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Abstract: The angle of seismic excitation is a significant factor in the seismic response of RC buildings.
The procedure required for the calculation of the angle for which the potential seismic damage is max-
imized (critical angle) contains multiple nonlinear time history analyses, each using different angles
of incidence. Moreover, the seismic codes recommend the application of more than one accelerogram
for the evaluation of seismic response; thus, the whole procedure becomes time consuming. Herein,
a method to reduce the time required for the estimation of the critical angle based on multilayered
feedforward perceptron neural networks is proposed. The basic idea is the detection of cases in
which the critical angle increases the class of seismic damage compared to the class that arises from
the application of the seismic motion along the buildings’ structural axes. To this end, the problem
is expressed and solved as a pattern recognition problem. The ratios of seismic parameters’ values
along the two horizontal seismic records’ components, as well as appropriately chosen structural
parameters, were used as the inputs of the networks. The results of analyses show that the neural
networks can reliably detect the cases in which the calculation of the critical angle is essential.

Keywords: artificial neural networks; pattern recognition; reinforced concrete buildings; seismic
damage; rapid assessment; seismic incident angle

1. Introduction

The angle of seismic excitation has been recognized for many years by the civil
engineering research community as a significant factor in the seismic response of RC
buildings. The level of influence of this angle on the seismic response has been proven
in several published studies. Among the research papers that deal with this subject, the
following are some of the most significant: MacRae and Mattheis [1] examined the impact
of the angle of incidence on the inelastic response of a three-story steel-frame building
due to near-fault ground motion. Athanatopoulou [2] introduced analytical formulae for
the determination of the critical incident angle and the corresponding maximum elastic
structural response of buildings subjected to three correlated seismic components; the
application of these formulae to multistory structures has proven that the maximum value
of a response quantity can be up to 180% larger than the response produced when the
seismic accelerograms act along the structural axes. In another study, Rigato and Medina [3]
investigated the inelastic response of asymmetric and symmetric buildings with regard
to the angle of incidence by using 39 pairs of ground motion records; the results showed
that the critical angle for a given response quantity depends on the fundamental period,
model type, and level of inelastic behavior, and it is difficult to determine a priori, as in
the case of elastic structures. In a series of studies conducted by Kostinakis et al. [4–7]
and Fontara et al. [8], the influence of the seismic motion’s orientation on the elastic and
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inelastic seismic behavior of RC structures was investigated; they found that the structural
response is strongly dependent on the strong motion’s direction. Pavel and Nica [9]
investigated the seismic behavior of doubly symmetric RC wall structures subjected to a
series of bidirectional ground motion recordings; they found that the structural response is
dependent on the orientation of the strong ground motion horizontal components. Cavdar
and Ozdemir [10] examined the change in response of a seismically isolated structure as
a function of ground motion orientation, and showed that using the maximum direction
of ground motion does not lead to the maximum response compared to that obtained by
considering different orientations of seismic records. The issue of the seismic motion’s
orientation from a probabilistic point of view has also been investigated by a number of
researchers (see, e.g., Lagaros [11]; Giannopoulos and Vamvatsikos [12]; Vargas et al. [13];
Skoulidou et al. [14]; Skoulidou and Romão [15]), who tried to evaluate the impact of the
angle of seismic incidence on the buildings’ risk.

The angle of seismic excitation is defined as the angle that is formed by the orientation
of the seismic input and the structural axes of buildings. In common practice, the considered
orientation of the seismic input coincides with the structural axes; however, as mentioned in
the above literature review, it has been proven that the most unfavorable seismic response
generally arises for a different angle, which is referred to as the critical angle of the seismic
excitation. The procedure for the estimation of the critical angle requires the performance
of multiple analyses. In each of these analyses, the angle of seismic input is increased
from 0 (which corresponds to the orientation of the structural axes of the buildings) to
360 degrees through an increment that is usually set to 5 degrees. If the evaluation of
the seismic response concerns the prediction of the potential seismic damage, nonlinear
time history analysis (NTHA) is required. Thus, for the estimation of the critical angle a
series of NTHA must be performed. Moreover, the modern seismic codes (see, e.g., [16])
recommend the evaluation of the seismic response of buildings using more than one
earthquake record. Naturally, each of the selected seismic motions can lead to a different
critical angle, following the application of the above-mentioned procedure. Therefore, the
whole procedure requires the implementation of a number of sets of NTHA. Beyond the
stage of analysis, each of these sets includes post-processing of the extracted results for the
estimation of the selected seismic damage index. Thus, the ability to avoid the procedure
for the estimation of the critical angle for a seismic record is desirable. In order to achieve
this, an available computational tool is the use of artificial neural networks (ANNs).

The implementation of ANNs for the solution of civil engineering problems has pro-
gressively increased over the past three decades. This fact is reflected in several published
review papers [17–21]. Concentrating on the seismic assessment of RC buildings, among
the numerous papers that deal with the application of ANNs, several are noteworthy.
Firstly, it is necessary to mention the studies of Stephens and VanLuchene [22] and Molas
and Yamazaki [23] as the first systematic attempts to use properly trained ANNs in order to
rapidly predict the level of seismic damage to structures. De Stefano et al. [24] successfully
studied the ability of probabilistic neural networks in the prediction of the mechanisms
of seismic damage to monumental buildings. Sanchez-Silva and Garcia [25] examined
the efficiency of the combined performance of multilayered feedforward neural networks
and fuzzy logic theory for the earthquake damage assessment of structures using data
extracted from in situ surveys after a strong earthquake. Feedforward neural networks
were implemented efficiently by Lagaros and Fragiadakis [26] for the fragility assessment
of steel frames. Gonzalez and Zapico [27] successfully tested the ability of multilayered
perceptron networks for the reliable identification of seismic damage to multistory welded
steel moment frame buildings. Lautour and Omenzetter [28] proved that the multilayered
perceptron networks have the ability to reliably predict seismic damage to 2D RC buildings.
Arslan [29] investigated the effects of several structural parameters on the seismic perfor-
mance of regular RC buildings using multilayered perceptron networks trained with data
that were created artificially, and proved the effectiveness of ANNs in the reliable prediction
of the structures’ seismic response. Vafaei et al. [30] successfully the studied performance
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of multilayered perceptron networks in the real-time identification of earthquake-induced
damage to RC shear walls. Morfidis and Kostinakis [31–33] examined the performance of
the multilayered perceptron networks and the radial basis function networks in the rapid
estimation of the seismic damage level using regression as well as a pattern recognition
approach, and extracted very promising results.

In the present paper, the effective implementation of multilayered perceptron (MLP)
networks for the rapid prediction of the influence of the seismic incident angle on RC
buildings’ seismic damage level (SDL) is examined. The basic idea is the application of
MLP networks for the prediction of the cases in which the critical angle has a strong (or
not strong) influence on the potential SDL of RC buildings. Reliably predicting the level of
influence of the critical angle on the SDL for an RC building at the stage of design, the above-
mentioned time-consuming procedure for the estimation of this influence can be avoided.
The same is valid in case of the seismic vulnerability assessment of existing RC buildings.
The problem was formulated and solved as a pattern recognition (PR) problem [34]; thus,
the seismic damage was expressed by means of predefined seismic damage classes (SDC),
and the MLP networks were used to predict whether the critical angle alters a building’s
SDC in comparison with the SDC in which the building is classified when the angle
of seismic excitation is considered as equal to zero, i.e., the case in which the angle of
seismic excitation coincides with the structural axes of the building. Additionally, the MLP
networks were used to predict the specific SDC in which an RC building is classified when
the critical angle is considered. In the above-mentioned approaches, three seismic damage
classes were predefined—namely, slight, medium, and heavy—on the basis of the selected
seismic damage index (SDI) (see Table 1 and Figure A4 in Appendix A). The selected SDI
was the maximum interstory drift ratio (MIDR), which is used in several research papers
(see, e.g., [35,36]). For the training of the MLP networks, three datasets were used: one
dataset based on analyses of RC buildings without masonry infills (Bare Buildings; BB), one
dataset based on analyses of RC buildings with masonry infills (Regularly Infilled Buildings;
RIB), and one dataset based on analyses of RC buildings with masonry infills in all stories
except for the ground story (Irregularly Infilled Buildings; IIB). The full descriptions of these
three datasets, as well as the corresponding procedures for their generation, are presented
in [32,33]. An extended investigation for the estimation of the optimal configuration of
the MLP networks—i.e., the configuration that leads to the most reliable prediction of the
influence of the incident angle—was performed for all of the above-mentioned approaches
to the problem. Moreover, it must be noted that the procedure proposed in the present
study gives engineers the ability to optimize the configuration of RC buildings at the stage
of design by testing several alternative configurations (without the requirement for the
implementation of numerus time-consuming NTHAs), and to select the one that leads to
seismic response being slightly influenced by the angle of seismic excitation. The results of
the present research led to the basic conclusion that the MLP networks can reliably predict
the level of influence of the critical angle of seismic excitation on the seismic damage to RC
buildings, in real time.

Table 1. Definition of 3 or 5 SDCs according to MIDR seismic damage index.

