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Abstract: Reducing the human effort performed with the use of interactive-predictive neural machine
translation (IPNMT) systems is one of the main goals in this sub-field of machine translation (MT).
Prior works have focused on changing the human–machine interaction method and simplifying the
feedback performed. Applying confidence measures (CM) to an IPNMT system helps decrease the
number of words that the user has to check through the translation session, reducing the human
effort needed, although this supposes losing a few points in the quality of the translations. The effort
reduction comes from decreasing the number of words that the translator has to review—it only has
to check the ones with a score lower than the threshold set. In this paper, we studied the performance
of four confidence measures based on the most used metrics on MT. We trained four recurrent neural
network (RNN) models to approximate the scores from the metrics: Bleu, Meteor, Chr-F, and TER. In
the experiments, we simulated the user interaction with the system to obtain and compare the quality
of the translations generated with the effort reduction. We also compare the performance of the four
models between them to see which of them obtains the best results. The results achieved showed a
reduction of 48% with a Bleu score of 70 points—a significant effort reduction to translations almost
perfect.

Keywords: machine translation; confidence measures; neural model; quality estimation; interactive
machine translation

1. Introduction

Confidence measures (CMs) [1,2] in the machine translation (MT) field estimate the
correctness of the translations generated by the system without accessing the ground truth.
The confidence estimations generated are compared with a threshold value between zero
and one to classify the different elements as correct or incorrect. The CMs can be applied
to study the correctness of the system at multiple levels such as words, sentences, or
documents. In this article, we investigate the performance of the different estimators at a
word level.

Nowadays, the MT systems are not able yet to assess human parity in many tasks [3].
To assure high-quality translations without errors, the companies use professionals to post-
edit the translations or generate them with the cooperation of the MT system in interactive
environments. In interactive-predictive neural machine translation (IPNMT) systems, the
user only has to correct the first error from the translation generated, fixing the correct
prefix or all correct subsequences, then the system automatically tries to generate a better
translation. This procedure speeds up the work and reduces the human effort, and at the
same time, the system generates as output perfect translations. There are domains where
error-free translations are not needed, and CMs become helpful. With the use of CMs, the
system is classifying in advance the words as correct or incorrect, and the translator only
has to check and correct the words classified as incorrect. In a perfect world, the CMs work
perfectly and do not classify any word incorrectly, and all the errors found are corrected,
generating perfect translations. Currently, CMs perform some mistakes, and the gains in
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effort reduction cause a decrease in the quality. For this reason, CMs are mainly used for
companies when they need good translations that do not change the understanding of
the text.

Confidence measurements are not an exact science, and there is no unique method to
calculate them. Over time, the methods used have changed, from the first, based on the
study of features extracted from the data, to the more new methods that start to use neural
models in their calculation. In this paper, we trained multiple neural models to predict
the scores from four of the most used quality metrics of the MT field. We use the model
outputs to calculate our confidence measures. Those words that the model determines that
suppose a higher quality will also have more probabilities of being correct.

CMs appeared firstly in the speech recognition (SR) field with the same purpose, to
obtain a correctness score of the words estimated by the system. Slowly, researchers started
to use and study applications of this concept in the machine translation field [4,5]. One
of the first techniques used in the MT field extracts multiple features from the dataset to
calculate an estimation of the correctness. Specia et al. (2013) [6] developed QuEst, a quality
estimation framework that, among others, included 17 features that were summarized
as the best in the literature. At the same time, techniques appeared that work with the
model information to perform the calculation [6,7], i.e., using the lexicon probabilities
from the IBM model 1 or the posterior probability of the neural machine translation model.
This technique, where the system extracts the information from the MT model itself, is
commonly named glass-box or system-dependent. Similar to Ive et al. (2018) [8], in our
project, we trained a neural-based CM, with the main difference that our output is an
estimation of the word score obtained from the metric used: Bleu, Meteor, Chr-F, or TER.

To a large extent, much of the research carried out in the CMs field to ease the work
performed aim at the post-edition process [9,10]. These applications use CMs to, among
others, estimate how much effort each sentence needs [11] or select high-quality segments
to publish them without changes [12]. Stherionov et al. (2019) [13] studied the applicability
of these techniques with software UI strings from Microsoft products. In addition to the
fact that these applications primarily use sentence-level CMs [14], they also require that
professional translators fix the whole sentences from the translations with lower confidence.
Unlike these works, we aimed at the interactive machine translation field using CMs at the
word level. Instead of giving the translator a whole sentence to check, we only ask him to
check the first word classified as incorrect from those left.

