readouts by applying the CIE daylight model

CCTreconstr. in K 12,561 8044 6306 5647 5907 5845 5470 8146 16,309
Ev,processed in lx 402 9389 24,051 58,213 39,593 43,239 70,871 15,180 454
∆u′v′ · 103

(Meas.−Reconstr.)

4.6 1.8 2.0 2.0 1.9 1.9 2.0 0.57 3.7

CS2018,reconstr. 0.530 0.693 0.697 0.699 0.698 0.699 0.699 0.696 0.559
|∆CS2018|
(Meas.−Reconstr.)

0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001

CS2018 and other parameters estimated from the color sensor readouts by applying Truong et al.’s model

∆u′v′ · 103
(Meas.−Calc.) 0.47 0.0 0.174 0.12 0.182 0.196 0.0596 0.403 0.85

CS2018,Truong 0.517 0.691 0.696 0.698 0.698 0.698 0.699 0.695 0.548
|∆CS2018| (Meas.−Calc.) 0.011 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.013

Finally, Table 7 summarizes the different model predictions when applying the day-
light reconstruction approach in comparison to Truong et al.’s approximation method and
the direct calculations performed on the set of measured validation data using Rea et al.’s
original CS definition. As can be seen, similar results were obtained as reported for the
set of training data: despite showing again slightly larger chromaticity deviations, the
daylight reconstruction approach still outperformed Truong et al.’s approximation method
in terms of CS prediction accuracy, which allowed for a proper estimation of the circadian
effectiveness from color sensor responses even for “unknown” daylight conditions that
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were not included in the initial training database. To support reproducibility, the flowchart
of Figure 13 eventually summarizes the proposed daylight reconstruction strategy and
gives an overview of the required computational steps for a subsequent CS estimation.

RGB
RGB sensor

x,y,z

mapping to XYZ
(daylight specific),

computing x,y,z

CCTLi et al. CCT  
estimation method CIE daylight model

CCT0

Rea et al. CS  
computation model estimated CSestimated daylight

spectrum

McCamy CCT
approximation formula

u,v

transform to CIE 1960 UCS
coordinates u,v

Figure 13. CS estimation from RGB sensor responses for daylight light sources. A daylight-specific
3 × 3 transformation matrix is used to map RGB sensor responses to XYZ tristimulus values. Mc-
Camy’s CCT approximation (Equation (16)) gives a starting point CCT0 for Li et al.’s CCT estimation
method. The resulting CCT is used as the input for the CIE daylight model (Equations (9) to (14)) to
estimate the daylight spectrum. Finally, Rea et al.’s original CS computation model is applied to the
estimated daylight spectrum.

4. Conclusions and Outlook

In this work, a novel sensor-based methodology was proposed to assess the circadian
effectiveness of the prevalent lighting conditions caused by artificial and daylight light
sources using simple and inexpensive RGB color sensors that can easily be integrated into
modern lighting systems for proper monitoring and advanced lighting control. It was
shown that the sensor readouts, after some suitable processing, can be used to estimate CS,
a measure of circadian effectiveness, with high accuracy. For artificial light sources, the RGB
sensor responses were mapped to CIE XYZ tristimulus values first by applying a suitable 3
transformation matrix. From these XYZ values, the corresponding chromaticity coordinate
z can be calculated. Together with the lighting condition’s illuminance Ev, this provides
the input for the application of Truong et al.’s approximation formula, which yields an
estimate for the circadian effectiveness in terms of CS. Compared to Rea et al.’s original
model description, only small model prediction errors (typically less than 0.028 ∆CS) were
observed for a broad variety of artificial test light sources, emphasizing the suitability of
the proposed approach with regard to predicting sufficiently accurate CS values from RGB
sensor output for light sources usually found in the indoor lighting context.