MIDR (%) <0.25 0.25–0.5 0.5–1.0 1.0–1.5 >1.5

SDC
(5 classes) Null Slight Moderate Heavy Destruction

SDC
(3 classes) Slight (“S”) Moderate (“M”) Heavy (“H”)

Description No damage or repairable
damage in structural system

Significant but
repairable
damage in
structural

system

Non-repairable damage in
structural system
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2. Short Theoretical Background

A short theoretical background of the scientific fields involved in the present paper is
presented in this section. Firstly, some of the fundamentals that describe the problem of
estimation of the critical incident angle for RC buildings are given in Section 2.1. Afterwards,
some of the basic principles that concern the implementation of MLP networks for the
solution of PR problems are presented in Section 2.2.

2.1. The Influence of Incident Angle on the Seismic Response of RC Buildings

In the vast majority of earthquake records’ databases, the horizontal components of
the seismic motion are given along the orientation for which they were recorded. Thus,
the orientation of the recorded seismic components is predetermined by the orientation
of the recording instrument (accelerograph), which is generally arbitrary with respect to
the structural axes of the buildings (Figure 1) (see Beyer and Bommer [37]). In Figure 1,
αx(t) and αy(t) represent the recorded earthquake acceleration time histories at the place
of the accelerograph along its x and y axes, respectively. These accelerograms can be
applied along any angle of incidence θ between the seismic components and the building’s
structural axes X and Y (ax(θ) and ay(θ)).
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The seismic response of any structure is dependent on the orientation of the strong
motion with regard to the structural axes. It is of great importance to note that the rotation
of the axes along which the horizontal accelerograms are applied can lead to completely
different structural behavior.

Until now, the orientation of the earthquake record has not caught the attention of the
most modern seismic codes. Specifically, EN1998-2 [38] does not make any reference to this
issue and, according to FEMA 356 [39], ASCE 41-06 [40], and ASCE 41-13 [41], the axes of
the ground motion “shall, in general, be aligned with the principal axes of the structure”. EN1998-
1 [16] states that the seismic action shall “be applied along all relevant horizontal directions”.
Nevertheless, no specifications are made concerning the relevant horizontal directions—
with the exception of buildings with resisting elements in two perpendicular directions,
in which these two directions shall be considered as the relevant ones. NZS (Code and
Supplement of the New Zealand Standard) [42] states that the seismic accelerograms are
applied along the direction that will lead to the most unfavorable value of the considered
response parameter—without specifying, however, how the most critical direction should
be determined.

The lack of specific code provisions with regard to the axes of the strong motion input
leads to the application of the horizontal earthquake components along the structural axes of
the buildings. This common engineering practice can result in significant underestimation
of seismic demands (see, e.g., Athanatopoulou [2]; Rigato and Medina [3]; Kostinakis
et al. [4–7]; Fontara et al. [8]; Pavel and Nica [9]; Cavdar and Ozdemir [10]; Skoulidou
et al. [14]; Lucchini et al. [43]; Nguyen and Kim [44]; and Roy et al. [45]). Finally, special
mention must be made of the significant research of Smeby and Der Kiureghian [46] and
Menun and Der Kiureghian [47], who developed the CQC3 modal combination rule, which
has been successfully used for the investigation of the influence of the seismic excitations’
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angle on structures’ responses within the context of the linear response spectrum analysis
(see, e.g., Lopez et al. [48,49]; Sessa et al. [50,51]).

2.2. The Solution of the PR Problem Using MLP Networks

The pattern recognition (PR) problem is one of the subjects of machine learning (ML)
algorithms (see, e.g., [34,52]). The inherent ability of MLP networks to solve problems
that are characterized by high nonlinearity makes them capable of effectively solving
PR problems. By definition, PR is the procedure of the search for specific patterns in
datasets. Between the three different general types of PR problems (i.e., supervised learning
problems, unsupervised learning problems, and reinforcement learning problems), the
present paper deals with a supervised learning problem. In the framework of a supervised
learning PR problem, the ML algorithm attempts to correctly classify the samples of a
dataset to predefined classes, which are defined by properly selected ranges of values of
preselected parameters; this problem is called the classification problem. In present paper,
the predefined classes are the SDCs, and the parameter that is used for their definition is
the SDI (a detailed presentation of these definitions is given in Section 3).

As regards the solution of the PR problem in its classification form using MLP net-
works, a proper configuration of the latter is required. In Figure 2, the general form of an
MLP network configured for the solution of a classification problem is presented.
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As can be seen from Figure 2, one basic characteristic of the MLP network that is
configured for the solution of a classification problem is the number of elements of the
output vector o. This number is equal to the number of the predefined classes in which the
samples x can be classified. Thus, for a classification problem with n classes, the output
vector must have nx1 dimensions. Another basic characteristic of the modeling of the
classification problem by means of MPL networks is the mapping of classes to the values
of the elements of the output vector o. More specifically, when the network extracts an
output vector o with oj = 1 and all other elements equal to 0, the corresponding sample is
classified to class j. As regards the other parameters that are required for the configuration
of the MLP networks (i.e., the number of the hidden layers, the number of neurons in each
hidden layer, and the activation functions), as well as the training algorithms, details are
given in Section 3.

3. Description and Formulation of the Problem in Terms Compatible with
MLP Networks
3.1. General Description of the Problem and the Benefits of the Solution Using MLP Networks

The motivation for the present research is based on the idea of deploying the inherent
attributes of MLP networks to extract results for multiparameter problems in real time.
Thus, in the present paper, the ability of MLP networks to reliably predict the level of
influence of the seismic incident angle on the SDL of new (at the stage of design) or existing
RC buildings (in the framework of the seismic vulnerability assessment procedure) is
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investigated. In other words, the main target of the present investigation is the proposal of a
procedure based on MLP networks, which aims to detect in real time the cases for which the
critical angle of the seismic excitation significantly alters the expected SDL of RC buildings
compared to the SDL, which arises when the buildings are analyzed considering that the
angle of seismic excitation is equal to zero (i.e., when the two horizontal components of the
seismic excitation are considered to be parallel to the structural axes of the buildings; see
Figure 1). The expected benefit of the proposed procedure is the avoidance of the numerous
time-consuming NTHAs that are required for the estimation of the critical seismic angle,
in those cases where this angle does not in fact lead to a significant increase in the SDL.
Thus, it becomes feasible to rapidly identify the RC buildings whose SDL is not sensitive to
the angle of seismic excitation. This rapid detection can accelerate the procedure followed
for the configuration of new RC buildings at the stage of design, or the procedure for the
configuration of existing RC buildings’ retrofitting schemes in the framework of seismic
vulnerability assessment.

3.2. Formulation of the Problem in Terms Compatible with MLP Networks

In order to quantify the criterion that defines the significance (or the insignificance)
of the critical seismic angle’s influence on the SDL, first of all, a seismic damage index
(SDI) [53] must be selected. In the present paper, the MIDR index is used as the SDI
(the procedure for the calculation of the MIDR is presented in Appendix A). Then, a
magnification factor that reflects the increase in the SDI value when the seismic excitation
angle takes its critical value θcr relative to the SDI value that corresponds to the case in
which the seismic excitation angle θ is equal to zero must be defined. The general form
of this factor (seismic damage index magnification factor; SDIMF) is given by means of
Equation (1). A significant clarification that regards the definition of the angle θ = 0 in
Equation (1) must be made herein. The structural axes (which coincide with θ = 0 in the
present study) are not generally selected using strict rules, except in cases in which the
local axes of all vertical structural members are parallel with two specific axes. However,
the different definitions of structural axes in buildings do not affect the results of the
proposed procedure, since the definition of the angle θ = 0 is simply the reference point for
the definition of the θcr. Thus, if for example the initial choice of θ = 0 leads to the most
unfavorable seismic response (i.e., θcr = 0), the proposed method will extract the conclusion
that there is no need for the performance of a procedure for the calculation of the value
of θcr. Moreover, the proposed method leads to the answer to the question of whether
the initial selection of the structural axes (θ = 0) leads (or not) to the most unfavorable
seismic response.

SDIMF =
Seismic Damage Index for θ = θcr

Seismic Damage Index for θ = 0
=

SDI(θ = θcr)

SDI(θ = 0)
> 1.0 (1)

After the above definition, a characteristic value of SDIMF (value SDIMFc) for the
separation of the range of its values in two subdomains—namely, the subdomain of values
that correspond to the significant influence of the critical incident angle on the SDI, and the
subdomain of values that correspond to the insignificant influence of the critical incident
angle on the SDI—must be selected; however, the verification of this selection is very diffi-
cult. Nevertheless, due to the fact that the SDIMF and SDI are related through Equation (1),
it is equivalent to use a corresponding characteristic value for the latter. Thus, the problem
is converted to a comparison of the SDI (θ = θcr) value with the characteristic value of SDI
(value SDIc), which corresponds to the SDIMFc. The selection of a value for the SDIc can
be verified more rationally on the basis of experimental or numerical results, which are
available in the literature. More specifically, as regards the MIDR index that is used as an
SDI in the present research, the limit values that define different SDCs for RC buildings are
presented in [54]; these values are summarized in Table 1.