To rank and assess different CMs [15,16], researchers compare their models using
metrics related to the correctness of the scores computed or their classification, e.g., Human-
targeted Translation Error Rate (HTER) [17] and Classification Error Rate (CER) [18]. Alva-
Manchego et al. (2021) [19] applied the CMs at sentence level in a post-edition environment
with real translators to study the time, cost, and quality reduction of using this technique.
In addition, we applied CMs at a word level, as Alabau et al. (2013) [20] did in CasMaCat,
into an IPNMT environment to study the relationship between the effort reduction in terms
of word stroke ratio (WSR) [21] and the decrease in the quality of the translations in terms
of BiLingual Evaluation Understudy (Bleu) [22].

We summarized the main contributions of this project to the research on the CM field
in two points. First, we develop four new word-level CMs based on the most common
metrics used in the MT field, which give a global translation score. To obtain the data
for the training, we adopt the technique reward shaping to obtain the word scores of
these metrics. The CER scores of these CMs demonstrate their robustness with smooth
transitions throughout the threshold range, allowing a better configuration for the next
point. Second, we apply these CMs in an IPNMT environment to analyze the relationship
between translation quality and effort reduction, where we obtain a decrease in the effort
of the 48% with a translation quality score of 70 Bleu points.

Section 2 summarizes the recent projects in the CM field and explains the importance
of IPNMT systems and CMs over the years. Our methodology, where we develop four
neural models trained on the most used metrics from the MT field and apply them in an



Appl. Sci. 2022, 12, 1100 3 of 16

IPNMT environment, is explained in Section 4. Section 5 exposes the experimental setup
we followed to develop our project and the different metrics used. These metrics help
to compare the classification correctness of each model and the tradeoff between effort
reduction and translation quality. The results obtained in Section 6 show that CM scores
can be used in IPNMT systems to perform almost perfect translations with a high reduction
in the human effort needed. Furthermore, as we set a threshold for the classification system,
we can adjust the quality of the translations performed, taking into account that for all the
models, a higher quality implies a lower effort reduction. Finally, we discuss in Section 7
that the employment of this technique in a real-world interactive translation workflow
could reduce the human effort needed, with the improvement in speed that comes with it.

2. Literature Review

The first modern approach to MT dates back to 1949 by Warren Weaver [23]. From
then, researchers thought that they would obtain fully automatic high-quality translations
in a few years, but that was not the case. In 1966, the Automatic Language Processing
Advisory Committee (ALPAC) [24] published a report that concluded that MT was more
expensive, less accurate, and slower than human translation and was not likely to reach the
high quality sought soon. Even now, with all the improvements made in the MT field, the
translations generated are not perfect, and in most cases, the system requires a professional
translator to obtain high quality.

In order to obtain high-quality translations, in the beginning, the users had to cor-
rect the sentences generated by the machines without any help. Over time, researchers
developed new tools to assist humans in the translation process and sped it up, such
as the computer-assisted translation (CAT) tools [25]. Between some of the most used
CAT tools, we can find translation memories, language search-engines, post-editors, and
IPMT systems. Interactive-predictive machine translation (IPMT) focuses on the interaction
between the translator and the machine. The MT system generates a hypothesis with the
available information, and the user provides feedback to the system to correct it if necessary.
Barrachina et al. (2009) [26] firstly introduced this concept.

Researchers continued investigating different techniques to assist the translators in
IPMT systems. Projects such as CasMaCat [27] and TransType2 [28] appeared as working
environments for translators that incorporated an array of these innovative techniques that
were not available in other tools at the time. They combine techniques such as intelligent
autocompletion [26], confidence measures [18], prediction length control [29], search and
replace, word alignment information [30], and prediction rejection [31]. These projects were
one of the first times CMs appeared in CAT tools.

In 2012, Lucia Specia and Radu Soricut started to organize the Quality Estimation
shared task at the Workshop on Machine Translation (WMT) [32]. This shared task helps es-
tablish the state-of-the-art performance in the field. It also enables researchers to determine
new and effective quality indicators and identify alternative machine learning techniques
for the problem. Although it started only with sentence-level CMs, nowadays it also uses
CMs at the word level.

The investigation in the field increased, and researchers developed new projects and
frameworks. The QuEst open-source framework [6] appeared after the first shared task on
quality estimation and used the results obtained there. Between others, they implemented
the most commonly used features in the task.