For daylight light sources, on the other hand, an estimation of their spectral composi-
tions from RGB sensor readouts was performed first by adopting the CIE daylight model.
After converting the color sensor’s RGB output to the CIE 1960 chromaticity space by
applying a daylight-specific 3× 3 matrix transform and subsequent linear transformation,
i.e., from XYZ to (u′, 2/3v′), a nonlinear optimization method was used to determine the
daylights’ CCTs, which are the main input in the CIE model to reconstruct their spectral
compositions. With known illuminance Ev, corresponding CS values could then be cal-
culated without further approximations by applying Rea et al.’s original model to the
estimated daylight spectra. Compared to Rea et al.’s model when applied directly to the
measured light source data, the proposed daylight reconstruction method yielded excellent
model performance with maximal prediction errors ∆CSmax of less than 0.002 for both
known (i.e., part of the training data) and unknown (i.e., not part of the training data)
daylight conditions. In addition, it could be shown that for both test cases, the daylight
reconstruction approach outperformed Truong et al.’s approximation method in terms of
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CS prediction accuracy, making the former the appropriate method of choice when dealing
with daylight conditions.

When comparing the results achieved for both artificial sources and daylight, it be-
comes clear that there might be still room for improvements regarding the application of
the proposed methodology for the estimation of circadian effectiveness for artificial lighting
conditions. Whereas for daylight, the reported model prediction errors were more or less
of the same small order (see Tables 6 and 7), considerably larger discrepancies and greater
errors were observed for their artificial counterparts (see Tables 3 and 4). Instead of using
Truong et al.’s approximation method, it could therefore be expedient to also implement a
spectral reconstruction strategy for artificial light sources so that Rea et al.’s original model
can be applied without any further approximations. The first approaches for multi-channel
sensors found in the literature using a multilayer perceptron seem to be quite promising
for this purpose and report reconstructed SPD errors of less than 2 % [134,135]. However,
it remains questionable whether such a high accuracy can also be achieved with a simple
RGB color sensor. Of course, the methodology proposed in this work could easily be
adapted to be used in conjunction with a multi-channel sensor instead, which potentially
would increase spectral reconstruction accuracy. However, additional experiments will be
required to draw final conclusions.

For daylight conditions, on the other hand, the procedure described in this work so far
dealt with outdoor measurements only. Nonetheless, with regard to the establishment of
human-centered lighting control strategies, the accuracy of the proposed methodology must
still be confirmed for daylight, which is measured indoors behind windows that are made
of glass or other materials. As long as these transmissive materials are chiefly aselective in
the visible regime [136–138] and, thus, only diminish the entering daylights’ absolute levels
of illuminance without changing their spectral composition, a similar accuracy as reported
for the outdoor measurements can be expected to be observed when applying the proposed
method to calculate CS for daylight conditions that are measured indoors. However, in
the case that the spectral transmittance of the window material is strongly wavelength
dependent, Truong et al.’s approximation method needs to be applied, which, as shown
in this work, considerably reduces CS prediction accuracy (at least in its current form; see
the previous paragraph). For both cases, though, dedicated experiments are required to
confirm these expectations and eventually quantify the respective accuracies.

Regarding the issue of proper system integration and testing, ongoing research by our
lab further addresses the lighting control problem in realistic application scenarios. For
this purpose, a multi-channel IoT floor lamp prototype has recently been developed with
contributions from some of the present authors [139] that allows for the implementation of
additional color sensor devices to monitor the ambient lighting conditions as sketched in
the Introduction. Thus, in order to account for potential changes in the ambient lighting
conditions, color sensor feedback is intended to serve as suitable input for adaptively
updating the lighting control parameters to achieve constant or pre-defined indoor lighting
conditions that may for example keep the circadian effectiveness always at an optimal
level. Corresponding field tests are currently under preparation, for which the current
work provides the theoretical and methodological background. At the same time, it will
guide others to develop similar sensor-based strategies for an advanced lighting control,
which will help to drive the momentum towards the integration of human-centered lighting
solutions into our daily lives.
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