Using the values that are presented in Table 1, the definition of characteristic values
for the MIDR is feasible. For example, if three SDCs are considered, as in the present paper,
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then two characteristic values for the MIDR can be defined, namely, the value 0.5%, which
corresponds to the limit between the slight (“S”) SDC and the moderate (“M”) SDC; and
the value 1.0%, which corresponds to the limit between the “M” SDC and the heavy (“H”)
SDC. Thus, two different approaches for the formulation of the problem as a PR problem
were considered in the present study:

• First Approach (Approach 1 or A1). Definition of two classes: the class of buildings for
which the SDC for θ = 0—i.e., SDC (θ = 0)—is changed for θ = θcr (i.e., if MIDR < 0.5%
for θ = 0 becomes MIDR > 0.5% for θ = θcr, or if 0.5% < MIDR < 1.0% for θ = 0 becomes
MIDR > 1.0% for θ = θcr), and the class of buildings for which the SDC for θ = 0, SDC
(θ = 0), is not changed for θ = θcr (i.e., if MIDR < 0.5% for θ = 0 remains MIDR < 0.5%
for θ = θcr, or if 0.5% < MIDR < 1.0% for θ = 0 remains 0.5% < MIDR < 1.0% for θ = θcr).
It must be noted that the case in which MIDR (θ = 0) > 1.0% is not considered herein,
because if a building suffers heavy damage for θ = 0, its SDC cannot be changed for
θ = θcr. In other words, A1 corresponds to a two-class PR problem, the solution of
which leads to the answer to the question of whether the SDC of an RC building for
θ = 0 (SDC (θ = 0)) is increased for θ = θcr (i.e., SDC (θ = θcr) > SDC (θ = 0)→ significant
influence of θcr) or not (i.e., SDC (θ = θcr) = SDC (θ = 0)→ insignificant influence of
θcr), regardless of the SDC for θ = 0 (MIDR (θ = 0) < 0.5% or 0.5% < MIDR (θ = 0) <
1.0%). This approach does not give additional information about the magnitude of
change of SDC for θ = θcr, but simply gives the information about the change (or not)
in SDC;

• Second Approach (Approach 2 or A2). In the framework of the second approach,
more details about the influence of θcr on the SDC can be extracted. To this end, the
buildings are separated into two categories: the buildings that are classified to the “S”
SDC for θ = 0 (i.e., MIDR (θ = 0) < 0.5%), and those that are classified to the “M” SDC
for θ = 0 (i.e., 0.5% < MIDR (θ = 0) < 1.0%). For buildings that are classified to the “S”
SDC for θ = 0, the problem can be defined as a two- or three-class PR problem. More
specifically, the consideration of a three-class PR problem (Approach 2/Category 3S,
or A2/C3S) leads to the prediction of the exact category of buildings’ SDC for θ = θcr,
and not only to the prediction of the change (or not) in the SDC for θ = θcr. In other
words, in this case the three classes are defined by means of the following criteria:
Class 1: {SDC (θ = 0) = “S”→ SDC (θ = θcr) = “S”}, Class 2: {SDC (θ = 0) = “S”→
SDC (θ = θcr) = “M”}, and Class 3: {SDC (θ = 0) = “S”→ SDC (θ = θcr) = “H”}. Class 1
corresponds to insignificant influence of the θcr on the SDC, whereas Classes 2 and
3 correspond to significant influence. Correspondingly, in case of the two-class PR
problem (Approach 2/Category 2S, or A2/C2S), the two classes are defined by means
of the following criteria: Class 1: {SDC (θ = 0) = “S”→ SDC (θ = θcr) = “S”}, and Class
2: {SDC (θ = 0) = “S”→ SDC (θ = θcr) = “M” or SDC (θ = θcr)= “H”}. Finally, in the
framework of the second approach, a separate procedure is followed for buildings that
are classified to the “M” SDC for θ = 0 (Approach 2/Category 2M, or A2/C2M). More
specifically, in this case, only two classes can be defined, i.e., Class 1: {SDC (θ = 0) =
“M”→ SDC (θ= θcr) = “M”} and Class 2: {SDC (θ = 0) = “M”→ SDC (θ = θcr) = “H”}.

The two aforementioned approaches for the solution to the problem of the present
study are summarized in Table 2 (where the correspondence of each class to the significance
or the insignificance of the influence of θcr on the SDC is also presented).

Obviously, A1 concerns all buildings, regardless of their classification to an SDC for
θ = 0. Thus, this approach is applicable whether the classification of buildings to an SDC for
θ = 0 is known or not. On the other hand, if A2 is chosen, the problem is solved by selecting
one of the categories A2/C3S or A2/C2S in combination with the category A2/C2M. In
other words, the solution of the problem using A2 is achieved by the decision to formulate
it using one of the following pairs (analysis types): “A2/(C3S + C2M)” or “A2/(C2S +
C2M)”. Thus, the solution of the problem using one of the two forms of A2 is feasible only
if the SDC of buildings for θ = 0 is known.
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Table 2. Main characteristics of the approaches used for the definition of the studied problem.

Approach/
Category Classes Criteria of Classes/Significant Influence of θcr

A1 2
Class 1: SDC (θ = θcr) = SDC (θ = 0)/NO
Class 2: SDC (θ = θcr) > SDC (θ = 0)/YES

A2/C3S 3
Class 1: SDC (θ = 0) = “S”→ SDC (θ = θcr) = “S”/NO

Class 2: SDC (θ = 0) = “S”→ SDC (θ = θcr) = “M”/YES
Class 3: SDC (θ = 0) = “S”→ SDC (θ = θcr) = “H”/YES

A2/C2S 2
Class 1: SDC (θ = 0) = “S”→ SDC (θ = θcr) = “S”/NO

Class 2: SDC (θ = 0) = “S”→ SDC (θ = θcr) = “M” or “H”/YES

A2/C2M 2
Class 1: SDC (θ = 0) = “M”→ SDC (θ = θcr) = “M”/NO
Class 2: SDC (θ = 0) = “M”→ SDC (θ = θcr)= “H”/YES

The categories of the MLP networks that were used for each of the aforementioned
alternative formulations of the problem are summarized in Table 3. It must be noted that
the names of networks in Table 3 concern the type of analysis; their complete names also
contain the types of buildings (i.e., BB, RIB, IIB), as presented in Section 4.

Table 3. Main characteristics of the types of analyses and the corresponding names of networks.

Analysis Type Names of Networks Number of Classes

“A1” NA1 (all buildings) 2

“A2/(C3S + C2M)”

NA2C3S (buildings classified
to SDC “S” for θ = 0)

NA2C2M (buildings classified
to SDC “M” for θ = 0)

3 if SDC (θ = 0) = “S”
2 if SDC (θ = 0) = “M”

“A2/(C2S + C2M)”

NA2C2S (buildings classified
to SDC “S” for θ = 0)

NA2C2M (buildings classified
to SDC “M” for θ = 0)

2 if SDC (θ = 0) = “S”
2 if SDC (θ = 0) = “M”

On the basis of the selected approach (A1 or A2), the general form of the procedure
used in the present study for the investigation of the significance (or the insignificance)
of the influence of the critical seismic angle on RC buildings’ SDC (considering that the
used MLP networks are already trained) is described by means of the flowcharts shown in
Figure 3.

It must be noted that when A2 is used there are two alternatives for the estimation
of the SDC (θ = 0): (a) with application of NTHA, or (b) using MLP networks (Figure 3b).
In order to adopt the alternative (b), it is necessary for appropriately trained networks
to be available (Nθ0 networks in Figure 3b). These networks must be trained in parallel
with the networks that predict the level of influence of θcr on SDC. The procedure and the
details for the configuration and the training of Nθ0 networks are given by Morfidis and
Kostinakis [32]. However, in the present study, the source of the information about the
classification of buildings in SDC for θ = 0 (i.e., NTHA or Nθ0 networks) did not affect the
procedure of investigation.

3.3. Selection of Ground Motion, RC Buildings, and the Training Dataset Generation

The training dataset generation using numerical procedures initially requires the
proper selection of RC buildings and ground motion records. After these selections, as
is well known, the training dataset is generated through a series of NTHA of each of the
selected buildings for all of the selected ground motion records. The whole procedure for
the generation of a training dataset using a numerical approach is fully described in [32].
This type of procedure was also used in the present study; however, a significant differ-
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entiation was necessary herein. More specifically, in contrast to the procedure described
in [32], each of the selected RC buildings was analyzed for all of the selected ground motion
records considering not only the seismic angle θ = 0, but also seismic angles between 0
and 355 degrees (θ = 0◦, 5◦, 10◦, . . . ., 355◦), as illustrated in Figure 4 (for more details,
see also [6]). Therefore, for each of the selected RC buildings and each of the selected
ground motion records, 72 (= 360/5) NTHAs were performed using the computer program
Ruaumoko [55]. The seismic angle for which the MIDR value is maximized is the θcr.
Then, based on the corresponding MIDR values, the classification of each of the selected
RC buildings in the three predefined SDCs of Table 1 for the seismic angles θ = 0 (SDC
(θ = 0)) and θ = θcr (SDC (θ = θcr)) is accomplished and stored using the procedure shown
in Figure 4b. Finally, the sets of target vectors in forms compatible with A1 and A2 (Tables 2
and 3) are formed.
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As regards the selected RC buildings, 30 different types in terms of their structural
systems were configured, modelled, and designed according to the provisions of EN1992-1-
1 [56] and EN1998-1 [16]. These buildings were regular in elevation according to EN1998-1.
Due to the fact that the selected buildings were used in previous published research, more
details and full description of their configuration and modelling (for design purposes and
for the NTHA) can be found in [32,33]. However, the most significant points regarding
the modelling assumptions of the selected RC buildings, as well as their geometric char-
acteristics, are presented in Appendix A. It must be stressed herein that for each of the 30
selected RC buildings, 3 different versions were considered as regards their masonry infills
(see also [33]): (1) buildings without masonry infills (Bare Buildings; BB), (2) buildings
with masonry infills in all stories (Regularly Infilled Buildings; RIB), and (3) buildings with
masonry infills in all stories except for the ground story (Irregularly Infilled Buildings;
IIB). For each of these three versions of the buildings, separate training datasets were
generated according to A1 and A2 (Tables 2 and 3). Thus, all analyses presented in this
paper (Section 4) were performed separately for each of the three aforementioned versions
of the selected buildings.