The CM field also changed with the apparition of neural models in the MT field. The
CM models extracted some of the features used from the statistical MT models, so this
paradigm change transformed the techniques and features used in the field. Researchers
could now extract new features from the neural MT models and train neural models
to predict confidence estimations directly. With these new possibilities, the frameworks
OpenKiwi [33] and DeepQuest [8] appeared. Both perform estimations at a sentence and
word level, and DeepQuest also allows document level.
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Nowadays, CMs are primarily used in post-edition, and researchers study their appli-
cability in this environment. Some projects analyze the relationship between the quality
of the translations and the time needed from using CMs in this environment with actual
cases [13,19]. The IPMT environment is less used and proposes a new problem as the
system performs the estimations simultaneously with the translation generation, so the
system does not have the complete translation to calculate the word CMs. Similar to our
project, there are still works that continue the investigation in this sub-field [7,34].

3. Methodology

This section briefly summarizes the information described in Sections 4 and 5. Those
sections explain in more detail how we train and develop the CMs used in the project and
the experimental setup we followed.

MT systems use CMs to estimate the correctness of the translations, being able to
obtain scores at different levels: document, sentence, and word. The system compares the
confidence estimation with a threshold set by researchers to classify the different elements
as correct or incorrect. For those elements with a confidence score lower than the threshold,
the system classifies them as incorrect. In this project, we worked with word-level CMs and
applied them in an IPNMT environment. With this implementation, the user only has to
provide feedback about the first word classified as incorrect. By not having to correct those
words classified as correct, the system reduces the human effort, but the final translations
could have some misclassified words.

The CMs developed in this project are recurrent neural networks (RNN). We trained
them with word scores obtained from four of the most used metrics in MT: Bleu, Meteor,
Chr-F, and TER.

For the experimentation process, we used the EU corpus. With this corpus, we tested
the robustness and the applicability of our CMs. We calculate the percentage of misclassified
words they obtain to test their robustness. The dataset was extracted by performing a
conventional IPNMT session, saving the correct words and mistakes of the MT system.
Then, we applied them in an IPNMT environment to test their applicability by comparing
the effort reduction with the translation quality obtained.

Real translators are very costly and take much time for each experiment. For this
reason, we opted to simulate the user in the IPNMT environment.

4. Confidence Measures

In this project, we studied the performance of four different CMs in the IPNMT field.
Each MT field presents a new problem that must be overcome. In the case of IPNMT,
the main problem is the computation time of the CMs. In an IPNMT environment, the
translator is interactively working with the system to generate the final translations. We
need to perform all the calculations in less than 100 ms [35], or the user could feel that the
system does not respond instantly and break the workflow. There are several techniques
that we can no longer apply due to their high computational time. For this reason, we
used neural models that can perform the forward pass to obtain the confidence estimations
inside this limitation.

Researchers can apply CMs at different levels: document, sentence, and word. These
CMs provide an estimation of correctness. If this value is higher than the threshold set, we
classify the element as correct. As our main goal within the field of IPNMT field is to reduce
the human effort of translating each sentence, we applied the CMs at the word level. The
system classifies all the words from the translation as correct or incorrect, and the translator
only has to check the words classified as incorrect. Principally, with this technique, we are
reducing the number of words that the user has to type. At the same time, we reduce the
cognitive cost that is expended reviewing the words.

Figure 1 describes a conventional prefix-based IPNMT session with word-level CMs.
At iteration 0, the system translates the source sentence (ŝh) and classifies all the words
(CM). Then, at iteration 1, the user has to check the first word classified as incorrect, “is”.
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In this case, the word is correct, so the user does not perform any changes, and the word is
validated. The system corrects translations from left to right, so previous words classified as
correct are also validated and saved in the prefix (p). At iteration 2, the user checks the next
word classified as incorrect, “a”. The system has generated in the fourth position a word
different from the reference. The user corrects the error, and the system generates a new
translation. All the remaining words have been classified as correct, and the translation
process finishes. As can be seen in the example, this interactive process no longer assures
perfect translations. To achieve this goal, we need accurate CMs that never fail in the
classification process.