Finally, as regards the selected seismic ground motions, the 65 recorded ground
motions that are presented in [32] were used in the present study (Appendix B). It must
be noted that these ground motions were imported to the models as recorded, and then
rotated with respect to the axes of buildings. For the generation of each of the three training
datasets, 140,400 (= 30 buildings × 65 ground motions × 72 seismic angles) NTHAs
were performed. This means that the procedure described in Figure 4 was performed
140,400/72 = 1950 times for each of the three versions of the 30 selected RC buildings. The
number of the target vectors and their form (which corresponds to the networks that are
presented in Table 3) for each of the three versions of the selected RC buildings are given in
Table 4.
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Table 4. Number of samples and the form of target vectors for each of the networks and the versions
of the selected RC buildings.

Network Number of Samples Form of Target Vectors (TV)

NA1
BB: 1006 (=1950–944 *),
RIB: 1539 (=1950–411 *),
IIB: 1052 (=1950–898 *)

TV = [1 0] T (Class 1)

TV = [0 1] T (Class 2)

NA2C3S
BB: 563 (=1950–443–944 *),

RIB: 1075 (=1950–464–411 *),
IIB: 673 (=1950–379–898 *)

TV = [1 0 0] T (Class 1)

TV = [0 1 0] T (Class 2)

TV = [0 0 1] T (Class 3)

NA2C2S BB: 563, RIB: 1075, IIB: 673
TV = [1 0] T (Class 1)

TV = [0 1] T (Class 2)

NA2C2M
BB: 443 (=1950–563–944 *),

RIB: 464 (=1950–1075–411 *),
IIB: 379 (=1950–673–898 *)

TV = [1 0] T (Class 1)

TV = [0 1] T (Class 2)
* Number of samples that are classified to the SDC “H” for θ = 0.

3.4. Selection of Parameters for the Input Vectors

A very important part of the present study was the selection of parameters for the
input vectors of the used MLP networks. Generally, in problems that concern the prediction
of seismic damage to buildings, the input vectors of the MLP networks must contain seismic
and structural parameters (see, e.g., [23,28,29,57,58]).

As regards the seismic parameters, previous studies indicate that the well-documented
seismic parameters that are defined and used in the specific literature (see, e.g., [59]) lead
to reliable results. Taking into consideration the fact that in analyses of 3D RC buildings
the vertical component of earthquake records is usually neglected (except for the case of
structures with special characteristics, which are not the subject of the current study), the
input vectors must contain values of seismic parameters that are extracted from a selected
combination rule of their values along the two horizontal components of the excitation
(i.e., their geometric mean value, e.g., [60]). However, due to the fact that the target of the
present study is the investigation of the influence of θcr on the SDL of RC buildings, it is
more rational to select the ratios of their values along the two horizontal components of
the seismic excitation as seismic parameters in the input vectors, rather than their values
extracted by a combination rule. Thus, the ratios of the minimum to the maximum value
of the selected seismic parameters were used in input vectors for MLP networks, as is
presented by the general Equation (2).

SIP =
min{SIP(dir1); SIP(dir2)}
max{SIP(dir1); SIP(dir2)} (2)

where:

SIP is the value of the seismic input parameter that is introduced to the input vector;
SIP (dir1) is the value of the seismic input parameter that is extracted from the accelerogram
that corresponds to horizontal direction 1 of the seismic excitation;
SIP (dir2) is the value of the seismic input parameter that is extracted from the accelerogram
that corresponds to horizontal direction 2 of the seismic excitation.

It must be noted that directions 1 and 2 correspond to the horizontal axes along which
the seismic excitations’ accelerograms are recorded (see Figure 1).

The selection of seismic parameters was based on the corresponding selection that
was made in previous published studies (see, e.g., [32]), but it was necessary to make
some changes herein. More specifically, the seismic parameters that are based on the
earthquakes’ duration—namely, the uniform duration, the bracketed duration, and the
significant duration (see, e.g., [59])—were excluded due to the fact that their values for one
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or both of the horizontal directions for some of the 65 earthquakes used for the generation
of the training dataset were equal to zero. This led to problems in the application of
Equation (2) (0/0 ratios); thus, 12 selected seismic parameters were introduced in the input
vectors in the present study, and are summarized in Table 5.

Table 5. The selected seismic parameters for the input vectors of MLP networks.

1 Peak ground acceleration (PGA) 7 Acceleration spectrum intensity (ASI)
2 Peak ground velocity (PGV) 8 Cumulative absolute velocity (CAV)
3 Specific energy density (SED) 9 Peak ground displacement (PGD)
4 Arias intensity (Ia) 10 Effective peak acceleration (EPA)
5 Predominant period (PP) 11 Sustained maximum acceleration (SMA)
6 Housner intensity (HI) 12 Sustained maximum velocity (SMV)

Many structural parameters can be used for the description of the seismic response
of RC buildings. These parameters generally quantify the stiffness and the strength of
buildings under seismic loads. The nature of the present study, which mainly concerns a
geometric problem, along with the above-described rationale of selection of the seismic
input parameters (Equation (2)), led to the selection of the following three structural input
parameters (StIPs):

(a) The ratio of the minimum to the maximum value of uncoupled fundamental natural
periods T1,X, T1,Y of buildings for pure vibration along their structural axes X and Y,
respectively (see Figure 5).

StIP1 = min{T1,X; T1,Y}/max{T1,X; T1,Y} (3)

This parameter is an index of the relative horizontal stiffness of buildings along their
two orthogonal structural axes. The values of the uncoupled fundamental natural
periods are connected to the initial choice of structural axes, which are generally
defined in different ways, as stated above. The choice of fundamental natural periods
was made in order to define a “metric” by which to measure the ratio of the horizontal
stiffness of buildings along two perpendicular axes, which is not influenced by “cou-
pling” effects. It must also be noted that the structural axes can have any orientation,
but this fact does not affect the whole procedure, since the uncoupled fundamental
natural periods can be defined in any system of two orthogonal axes;

(b) The ratio of the buildings’ total height Htot to the square root of the sum of squares of
the horizontal dimensions LX and LY of their plans along the structural axes X and Y,
respectively (see Figure 5).

StIP2 = Htot/
√

L2
X + L2

Y (4)

This parameter expresses the slenderness of buildings, and plays a significant role in
their seismic response, because it gives an additional index of the horizontal stiffness.
It must be noted that this parameter can be defined not only in cases of buildings with
rectangular plans, but also in any case using equivalent horizontal dimensions along
the structural axes X and Y (see Figure 5).

(c) The ratio of the structural eccentricity (i.e., the distance between the mass center (MC)
and the stiffness center (SC) of stories) e0 to the dimensions of the plan of the building
parallel to it (see Figure 5).

StIP3 = e0/Le0 (5)

This parameter indicates the degree of eccentricity of the forces induced by seismic
excitations; it is well documented that this degree significantly affects the level of
seismic damage.
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Therefore, in the present study, 15 input parameters (12 seismic parameters and
3 structural parameters) were used as elements of the input vectors of MLP networks. The
general form of these input vectors (dimensions 15 × 1) is given by Equation (6).
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3.5. Parametric Investigation for the Optimal Configuration of the Used MLP Networks

It is well known that the performance of the MLP networks is strongly affected by
their configuration, i.e., the selection of the parameters that constitute their structure
(Figure 2). These parameters are the number of hidden layers, the neurons in each one of
the hidden layers, and the activation functions of the neurons (see e.g., [61]). Furthermore,
additional choices affect the solution of problems by means of MLP networks, including the
normalization functions of the input and output vectors, the procedure for the partitioning
of the generated dataset in training, validation, and testing subsets, the performance
evaluation parameters, and the training algorithms.

In the present study, the choices of the aforementioned parameters are summarized in
Figure 6. More details about the procedure of the parametric investigation for the optimal
selection of the parameters that affect the performance of MLP networks are presented
in [32]. The results of this investigation are demonstrated and discussed in Section 4.
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4. Presentation and Evaluation of the Results of the Training Procedures

In this section, the results extracted from the procedures described in Section 3 are
presented and evaluated. The basic performance evaluation metric for the studied MLP
networks is the overall accuracy (OA) index. The OA is the ratio of the samples of a dataset
that are classified to the correct class to the total number of samples of that dataset. This
index is usually a part of the confusion matrices (CMs) (see, e.g., [34,62]). Additionally,
other parameters that are defined in CMs are also used if the OA comparisons do not lead
to clear conclusions; thus, the entire CMs are also presented. As presented in Figure 6, the
generated dataset (Section 3.3) is partitioned (for the purposes of the training procedures)
into three subsets: the training subset, the validation subset, and the testing subset. The
results of the investigations for the optimal configuration of the MLP networks using the
selected metrics (the OA index and the other indices of CMs) are presented for the testing
subset, the training subset, and the total dataset in any case. However, the performance
evaluation using the selected metrics is based on the testing subsets, because these subsets
extract reliable estimations about the generalization ability of the MLP networks (i.e., the
contribute to checking for the existence (or non-existence) of overfitting during the training
procedure (see, e.g., [63,64])).