SOURCE (x): Este documento es un simple instrumento y las instituciones no se hacen responsable de su contenido
REFERENCE (y): Each document is intended for use as a documentation tool and the institutions do not assume any liability for its content

ITER-0
(p)
(ŝh)

(CM)
This document is a simple instrument and the institutions are not responsible for their content
OK OK BAD BAD BAD OK OK OK OK OK OK OK OK OK OK

ITER-1

(p)
(st)
(k)
(ŝh)

(CM)

This document
is a simple instrument and the institutions are not responsible for their content
is

a simple instrument and the institutions are not responsible for their content
BAD BAD OK OK OK OK OK OK OK OK OK OK

ITER-2

(p)
(st)
(k)
(ŝh)

(CM)

This document is
a simple instrument and the institutions are not responsible for their content
intended

simple and the institutions are not responsible for their content
OK OK OK OK OK OK OK OK OK OK

FINAL (p) This document is intended simple and the institutions are not responsible for their content

Figure 1. Example of a conventional prefix-based IPNMT session with CMs to translate a sentence
from Spanish to English. At iteration 1, the user checks a word mistakenly classified as incorrect.
At iteration 2, the word “a” is corrected and the system generates a new hypothesis. Non-validated
hypotheses are displayed in italics, and accepted prefixes are printed in normal font.

To train the CMs, we used four of the most common quality metrics in the MT field:
Bleu, Meteor, Chr-F, and TER. These metrics can provide a quality score of the whole
sentence using the ground truth translation as a reference. The main problem that we
encounter is that to train our neural models, we need the quality scores from the words of
the translations, and the metrics do not give this information directly. In order to obtain a
quality score for each word of the translation, we use a strategy initially used to overcome
the shortcoming of the sparsity of rewards, the reward shaping [36]. Reward shaping helps
to distribute a reward between intermediate steps, which we use to distribute our sentence
score between all the sentence words. In reward shaping, the intermediate reward for the
word at position t of the translation y from the source sentence x is denoted as rt(ŷt, x) and
is calculated as follows:

rt(ŷt, x) = R(ŷ1...t, x)− R(ŷ1...t−1, x) (1)

where R(ŷ1...t, x) is defined as the metric score of the translation ŷ1...t with respect to the
source sentence x. Note that to use reward shaping, the next equation has to be fulfilled:

R(ŷ, x) =
T

∑
t=1

rt(ŷ1...t, x) (2)

where T is the total length of the translation.
Each of the metrics that we selected in this project take into account different aspects

when they calculate the translation scores. In the next section, we see more in detail the
four metrics that we selected, and what we can expect from their CMs.

4.1. BiLingual Evaluation Understudy (BLEU)

Bleu [22] was one of the first metrics that appeared in the MT field. Like many others,
it tries to copy how professionals consider a group of aspects when evaluating translations.
Between these aspects, Bleu attempts to reproduce the adequacy, fidelity, and fluency
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judgement. The main characteristic of Bleu, and the feature that differentiates it from the
others metrics selected, is the use of multiple n-grams orders. Bleu computes the n-gram
precision at each level individually, combining them and multiplying the final score by
a brevity penalty. Bleu needs this brevity penalty to penalize short sentences with high
precision. To calculate the intermediate rewards we wanted this penalty to remain the same
so we use the next technique.

When we proceed to calculate the metric score R(ŷt, x) of the translation, we substitute
each word from the segment yt+1...T with a special token <null>. In this way, the translation
length does not vary when we calculate the reward R(ŷt, x) for each value of t.

We can expect good results from the CM trained with the Bleu word scores. These
scores capture the quality of each word pretty well, as they take into account the correctness
of the word and its context. In addition, it gives each word the same weight, unlike the
metric Chr-F whose use of character n-grams gives more significant weight to the longer
words.

4.2. Metric for Evaluation of Translation with Explicit ORdering (METEOR)

Meteor [37] appeared to address several weaknesses found in Bleu. Researchers
thought that the brevity penalty used in Bleu does not compensate for the nonexistence
use of recall. It also opted for a new method to capture the fluency of the translations
through the word order. Meteor studies the precision and recall of the unigrams from
the translations instead of considering multiple levels of n-grams as does Bleu. To study
the fluency of the translation, Meteor calculates the minimum number of chunks that
remains the same between the translation and the reference and divides it by the number
of unigrams matched. In this case, the length of the translations does not matter as much
as in Bleu—Meteor only counts the matched unigrams.

We can expect similar results to those obtained with the Bleu CM. Both metrics consider
the correctness of the word using unigrams, but the main difference between them is the
process used to capture the context of each word. Meteor captures it through the word
order, while Bleu 2, 3, and 4 n-gram matches. This difference is the central aspect that will
differentiate the results obtained from both confidence measures.