As noted in Section 3.2, the two approaches to the solution of the problem (A1, A2)
lead to three different analysis types (Table 3). The two different form of approach A2 (i.e.,
“A2/(C3S + C2M)” and “A2/(C2S + C2M)”) differ only in the definition of the number
of SDCs (θ = θcr) for buildings that are classified to the “S” class for θ = 0 (three SDCs
(θ = θcr) in the case of C3S and two SDCs (θ = θcr) in the case of C2S). On the other hand,
the number of classes for buildings that are classified to the SDC “M” for θ = 0 is two in all
cases (Table 3). Therefore, in order to compare the A1 and A2, the comparison of the two
forms of A2 must first be performed. More specifically, the categories C3S and C2S must
first be compared, and then the more reliable of the two—in conjunction with C2M—can
be compared with A1.

The whole procedure for the evaluation of A1 and A2 was performed separately
for the three different versions of the selected RC buildings (i.e., BB, RIB, and IIB); thus,
the presentation of the results follows this rationale. Finally, it must be noted that the
presentation of the results in this section is separated into three parts: In the first part
(Section 4.1), the results of the investigation for the optimal configuration of the MLP
networks for A1 are presented and discussed. The second part (Section 4.2.) concerns
the corresponding procedure for A2. Finally, in the third part (Section 4.3), the results of
the comparison between the optimally configured MLP networks of the two approaches
are discussed.

4.1. Optimal Configuration of the MLP Networks Used for the Implementation of A1

In Figure 7, the values of the OA index for the three versions of the selected RC
buildings are presented. More specifically, this figure contains the maximum values of the
OA index extracted by the optimally configured MLP networks with one or two hidden
layers trained using the resilient backpropagation (RP) algorithm (see, e.g., [65]) and the
scaled conjugate gradient (SCG) algorithm (see, e.g., [66]). In Table 6, the corresponding
configuration parameters of the optimal MLP networks (i.e., number of hidden layers,
number of neurons/hidden layer, and activation functions of neurons) that extract the OA
values of Figure 7 are summarized.

From the study of Figure 7, the following main conclusions can be drawn:

• The networks with two hidden layers extract greater OA values than the networks
with one hidden layer; however, the differences between them are not significant.
More specifically, in the case of training using the RP algorithm, these differences
fluctuate between 3.1 and 6.7% for BB, 2.2 and 6.7% for RIB, and 5.3 and 9.5% for IIB.
The corresponding fluctuations in the case of training using the SCG algorithm are
2.1–3.1% (BB), 2.7–3.8% (RIB), and 3.2–3.8% (IIB);
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• As regards the evaluation of the used training algorithms for the networks with two
hidden layers, the RP algorithm is in all cases more effective than the SCG algorithm.
However, the extracted OA index values are generally acceptable regardless of the
used training algorithm. More specifically, the RP algorithm extracts OA values higher
than 82% (in the case of BB and IIB buildings, the values are almost equal to 90%),
whereas the corresponding values extracted by the SCG algorithm are slightly lower.
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Figure 7. Maximum OA index values extracted by NA1 networks with 1 or 2 hidden layers: (a) BB;
(b) RIB; (c) IIB.

The basic conclusion that can be extracted from the study of Table 6 is that, with only
one exception, the configuration of all optimal networks includes the tansig activation
function in the output layer.

Due to the fact that the above-mentioned differences between the maximum values of
the OA index extracted by the networks with one or two hidden layers are not significant,
a further examination of their performance using the other parameters defined through the
CMs is required. Thus, in Figure 8, the CMs of the optimally configured networks with one
and two hidden layers, which correspond to the testing subsets for the three versions of the
selected RC buildings, are presented.
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Table 6. The parameters of the optimally configured networks used for the implementation of A1.

Version of Buildings BB RIB IIB

Training Algorithm RP SCG RP SCG RP SCG

Number of HL 1 2 1 2 1 2 1 2 1 2 1 2

Training
data-set

Activation
functions T/T T/T/T T/T T/L/T T/T T/T/T L/T T/T/T T/T T/T/T T/T T/T/T

Neurons/HL 60 60/50 52 48/52 46 52/52 30 52/48 56 50/46 46 58/46

Testing
dataset

Activation
functions T/T L/L/T L/T T/T/T T/T L/L/T L/T T/L/T L/T T/T/T T/T L/T/L

Neurons/HL 30 36/34 14 28/50 30 28/14 52 58/52 24 20/10 14 10/12

Total dataset
Activation
functions L/T T/T/T T/T T/L/T T/T T/T/T T/T T/T/T T/T T/T/T T/T T/T/T

Neurons/HL 30 60/50 58 48/52 40 52/52 60 50/26 60 50/60 40 26/28

Notation—T: tansig, L: logsig, HL: hidden layer.
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Figure 8. CMs according to the testing subsets extracted by the optimally configured NA1 networks:
(a) BB; (b) RIB; (c) IIB.

From the study of Figure 8, it is obvious that the networks with two hidden layers
are more efficient than the networks with one hidden layer—not only on the basis of the
OA index values, but also according to the other two indices that are defined in the CMs,
namely, the recall (R) index and the precision (P) index. More specifically, the networks
that are the most efficient according to the OA index (Figure 7) also generally have higher
R-index and P-index values for the three versions of the studied RC buildings (i.e., BB,
RIB, and IIB). This means that the optimally configured networks with two hidden layers
efficiently classify the studied samples in each of the two SDCs. Therefore, the high OA
values of Figure 7 are extracted due to correct classifications to both of the two predefined
SDCs, and not to only one of them.

After the above-presented study of the results extracted from the trained networks
used for the solution of the problem according to A1, it can be concluded that the most
efficient (optimally configured) networks on the basis of the testing subset are those that
are summarized in Table 7.
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Table 7. Configuration parameters and names of the optimal networks used for A1.

Version of Buildings BB RIB IIB

Training algorithm RP RP RP
Number of HLs 2 2 2

Activation functions L/L/T L/L/T T/T/T
Neurons/HL 36/34 28/14 20/10

Name of network NA1-BB NA1-RIB NA1-IIB
Notation—T: tansig; L: logsig; HL: hidden layer.

4.2. Optimal Configuration of the MLP Networks Used for the Implementation of A2

As mentioned above (and in Table 3), A2 is defined using two alternative types that
differ in the number of predefined SDCs for the buildings that are classified to the SDC “S”
for θ = 0 (categories C3S and C2S). On the other hand, only one category for classification
of buildings that are classified to the SDC “M” for θ = 0 is defined (category C2M). Thus, in
order to compare the two types of A2 (i.e., “A2/(C3S + C2M)” and “A2/(C2S + C2M)” in
Table 3), a comparison between the categories C3S (NA2C3S networks) and C2S (NA2C2S
networks) must be performed.

4.2.1. Comparative Evaluation of the Optimally Configured NA2C3S and
NA2C2S Networks

In Figure 9, the OA index values extracted by the optimally configured networks
NA2C3S and NA2C2S for the three versions of the selected RC buildings are presented.
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Figure 9. Maximum OA index values extracted by NA2C3S and NA2C2S networks with 1 or 2
hidden layers: (a) BB; (b) RIB; (c) IIB.
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From the study of Figure 9, the following main conclusions can be extracted:

• In general, C2S extracts more reliable predictions than C3S. This conclusion is valid for
the three versions of the RC buildings. However, the differences between the two cate-
gories are not significant, especially in the case of BB (maximum difference = 2.44%).
For the other two versions of buildings, the differences are greater, but still not signifi-
cant (the maximum differences are 11% for RIB and 7.8% for IIB);

• According to the testing subsets, which are generally used in this paper for com-
parisons, no clear conclusion can be reached as regards the most efficient training
algorithm. In the case of C3S, the SCG algorithm is more efficient than the RP only for
BB. On the other hand, in the case of C2S, the RP algorithm is more efficient than the
SCG only for IIB;

• The addition of the second hidden layer improves the OA index values, but not signif-
icantly as regards the comparisons using the testing subsets. For BB, the differences in
maximum OA index values between the networks with one and two hidden layers
are 4.8% in the case of C3S and 3.6% in the case of C2S; for RIB, the corresponding
differences are 3.2% in the case of C3S and 5.1% in the case of C2S, whereas for IIB
they are 2.3% in the case of C3S and 3.2% in the case of C2S.

The results of the above analysis lead to the requirement of additional evaluation
using the other metrics defined in the CMs for the extraction of a more robust conclusion
as regards the most efficient category between C3S and C2S. Thus, in Figure 10, the CMs of
the best configured networks of Figure 9 (i.e., the networks that extract the maximum OA
index values presented in Figure 9) are illustrated.
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Figure 10. CMs according to the testing subsets extracted by the optimally configured NA2C3S and
NA2C2S networks: (a) BB; (b) RIB; (c) IIB.
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The configurations of CMs shown in Figure 10 indicate that the performance of
NA2C2S networks is generally very efficient regardless of the version of RC buildings (i.e.,
BB, RIB, or IIB). Indeed, for all versions of all buildings, the values of the R-index and the
P-index are greater than 75.8%; in addition, the vast majority of the values of these indices
are greater than 85%. Conversely, as regards the NA2C3S networks, the corresponding level
of efficiency for all versions of the RC buildings is not clear. In the case of BB, the values of
the R- and P-factors are extremely high, but the configuration of the corresponding testing
subset contains only samples that are classified to the SDC “S” for θ = 0. Therefore, no
conclusion can be extracted as to the ability of the network to correctly classify the samples
to other SDCs. After an extended investigation for other configurations of testing subsets
(it is reminded herein that in any training procedure the subsets are formed randomly)
containing all SDCs (θ = 0), it was found that the corresponding OA was smaller than
98.8%. Thus, in any case, the NA2C3S networks cannot be characterized as more effective
than NA2C2S for BB. As regards RIB, is it obvious that the values of the R-index and the
P-index cannot considered acceptable. Finally, the same holds for the R-index values of the
CM of RIB. For the above-mentioned reasons, the C2S (NA2C2S networks) is obviously
more efficient than the C3S (NA2C3S networks).

4.2.2. Optimal Configuration of the NA2C2M Networks

Section 4.2.1 shows that the optimally configured NA2C2S networks are more efficient
than the NA2C3S ones. In this section, the results of the procedure for the investigation of
the optimally configured NA2C2M networks are presented.

In Figure 11, the OA index values extracted by the optimally configured NA2C2M
networks for the three versions of the selected RC buildings are summarized. From the
study of Figure 11, it can be concluded that—as in the cases examined above—the networks
with two hidden layers extract higher OA values than the networks with one hidden
layer. In addition, these OA values are higher than 90% for all of the three versions of
RC buildings. As regards the most efficient training algorithms, no general conclusions
can be extracted, since for the BB and RIB the SCG algorithm is more efficient than the RP
algorithm, whereas for IIB the opposite is true. However, these differences between the
OA values extracted using the two algorithms are not significant—especially for the testing
subsets (less than 3.3%).

In order to more robustly confirm the advantage of networks with two hidden layers,
the CMs corresponding to the optimally configured networks with one and two hidden
layers (Figure 11), on the basis of the testing subsets, are presented in Figure 12.

The study of Figure 12 confirms (on the basis of the R-index and P-index) the conclu-
sion that the networks with two hidden layers are more efficient than the networks with
one hidden layer. Indeed, the vast majority of the R-index and P-index values of CMs that
correspond to networks with two hidden layers are greater than 90%. Conversely, the vast
majority of the corresponding values of the CMs of networks with one hidden layer are
lower than 90%.

Closing the presentation of the results of the investigation for the optimal configuration
of MLP networks used for the implementation of A2, the parameters of the optimally
configured NA2C3S, NA2C2S, and NA2C2M networks are summarized in Table 8.

4.3. Comparison of the Efficiency of the Optimally Configured Networks for A1 and A2

In this subsection, the results of the comparison between the optimally configured
networks used for the implementation of A1 and A2 are presented and evaluated. More
specifically, the networks described in Table 7 (A1) and Table 8 (A2) are compared using
the percentages of the correct classifications (OA index values) extracted for the samples of
the testing subsets. It should be noted here that, as regards A2, the form “A2/(C2S + C2M)”
is more efficient than the form “A2/(C3S + C2M),” as shown in Section 4.2. Therefore, the
results extracted by the networks NA1-BB, NA1-RIB, and NA1-IIB (Table 7) are compared to
those extracted by the networks NA2C2S-BB/NA2C2M-BB, NA2C2S-RIB/NA2C2M-RIB,
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and NA2C2S-IIB/NA2C2M-IIB (Table 8), respectively. Thus, the OA values extracted by
the above-mentioned networks are summarized in Figure 13.
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Figure 11. Maximum OA index values extracted by NA2C2M networks with 1 or 2 hidden layers:
(a) BB; (b) RIB; (c) IIB.
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Figure 12. CMs according to the testing subsets extracted by the optimally configured NA2C2M
networks: (a) BB; (b) RIB; (c) IIB.
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Table 8. Configuration parameters and names of the optimal networks used for the implementation
of A2.

Category A2/C3S A2/C2S A2/C2M

Version of
Buildings BB RIB IIB BB RIB IIB BB RIB IIB

Training algorithm SCG RP RP SCG SCG RP SCG SCG RP
Number of HLs 2 2 2 2 2 2 2 2 2

Activation
functions T/L/L L/L/T L/L/T T/T/T T/L/T L/T/T L/T/T T/T/T T/T/T

Neurons/HL 30/50 16/52 44/26 36/46 50/36 46/16 56/38 48/22 20/24

Name of network NA2C3S-
BB

NA2C3S-
RIB

NA2C3S-
IIB

NA2C2S-
BB

NA2C2S-
RIB

NA2C2S-
IIB

NA2C2M-
BB

NA2C2M-
RIB

NA2C2M-
IIB
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Figure 13. OA values extracted by the optimally configured networks for A1 and A2.

The results presented in Figure 13 indicate that A2 is clearly more efficient than A1
according to the OA index values for each of the three versions of the selected RC buildings.
However, the efficiency of A1 is not unacceptable, since the OA index of the corresponding
classifications is greater than 82% for RIB, whereas it is close to 90% for BB and IIB. Certainly,
the vast majority of the OA values extracted by means of A2 are greater than 90%, but it
must be noted that the implementation of A2 requires the knowledge of the classification of
buildings to an SDC for θ = 0. This means that NTHA or the simulation of properly trained
MLP networks is required for this classification (Nθ0 networks in Figure 3b).

Therefore, the implementation of A2 is accompanied by an additional classification
for the studied buildings. This additional classification can possibly add errors to the entire
procedure. On the other hand, A1 is free of these errors and is more flexible, because it can
be implemented regardless of the existence of classification of buildings for θ = 0.

Finally, the conclusion regarding the greater efficiency of A2 is also confirmed by
means of the CMs (i.e., the corresponding values of the R-index and P-index), which are
summarized in Figure 14.
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5. Conclusions

In this paper, we studied the ability of multilayered feedforward perceptron (MLP)
networks to reliably predict the influence of the critical angle of seismic excitation θcr on
the seismic damage to RC buildings in real time. To this end, the problem was defined and
solved as a pattern recognition (PR) problem. Thus, three different seismic damage classes
(SDCs) were defined (“slight” or “S”, “moderate” or “M”, and “heavy” or “H”) on the
basis of the maximum interstory drift ratio (MIDR), which is a widely used seismic damage
index. Two different approaches for the definition of the PR problem were considered. The
first (Approach 1, or A1) is a two-class PR problem where the first class corresponds to
buildings for which the SDC for θ = 0 is not increased for θ = θcr {Class 1: SDC (θ = θcr) =
SDC (θ = 0)}, whereas the second class corresponds to the opposite condition {Class 2: SDC
(θ = θcr) > SDC (θ = 0)}. The second approach (Approach 2, or A2) is based on the initial
separation of buildings into two categories, namely, the buildings that are classified to the
“S” SDC for θ = 0, and those that are classified to the “M” SDC for θ = 0. Then, two different
categories of A2 are defined: in the first framework (A2/C3S), three classes are considered
for the buildings that are classified to the “S” SDC for θ = 0 {Class 1: SDC (θ = 0) = “S”→
SDC (θ = θcr) = “S”, Class 2: SDC (θ = 0) = “S”→ SDC (θ = θcr) = “M”, Class 3: SDC (θ = 0)
= “S”→ SDC (θ = θcr) = “H”}, whereas in the second framework (A2/C2S) two classes
for these buildings are defined {Class 1: SDC (θ = 0) = “S”→ SDC (θ = θcr) = “S”, Class 2:
SDC (θ = 0) = “S”→ SDC (θ = θcr) = “M” or “H”}. On the other hand, two classes for the
buildings that are classified to the “M” SDC for θ = 0 (category A2/C2M) are considered
in all cases {Class 1: SDC (θ = 0) = “M”→ SDC (θ = θcr) = “M”, Class 2: SDC (θ = 0) =
“M”→ SDC (θ = θcr) = “H”}. Thus, two types of analysis are defined in the framework
of A2—“A2/(C3S + C2M)” and “A2/(C2S + C2M)”—whereas one type of analysis was
defined in the framework of A1 (the analysis type “A1”).