4.3. Chracter n-Gram F-Score (Chr-F)

The character level n-grams have been a critical part of more complex metrics evalua-
tion like MTERATER [38] and BEER [39]. For this reason, Chr-F [40] calculates the F-score
based on character n-grams. This metric does not use any penalty related to the length of
the translation. The two unique elements it uses to calculate the F-score are precision and
recall. The precision works at the n-gram level and the recall at the character n-gram level.
Experimentation has proven that this metric correlates very well with human judgment.

Although this metric correlates very well with human judgment at the sentence level,
we notice some possible problems when calculating the word quality scores. It uses
character-level n-grams in its calculation, giving higher scores to longer words. This aspect
is not a problem to calculate the intermediate rewards of the metric, but we think it could
cause the confidence measure to face some difficulties during the classification process.

4.4. Translation Edit Rate (TER)

Unlike the other metrics, TER [17] is more focused on the correction cost of the
translations; it measures the minimum amount of editing that a human would have to
perform to change a translation to exactly match the reference sentence. Possible edits
include the insertion, deletion, and substitution of single words as well as shifts of word
sequences. To calculate TER, we normalized the total number of edits by the length of the
reference sentence. In this case, TER does not consider the length of the sentence, and to
correctly differentiate the different edition actions, it is necessary to use the special tokens
described in the Bleu CM. Otherwise, there are substitutions and word shifts that are not
considered correctly.
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This metric faces a different problem than the one found in Chr-F. In this case, all the
words have the same weight, but TER does not consider their context. This metric is more
focused on the correction cost; simplifying it, it only captures whether the word appears, or
not, in the same position in the reference. This fact suggests that all the correct words have
the same word score, which could be a problem to our CM.

5. Experimental Setup

In this section, we explain the different elements involved in the experiments that we
carried out. First of all, in Section 5.1, we define the metrics that we use to evaluate the
performance of the CMs, the effort reduction, and the quality of the translations. Then,
in Section 5.2, we describe the main features of the corpus EU used in this project. In
Section 5.3, we explain the architectures selected for the MT model and the CMs. Finally,
as we did not use real translators, in Section 5.4 we describe the user simulation method.

5.1. System Evaluation

Automatic evaluation of results on MT is a difficult job. Each sentence has multiple
possible translations that are good enough to be used, but we use only one as reference
to compare the translations generated. By extension, this is a problem that we encounter
in our simulation of the IPNMT session. The simulated user will always try to produce
the ground truth, although other translations could involve a lower effort. We have to
deal with this problem when measuring the user effort and evaluating the quality of the
translations, so the results we obtain will be pessimistic.

To evaluate the performance and robustness of our CMs, we use the metric classifica-
tion error rate (CER) [18]. This metric calculates the number of classification errors of the
confidence model divided by the total number of words classified. The main objective of
the CMs is to classify the words accurately, using the confidence estimation score and the
threshold set. If the model classifies the words correctly, the number of errors will be near
zero, as the CER score.

Secondly, we want to analyze the applicability of our CMs in a real-world interactive
translation workflow. For this reason, we study the relationship between human effort
reduction and the quality of the translations. To evaluate the human effort of the translation
process, we selected the metric Word Stroke Ratio (WSR) [21], and to estimate the quality
of the translation, we used the metric BiLingual Evaluation Understudy (Bleu) [22].

WSR is computed as the number of word strokes that the user performs to correct
a translation, divided by the length of the sentence translated. In this context, we define
word stroke as the complete action of correcting one word, but it does not take into account
the cost of reading the new suffix provided by the system. Bleu computes a geometric mean
of the precision of n-grams multiplied by a factor to penalize short sentences.

5.2. Corpora

We carried out all the experiments in the Spanish–English pair of languages of the cor-
pus EU [26], for which statistics are described in Table 1. The corpora contain 214 thousand
sentences to train the models, 400 to validate, and 800 to test. We cleaned, lower-cased and
tokenized the corpora using the scripts included in the toolkit Moses [41]. Finally, we used
the subword subdivision byte pair encoding (BPE) method [42] with a maximum value of
32,000 merges to generate the subwords.

EU is a corpus extracted from the Bulletin of the European Union, which exists in
all official languages of the European Union and is publicly available on the Internet.
Although we only use the pair of languages Spanish–English, the corpus also contains the
pairs German–English and French–English.
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Table 1. Statistics of the Spanish–English EU corpus. K and M represent thousands and millions,
respectively.