For each of the above-mentioned types of analysis, one category (four in total) of MLP
networks (NA1 networks for “A1”, NA2C3S networks for “A2/C3S”, NA2C2S networks
for “A2/C2S”, and NA2C2M networks for “A2/C2M”) was configured and trained using
training datasets that were generated by the authors in previous published research on
the basis of 3 different versions of 30 properly selected RC buildings (Bare Buildings “BB”,
Regularly Infilled Buildings “RIB”, and Irregularly Infilled Buildings “IIB”). As regards the
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input vectors for the MLP networks, 12 widely used seismic parameters and 3 structural
parameters were used. Due to the fact that the scope of the present research is the study
of the influence of the critical angle of seismic excitation on the seismic damage, we used
the min/max ratios of the values of the selected seismic parameters that correspond to the
two recorded horizontal components of excitations, as opposed to of the values extracted
using a numerical combination of them. As regards the three structural parameters, the
selection of them was also based on the nature of the problem, as well as on general (and
macroscopic) indices that influence the seismic damage response of buildings. Extended
parametric investigation was performed for the detection of the optimal configuration
of each of the four categories of the MLP networks. In this investigation, the number of
hidden layers, the number of neurons in each hidden layer, the types of activation functions
of neurons, and the training algorithms were examined. Thus, this parametric investigation
led to the optimally configured network of each of the four categories. The performance
of the studied configurations was evaluated using the overall accuracy (OA) index. In
cases in which this index failed to lead to clear conclusions, the other metrics defined in the
framework of the confusion matrices (CMs)—i.e., the R-index and the P-index—were also
used. The evaluation of networks was also based on the testing subsets that formed part of
the datasets used for the investigation of their generalization ability.

The main conclusions extracted from the above-described research procedure are
the following:

• Between the two different forms of A2 for the buildings classified to the SDC “S” for
θ = 0, “A2/C2S” was proven more efficient than “A2/C3S” for all versions of the stud-
ied RC buildings (i.e., BB, RIB, and IIB). This conclusion was based on comparisons
of the values of the OA index, as well as on comparisons of the values of the R- and
P-indices. The superiority of “A2/C2S” against “A2/C3S” means that the trained net-
works in the present study are more efficient for correct classifications in PR problems
with two categories. This conclusion (which certainly cannot be characterized as being
generally valid) must be further examined in future extended research. However,
the low efficiency of the trained networks used in the present study to classify the
testing samples to correct SDC eliminates the possibility of reliable predictions about
the specific SDC of buildings for θ = θcr. Therefore, the reliable predictions concern
the information about the change (or lack thereof) in the SDC for θ = θcr. Thus, the cat-
egory “A2/C2S” in combination with the category “A2/C2M” (which corresponds to
buildings that are classified to the SDC “M” for θ = 0)—i.e., the analysis type “A2/(C2S
+ C2M)”—was used for the comparison of A2 with A1;

• A2, expressed in the form of analysis type “A2/(C2S + C2M)”, was proven to be more
efficient than A1. However, the percentages of the correct classifications extracted by
A1 cannot be characterized as unacceptable, since the corresponding OA values were
in all cases greater than 80%. On the other hand, the OA values extracted by “A2/(C2S
+ C2M)” were greater than 90%. The real difference between the two approaches can
be reduced, since the application of A2 requires the knowledge of the SDC of buildings
for θ = 0. This knowledge can be obtained either by implementation of NTHA, or
by the simulation of networks properly trained to predict the SDC of buildings for
θ = 0. In both cases, the possibility of the insertion of errors can lead to incorrect
data for the implementation of “A2/(C2S + C2M)”. On the other hand, A1 can be
implemented without the knowledge of the SDC of buildings for θ = 0; thus, A1 is
not affected by these additional errors. For this reason, the two approaches can be
generally characterized as almost equal;

• As regards the optimal configuration of networks, it was observed that the addition
of a second hidden layer improved their classification ability in all studied cases.
However, the increases in the OA index values achieved using two hidden layers
instead of one are not always significant. On the other hand, the addition of the
second hidden layer significantly increases the values of the R- and P-indices in all
cases. The optimal number of neurons in the hidden layers cannot be estimated
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without the implementation of parametric investigation using a predefined rule; this
conclusion is consistent with the findings of the available relative literature. The
resilient backpropagation (RP) algorithm was proven to be more effective in the
training of NA1 networks (A1). On the other hand, no clear conclusion can be extracted
for the analysis of A2, because the RP algorithm and the scaled conjugate gradient
(SCG) algorithm (which was also used in the present study) were proven to be more
effective in almost the same number of cases belonging to this approach. Finally,
it was proven that the introduction of the hyperbolic tangent (tansig) function as
the activation function of neurons in the output layer of networks leads to optimal
classifications in all analyses using t A1, and in the vast majority of analyses using A2.

The benefit of the present investigation for civil engineers is the ability to extract
a rapid prediction as regards the sensitivity of a selected structural system for new RC
buildings to the angle of seismic excitation at the stage of design. The same is also valid
in the investigation of several strengthening schemes for existing RC buildings prone
to extended seismic damage. In other words, the proposed method gives a calculation
tool that contributes to the optimization of the design of new RC buildings’ structural
systems, or to the optimization of the configuration of strengthening schemes for existing
RC buildings.

Finally, it must be noted that a future expansion of the present investigation could
include the examination of different seismic or/and structural parameters for the input
vectors of networks, sensitivity analyses for the estimation of the parameters that most
influence the proposed method’s efficiency, and the prediction of the value of the critical
angle of the seismic excitation using the MLP networks (or other types of network) as
calculation tools for regression analysis.
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Appendix A. Generation of Training Dataset: Structural Parameters

In Appendix A, a brief description of the data that were used for the calculation of the
structural parameters of the ANNs’ input vectors (parameters StIP1, StIP2, and StIP3) and
output vectors (MIDR values) is presented.

In Figures A1 and A2, the configurations in the plans of the selected RC buildings
are illustrated. The modeling assumptions that were taken into consideration are com-
patible with the provisions of EN1998-1 [16] and EN1992-1-1 [56]. More specifically, the
assumptions considered for the linear analysis and design of buildings were the following:

• The buildings were considered to be fully fixed to the ground;
• The infill walls were considered only as vertical loads and not as seismic-resistant

structural elements;
• The buildings were designed as medium ductility class (MDC) structures [16];
• The behavior factor q was determined according to the recommendations of EN1998-

1 [16];
• The buildings were analyzed using the modal response spectrum method;
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• For the design of RC members, the load combinations 1.35G + 1.50Q and G + 0.3Q
± E were taken into consideration (G is the dead load, Q is the live load, and E is
the seismic load expressed by the simultaneous application of the design spectrum of
EN1998-1 [16] for seismic zone II and site class C along the x- and y-axes).

As regards the modeling of the selected RC buildings for the NTHA (calculation of
their damage index, i.e., MIDR value), the following assumptions were considered:

• The nonlinear behavior of the RC members was modeled by means of a lumped
plasticity model at the column and beam ends, as well as at the bases of the RC walls;

• The material inelasticity of the RC members was modeled using the modified Takeda
hysteresis rule (see e.g., [67]) (Figure A3);

• The effects of the axial load–biaxial bending moments interactions at the column
and wall hinges were taken into account by using the N-M2-M3 interaction diagram,
which was implemented in the software adopted for the application of the analyses [55]
(Figure A3);

• As regards the nonlinear modeling of the infill walls in case of RIB and IIB, nonlinear
diagonal struts based on the model proposed by Crisafulli [68] were adopted.

Regarding the evaluation of the used damage index MIDR (which corresponds to the
maximum drift among the perimeter frames), the post-processing of the NTHA results
leading to the calculation of its values is summarized for the case of an n-story building
with an arbitrary plan view in Figure A4.



Appl. Sci. 2022, 12, 1055 26 of 32Appl. Sci. 2022, 12, x FOR PEER REVIEW 26 of 32 

Figure A1. Design data of the 15 selected symmetric RC buildings. Figure A1. Design data of the 15 selected symmetric RC buildings.



Appl. Sci. 2022, 12, 1055 27 of 32Appl. Sci. 2022, 12, x FOR PEER REVIEW 27 of 32 
 

 

Figure A2. Design data of the 15 selected asymmetric RC buildings. Figure A2. Design data of the 15 selected asymmetric RC buildings.



Appl. Sci. 2022, 12, 1055 28 of 32Appl. Sci. 2022, 12, x FOR PEER REVIEW 28 of 32 
 

 
Figure A3. (a) Moment (M)–Rotation (θ) relationship and (b) N–M2–M3 interaction diagram. 

Regarding the evaluation of the used damage index MIDR (which corresponds to the 
maximum drift among the perimeter frames), the post-processing of the NTHA results 
leading to the calculation of its values is summarized for the case of an n-story building 
with an arbitrary plan view in Figure A4. 

 
Figure A4. Calculation of the MIDR value in the case of an n-story building with arbitrary plan 
view. 

Appendix B—Generation of Training Dataset: Seismic Parameters 
In Appendix B (Table A1), the data of 65 earthquakes that were used for the genera-

tion of the ANNs’ training dataset are presented. 

Table A1. Data of the 65 selected seismic excitations. 