Es-En

Training

Sentences 214 K
Average Length 27 24
Running Words 6 M 5 M

Vocabulary 84 K 69 K

Dev.
Sentences 400

Average Length 29 25
Running Words 12 K 10 K

Test
Sentences 800

Average Length 28 25
Running Words 23 K 20 K

5.3. Model Architecture

We used the open-source toolkit NMT-Keras [43] to build the neural models for the MT
system and the CM models. We tested the experiments with the recurrent neural network
(RNN) architecture. All the systems used Adam [44] as the learning algorithm, with a
learning rate of 0.0002. We clipped the L2 norm of the gradient to 5. The batch size was set
to 50 and the beam size to 6.

The RNN models used an encoder–decoder architecture with an attention model [45]
and LSTM cells [46]. The dimension of the encoder, decoder, attention model, and word
embeddings was set to 512. We used a single hidden layer of the encoder and the decoder.

The MT and CM models have the same size and architecture. The main difference
between both models lies in the output layer. While the MT model has the usual softmax
layer that gives us the probability of each word of the vocabulary, the CM model has a relu
layer that provides us with the confidence estimation of the last word sent by input.

5.4. User Simulation

One of the problems that we encounter in the IPNMT field at the experimentation
process is that having your own team of translators to test the performance of each project
and model takes a lot of time per experiment and is expensive. To face this difficulty, we
realized the experiments simulating the human translator behavior. The downside of this
technique is the fact that we only have one translation reference, and the simulated user
does not have in mind all the other possible translations that could involve a lower effort
and a higher quality. As we only have one translation in mind, the WSR and Bleu results
shown in Section 6 are pessimists.

To simulate the behavior of the translators, we make two assumptions. First, we
assume that the CMs never classify a word incorrectly. Second, we suppose that the
simulated user is able to correct every word of the translations without any context.

With the first assumption, we force the simulated user to only review those words that
the system classifies as incorrect, besides the correctness of the classification. Confidence
estimation is not perfect, therefore there will be words misclassified that the user would
not correct. However, with these misclassified words, we are testing the performance
of the CMs, as we no longer assure perfect translations and study the quality of the end
translations.

The second assumption is a consequence of the first one. As we can omit incorrect
words due to a mistake in the CMs, the simulated user should be able to rectify the wrong
words in every case without any context. As we have the translation reference, when the
system gives the user a word to correct, he compares it with the word corresponding to the
same position in the reference and rectifies it if necessary. As the simulated user only needs
the position of the word to check and correct it, he does not mind the context of the word
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in the sentence. Rectifying the words without any context does not cause a problem to our
quality metric—Bleu—as it uses matches between segments of 4 n-grams at maximum.

6. Results

This section exposes the results obtained with the four CMs trained in this project.
Two essential aspects in the CMs field are the study of the robustness and applicability of
the models. First, to study the robustness of the model, we test how well they classify the
words as correct or incorrect for different threshold values within the range. Second, to
analyze the applicability of the models in an IPNMT environment, we studied, for each
possible threshold value, the quality of the translations and the human effort needed for
that process. With this comparison, we know the relationship between the human effort
reduction and the quality of the translations obtained.

6.1. Robustness

To study the robustness of the models, we used the metric CER that gives us the
percentage of errors that the model has performed during the word classification process.
We calculated this score along all the threshold range. Similar to in other metrics, we
need a reference to compare and calculate the CER score of our models. As we want to
study the behavior of our models in an IPNMT environment, we generated the dataset
by translating the test in this environment without using any CM. With this process we
obtain a set of correct and incorrect words for each translation. We applied this test set in an
IPNMT environment with the four CMs and compare the results with the newly obtained
references to generate the final CER scores.

Figure 2 shows an example of the process we followed for each sentence to obtain
the correct and incorrect words dataset. As we used a prefix-based IPNMT environment,
the simulated user only has to correct the first errors that he finds. In this example, the
user found two mistakes: “written” in iteration one and “some” in iteration two. These two
words make up the whole group of incorrect words, while the words from the reference go
to the group of correct words. We repeated this process for all the sentences of the test set,
creating the whole dataset for the robustness experiment.

Figure 3 shows the results obtained in this experiment for each of the four CMs: Bleu,
Meteor, Chr-F, and Ter. We performed the experiment along all the threshold range, but the
more significant variation on the CER score happens between the values 0.04 and 0.1. This
effect is a cause of the reward shaping used in Section 4 to obtain the word scores for the
CMs dataset. The system distributes the total reward of the sentences, for which maximum
score is one, between all the words making the word scores compressed in this range of
values. With a threshold of 0, the environment behaves as an MT system, classifying all
the words as correct. With a threshold of 1, the environment behaves like a conventional
IPNMT system, classifying all the words as incorrect. The two extremes of each graphic are
the CER scores 0.30 and 0.70.