No Earthquake Name Date 
Magnitude 

(Ms) 
Distance to Fault 

(km) Component (deg) PGA (g) 

1 Imperial Valley 15 October 1979 6.9 23.8 225/315 0.128/0.078 
2 Imperial Valley 15 October 1979 6.9 28.7 012/282 0.27/0.254 
3 Kocaeli, (Turkey) 17 August 1999 7.8 144.6 090/180 0.06/0.049 
4 Landers 28 June 1992 7.4 128.3 000/270 0.057/0.046 
5 Loma Prieta 18 October 1989 7.1 28.2 090/180 0.247/0.215 
6 Whittier Narrows 1 October 1987 5.7 25.2 000/090 0.221/0.124 
7 Northridge 17 January 1994 6.7 25.4 177/267 0.357/0.206 
8 Northridge 17 January 1994 6.7 30 020/110 0.474/0.439 
9 N. Palm Springs 8 July 1986 6 43.3 270/360 0.144/0.132 

10 Northridge 17 January 1994 6.7 13 000/270 0.41/0.482 
11 Northridge 17 January 1994 6.7 6.4 090/360 0.604/0.843 

Figure A3. (a) Moment (M)–Rotation (θ) relationship and (b) N–M2–M3 interaction diagram.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 28 of 32 
 

 
Figure A3. (a) Moment (M)–Rotation (θ) relationship and (b) N–M2–M3 interaction diagram. 

Regarding the evaluation of the used damage index MIDR (which corresponds to the 
maximum drift among the perimeter frames), the post-processing of the NTHA results 
leading to the calculation of its values is summarized for the case of an n-story building 
with an arbitrary plan view in Figure A4. 

 
Figure A4. Calculation of the MIDR value in the case of an n-story building with arbitrary plan 
view. 

Appendix B—Generation of Training Dataset: Seismic Parameters 
In Appendix B (Table A1), the data of 65 earthquakes that were used for the genera-

tion of the ANNs’ training dataset are presented. 

Table A1. Data of the 65 selected seismic excitations. 

No Earthquake Name Date 
Magnitude 

(Ms) 
Distance to Fault 

(km) Component (deg) PGA (g) 

1 Imperial Valley 15 October 1979 6.9 23.8 225/315 0.128/0.078 
2 Imperial Valley 15 October 1979 6.9 28.7 012/282 0.27/0.254 
3 Kocaeli, (Turkey) 17 August 1999 7.8 144.6 090/180 0.06/0.049 
4 Landers 28 June 1992 7.4 128.3 000/270 0.057/0.046 
5 Loma Prieta 18 October 1989 7.1 28.2 090/180 0.247/0.215 
6 Whittier Narrows 1 October 1987 5.7 25.2 000/090 0.221/0.124 
7 Northridge 17 January 1994 6.7 25.4 177/267 0.357/0.206 
8 Northridge 17 January 1994 6.7 30 020/110 0.474/0.439 
9 N. Palm Springs 8 July 1986 6 43.3 270/360 0.144/0.132 

10 Northridge 17 January 1994 6.7 13 000/270 0.41/0.482 
11 Northridge 17 January 1994 6.7 6.4 090/360 0.604/0.843 

Figure A4. Calculation of the MIDR value in the case of an n-story building with arbitrary plan view.

Appendix B. Generation of Training Dataset: Seismic Parameters

In Appendix B (Table A1), the data of 65 earthquakes that were used for the generation
of the ANNs’ training dataset are presented.

Table A1. Data of the 65 selected seismic excitations.

No Earthquake Name Date Magnitude
(Ms)

Distance to
Fault (km)

Component
(deg) PGA (g)

1 Imperial Valley 15 October 1979 6.9 23.8 225/315 0.128/0.078
2 Imperial Valley 15 October 1979 6.9 28.7 012/282 0.27/0.254
3 Kocaeli, (Turkey) 17 August 1999 7.8 144.6 090/180 0.06/0.049
4 Landers 28 June 1992 7.4 128.3 000/270 0.057/0.046
5 Loma Prieta 18 October 1989 7.1 28.2 090/180 0.247/0.215
6 Whittier Narrows 1 October 1987 5.7 25.2 000/090 0.221/0.124
7 Northridge 17 January 1994 6.7 25.4 177/267 0.357/0.206
8 Northridge 17 January 1994 6.7 30 020/110 0.474/0.439
9 N. Palm Springs 8 July 1986 6 43.3 270/360 0.144/0.132

10 Northridge 17 January 1994 6.7 13 000/270 0.41/0.482
11 Northridge 17 January 1994 6.7 6.4 090/360 0.604/0.843
12 Northridge 17 January 1994 6.7 12.3 000/090 0.303/0.443
13 Whittier Narrows 1 October 1987 5.7 10.8 048/318 0.426/0.443
14 Cape Mendocino 25 April 1992 7.1 9.5 000/090 0.59/0.662
15 Chi-Chi (Taiwan) 20 September 1999 7.6 2.94 N/W 0.251/0.202
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Table A1. Cont.

No Earthquake Name Date Magnitude
(Ms)

Distance to
Fault (km)

Component
(deg) PGA (g)

16 Chi-Chi (Taiwan) 20 September 1999 7.6 10.04 N/W 0.393/0.742
17 Chi-Chi (Taiwan) 20 September 1999 7.6 4.01 N/W 0.162/0.134
18 Chi-Chi (Taiwan) 20 September 1999 7.6 7.31 N/W 0.821/0.653
19 Chi-Chi (Taiwan) 20 September 1999 7.6 11.14 N/W 0.44/0.353
20 Chi-Chi (Taiwan) 20 September 1999 7.6 10.33 N/W 0.13/0.147
21 Chi-Chi (Taiwan) 20 September 1999 7.6 5.92 N/W 0.188/0.148
22 Erzincan (Turkey) 13 March 1992 2.0 NS/EW 0.515/0.496
23 Loma Prieta 18 October 1989 7.1 12.7 000/090 0.367/0.322
24 Loma Prieta 18 October 1989 7.1 14.4 000/090 0.555/0.367
25 Loma Prieta 18 October 1989 7.1 14.5 000/090 0.529/0.443
26 Northridge 17 January 1994 6.7 7.1 090/360 0.583/0.59
27 Northridge 17 January 1994 6.7 8.9 270/360 0.753/0.939
28 Northridge 17 January 1994 6.7 14.6 000/090 0.877/0.64
29 Northridge 17 January 1994 6.7 6.2 052/142 0.612/0.897
30 Campano Lucano (Italy) 23 November 1380 6.9 39 E-W/N-S 0.047/0.048
31 Spitak (Armenia) 7 December 1988 6.7 20 E-W/N-S 0.183/0.183
32 Izmit (Turkey) 17 August 1999 7.6 29 W-E/S-N 0.129/0.091
33 Duzce (Turkey) 12 November 1999 7.2 18 E-W/N-S 0.8/0.745
34 Duzce (Turkey) 12 November 1999 7.2 113 S-N/E-W 0.022/0.021
35 Duzce (Turkey) 12 November 1999 7.2 98 030/120 0.018/0.016
36 Duzce (Turkey) 12 November 1999 7.2 94 E-W/N-S 0.042/0.041
37 Izmit (Turkey) 17 August 1999 7.6 80 E-W/N-S 0.114/0.11
38 Duzce (Turkey) 6 June 2000 6.1 158 LONG/TRAN 0.004/0.004
39 Strofades (Greece) 18 November 1997 6.6 54 261/351 0.053/0.054
40 Aigion (Greece) 15 June 1995 6.5 138 065/155 0.013/0.013
41 Friuli (Italy) 11 September 1976 5.5 7 E-W/N-S 0.105/0.23
42 Volvi (Greece) 4 July 1978 15 E-W/N-S 0.099/0.115
43 Dinar (Turkey) 1 October 1995 6.4 0 W-E/S-N 0.319/0.273
44 Izmit (Turkey) 17 August 1999 7.6 5 E-W/N-S 0.244/0.296
45 Duzce (Turkey) 12 November 1999 7.2 0 W-E/S-N 0.513/0.377
46 Imperial Valley 15 October 1979 6.9 43.6 262/352 0.238/0.351
47 Loma Prieta 18 October 1989 7.1 16.1 000/090 0.417/0.212
48 Loma Prieta 18 October 1989 7.1 77.4 180/270 0.195/0.244
49 Northridge 17 January 1994 6.7 30.9 155/245 0.465/0.322
50 Northridge 17 January 1994 6.7 36.9 090/180 0.29/0.264
51 Duzce, Turkey 12 November 1999 7.3 17.6 000/090 0.728/0.822.
52 Northridge 17 January 1994 6.7 32.7 090/180 0.103/0.186
53 Imperial Valley 15 October 1979 6.9 54.1 075/345 0.122/0.167
54 Superstition Hills 24 November 1987 6.6 18.2 225/315 0.156/0.116
55 Duzce (Turkey) 12 November 1999 7.3 8.2 180/270 0.348/0.535
56 Imperial Valley 15 October 1979 6.9 7.6 002/092 0.213/0.235
57 Imperial Valley 15 October 1979 6.9 4.2 140/230 0.485/0.36
58 Imperial Valley 15 October 1979 6.9 1 140/230 0.519/0.379
59 Imperial Valley 15 October 1979 6.9 1 140/230 0.41/0.439
60 Livermore 27 January 1980 5.5 3.6 270/360 0.258/0.233
61 Superstition Hills 24 November 1987 6.6 13.9 000/090 0.358/0.258
62 Superstition Hills 24 November 1987 6.6 13.3 090/180 0.172/0.211
63 Morgan Hill 24 April 1984 6.1 12.8 270/360 0.224./0.348
64 Imperial Valley 15 October 1979 6.9 12.6 140/230 0.364/0.38
65 Morgan Hill 24 April 1984 6.1 3.4 150/240 0.156/0.312
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