The transition between the CER scores that obtained the CMs gives us the first indi-
cations of how well the CMs will work when applied in IPNMT systems. When there is
a considerable change in the CER score in an abridged threshold variation, we will have
more trouble applying the CMs in an IPNMT system. There will be less helpful threshold
values in these cases, as they tend to achieve similar results in this abridged range of
threshold values.
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SOURCE (x): Una versión traducida de un texto.
REFERENCE (y): A translated version of a text.

ITER-0

(p)
(ŝh)

( correct words )
(incorrect words)

A written version of a story.
( )
( )

ITER-1

(p)
(st)
(k)
(ŝh)

( correct words )
(incorrect words)

A
written version of a story.
translated

version of some book.
( A )
( written )

ITER-2

( p)
(st)
(k)
(ŝh)

( correct words )
(incorrect words)

A translated version of
some book.
a

text.
( A translated version of )
( written some )

ITER-3

( p)
(st)
(k)
(ŝh)

( correct words )
(incorrect words)

A translated version of a text.
( )
(#)

( )
( A translated version of a text. )
( written some )

FINAL (p ≡ y) A translated version of a text.

Figure 2. Example of a conventional prefix-based IPNMT session without CMs to translate a sentence
from Spanish to English. Non-validated hypotheses are displayed in italics, and accepted prefixes are
printed in normal font. ‘#’ represents the translation validation action. This process obtains a set of
correct and incorrect words for each sentence. We used the dataset acquired from this procedure to
study the robustness of the CMs.
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Figure 3. CER of the (A) Bleu CM, (B) Meteor CM, (C) Chrf CM, and (D) Ter CM. The X-axis
represents the threshold values between 0.04 and 0.1, and the Y-axis the CER score.
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Considering this effect and the results displayed in Figure 3, where the CER scores
of each confidence measure are displayed, we can conclude that the best models are the
ones based on Bleu and Meteor metrics. These two models are more likely to obtain better
results in the next experiment, where we will test the applicability of the models in an
IPNMT environment. We do not discard the models based on Chr-F and TER, but it is true
that with the CER scores obtained, these models will have fewer helpful threshold values
to select an effort reduction score in the translation process.

6.2. Applicability

One of the main objectives of the IPNMT systems is to reduce the human translator
effort. This reduction in the human effort also brings an increment indeed in the translation
rate. In many cases, companies do not need perfect, error-free translations, and it is in these
cases where we can start to study the applicability of our CMs. The CMs are only usable in
these cases because they are not perfect yet; when we use them, at the same time that we
note a reduction in the human effort, there is also an assumed reduction in the quality of
the translations.

To study the applicability of the models, we realized an experiment along all the
threshold range, where we simulated an IPNMT translation session with CMs. We anno-
tated the human effort in WSR terms and the translation quality in Bleu terms for each
translation. With this information, we can display a graphic along the WSR that gives us
the translation quality expected.

Figure 4 displays the results obtained in this experiment for each one of the CMs:
Bleu, Meteor, Chrf-F, and Ter. The oversized points in the graphics are the results obtained
from all the range of threshold values, and, as can be seen, there are multiple ranges of
WSR scores without oversized points. We mentioned this effect in Section 6.1; the quick
variation on the CER scores shown in Figure 3 happens because, in these models, there is a
large group of words with similar confidence measures, so a bit of change in the threshold
suggests that these words change their class. This effect also suggests that the human effort
changes significantly due to the classification change of this extensive group of words. We
use the results obtained with a threshold of 1 as a baseline, where the system tags all the
words as incorrect, and the user has to check them all as per in a conventional IPNMT
system. We obtain the maximum WSR, 0.35, and perfect error-free translations in this
baseline.

In this experiment, the CMs obtain the best performance when the quality of the
translations decreases very slowly with the reduction of human effort. With the WSR, we
are only considering the effort that the translators expend in rectifying the wrong words,
but at the same time, we are reducing the number of words to check their correctness,
reducing the cognitive cost that is involved in their reading and review. Comparing the
results obtained from each CM, we can conclude that the model based on the metric Bleu
obtained the best results. The transition along the WSR scores is very smooth, the quality
of the translations decreases slowly, and there is not a considerable concentration of points
in any zone. On the other hand, the other confidence measures decrease the translation
quality at a similar velocity and present ranges with a high concentration of points.

After looking at the results obtained in this experiment, we can conclude that the
CM with the highest applicability is the model based on the metric Bleu, which obtained,
for a translation quality of 70 points of Bleu, a WSR of 0.18 and a 48% reduction in effort.
Then, with similar values, we have the models based on Meteor, Ter, and Chr-F, with WSR
values of 0.27, 0.28, and 0.29, with an approximate 20% reduction in effort. These last
CMs present different transitions for low WSR scores, but in this range of values, they
generate translations with a quality almost identical to those obtained with conventional
MT systems.
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Figure 4. WSR compared with the Bleu score of the (A) Bleu CM, (B) Meteor CM, (C) Chrf CM, and
(D) Ter CM. The X-axis represents the WSR score, and the Y-axis represents the Bleu score obtained
with the same threshold value. The larger points are the values obtained from the experiments
throughout the threshold range.

Table 2 compares our results obtained for a Bleu score of 70 points with the results
obtained in a recent work that uses CMs in an IPNMT environment. Navarro et al. (2021) [7]
tried different statistical CMs based on the translation probability of the target word and
its alignment probability. They tried CMs based on IBM Model 1 and 2, fast align, and
hidden Markov model, and obtained the best results with the fast align model with a WSR
reduction of the 19.5% for a Bleu score of 70 points. The Meteor, TER, and Chr-F models
from our project obtained similar results, but the CM based in Bleu notably improves upon
these results with a WSR reduction of 48%. These results confirm an improvement in the
new neural CMs developed in this project applied in IPNMT systems and that there is the
possibility of reducing, even more, the human effort with this technique.

Table 2. WSR reduction obtained from CMs with a translation quality of 70 Bleu points. IBM-1,
IBM-2, fast align, and HMM results from Navarro et al. (2021) [7]. Bleu, Meteor, TER, and Chr-F from
our results.

CM WSR Red.
70 Bleu Points

IBM-1 [7] 6.6%
IBM-2 [7] 12.6%

Fast align [7] 19.50%
HMM [7] 11.3%

Bleu 48%
Meteor 23%

TER 20%
Chr-F 17%
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7. Discussion

Finally, after studying the robustness and the applicability of our CMs in Section 6, we
can proceed with the discussion of the results obtained in the experiments. In this section,
we define whether the CMs used in this project could be applied in an IPNMT environment
and determine which CMs are the most convenient.

When we look at the graphics obtained in Section 6.1, where we studied the CER of
the confidence measures, we want to obtain a smooth transition between the two extremes.
Between the four CMs that we used, the one based on Meteor presents the smoothest
transition. Then we have the CM based on Bleu, which performs a smooth transition
through all the threshold range except for the values between 0.65 and 0.7. On the other
hand, the CMs based on Chr-F and TER present very low transitions of CER in the vast
majority of the graph and perform significant changes very quickly. These quick transitions
impair the applicability of the confidence measures, as they suggest that when we compare
the WSR versus the Bleu, there are ranges along the WSR without points.

In the second experiment, we studied the applicability by comparing the human effort
expended with the quality of the translations generated with the IPNMT environment. This
information is helpful and needed when the CMs are applied in a real-world interactive
translation workflow, as we need to know which threshold can produce each score of
the translation qualities. The model will be more valuable as the more remarkable the
human effort reduction, the lower the quality reduction. From the four CMs, the one that
better adapts to this definition is the Bleu CM. It has a slow reduction in the quality of the
translations, so we obtain a higher effort reduction than in the other models with the same
translation quality. The other three CMs tested have similar applicability behaviors; the
speed at which the translation quality decreases is almost the same for them.

Between the four CMs that we studied in this project, the one that obtained the best
results and has the highest probability of being applied in a real-world workflow is the
Bleu CM, due to its smooth transition between the human effort and the translation quality,
which allows a better and more secure configuration of the threshold used. Then, we have
the Meteor, Chr-F, and Ter CMs that have similar transitions between them.

Finally, after comparing the results that we obtained with our neural CMs based on
the most used metrics of the MT field with a previous project that uses statistical CM
in the same environment, the improvement in the effort reduction is very notable. Our
CMs obtained an effort decrease of 48%, while the higher reduction was about 20% in the
previous project.

These results demonstrate that there is still work to do in this field. In future work, now
that we have proved the utility of these CMs with simulated users, we will use them with
real translators and determine if the results obtained are equivalent to the ones obtained in
this project. In addition, in this project, we only worked at a word level, so we will also
observe if our CMs are robust and applicable at the sentence level.
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