

Appl. Sci. 2022, 12, 13036. https://doi.org/10.3390/app122413036 www.mdpi.com/journal/applsci

Article

Role-Based Access Control Model for Inter-System

Cross-Domain in Multi-Domain Environment

Yunliang Li 1,*,†, Zhiqiang Du 2,*,†, Yanfang Fu 2,*, Liangxin Liu 2

1 School of Armament Science and Technology, Xi’an Technological University, Xi’an 710021, China
2 School of Computer Science and Engineering, Xi’an Technological University, Xi’an 710021, China

* Correspondence: lyl@st.xatu.edu.cn (Y.L.); duzhiqiang@xatu.edu.cn (Z.D.); fuyanfang@xatu.edu.cn (Y.F.)

† These authors contributed equally to this work.

Abstract: Information service platforms or management information systems of various institutions

or sectors of enterprises are gradually interconnected to form a multi-domain environment. A multi-

domain environment is convenient for managers to supervise and manage systems, and for users

to access data across domains and systems. However, given the complex multi-domain environment

and many users, the traditional or enhanced role-based access control (RBAC) model still faces some

challenges. It is necessary to address issues such as role naming conflicts, platform–domain man-

agement conflicts, inter-domain management conflicts, and cross-domain sharing difficulties. For

the above problems, a role-based access control model for inter-system cross-domain in multi-do-

main environment (RBAC-IC) is proposed. This paper formally defines the model, divides roles into

abstract roles and specific roles, and designs the operating process of the access control model. The

model has four characteristics: support role name repetition, platform–domain isolation manage-

ment, inter-domain isolation management, and fine-grained cross-domain sharing. By establishing

security violation formulas for security analysis, it is finally shown that RBAC-IC can operate safely.

Keywords: role-based access control (RBAC); inter-system cross-domain; access control;

multi-domain environment; information service platform

1. Introduction

In recent years, more and more firms or organizations have integrated the previously

independent management information systems into a comprehensive information service

platform [1–3]. In addition, cloud computing, distribution and other information technol-

ogies are also developing rapidly. SaaS [4,5], blockchain [6,7] and other methods intercon-

nect the information service platforms of various sectors within the enterprise or various

institutions within the organization, forming a multi-domain environment. In addition, A

multi-domain environment accommodates various information systems deployed in dif-

ferent domain servers, and the structure is composed of three layers: platform in multi-

domain environment, domain, and system. Figure 1 shows the hierarchical structure of

the multi-domain environment. For example, the medical alliance is a multi-domain en-

vironment, and each hospital in the alliance belongs to a different domain. Each domain

contains various management information systems owned by the hospital. The permis-

sions of the same functional staff in different hospitals (domains) are different, and the

data need to be isolated. Permissions of the same personnel in different hospitals (do-

mains) are different, and the data need to be isolated. However, the medical alliance has

business needs such as cross-hospital collaborative treatment and prescription circulation,

so medical staff from different hospitals need to access data across domains.

In such a multi-domain environment, it is conducive to data sharing among enter-

prise sectors or various institutions within the organization, and it is also beneficial for

managers to supervise and manage the systems. Access control can prohibit illegal users

Citation: Li, Y.; Du, Z.; Fu, Y.;

Liu, L. Role-Based Access Control

Model for Inter-System

Cross-Domain in Multi-Domain

Environment. Appl. Sci. 2022, 12,

13036. https://doi.org/10.3390/

app122413036

Academic Editors: Christina Thorpe

and Stephen O' Shaughnessy

Received: 8 October 2022

Accepted: 13 December 2022

Published: 19 December 2022

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Appl. Sci. 2022, 12, 13036 2 of 27

from accessing resources in the system and prevent unauthorized operations by legitimate

users in the system. There are many access control technologies, among which role-based

access control (RBAC) [8] introduces the concept of role between users and permissions.

It assigns permissions to roles based on business responsibilities, and then grants roles to

users. The introduction of “role” simplifies the management of access control in complex

systems, and RBAC has been widely used [9–12]. However, multi-domain environment is

necessary to ensure data isolation among systems and to satisfy cross-domain sharing of

data by users. Under these premises, how to improve RBAC and design an access control

model for inter-system cross-domain, to control of user access is an urgent problem to be

solved.

Figure 1. Hierarchical structure of multi-domain environment.

At present, there is a lot of research on the cross-domain access control model. How-

ever, there are still the following problems to be solved in the current research results:

 Role naming conflict: After the introduction of the role concept [8], although the same

roles have similar responsibilities in different domains, it is necessary to allow the

same roles to have different permissions in different domains.

 Platform–domain management conflict: Avoid domain administrators from unau-

thorized manipulation of the platform, and platform administrators from accessing

domain server business data, resulting in privacy leakage.

 Inter-domain management conflicts: In a multi-domain environment, different do-

mains need to be isolated for management, and data among systems also need to be

isolated.

 Fine-grained cross-domain sharing: Meet users’ needs for inter-system cross-domain

access control. When a role is authorized cross-domain, only the required users are

authorized, and the role authorization rights are not assigned to other domain ad-

ministrators.

Aiming at the above problems, a role-based inter-system cross-control model (RBAC-

IC) is designed. Based on the traditional RBAC model, roles are extended to abstract roles

and specific roles. Abstract roles define the scope of responsibility, set hierarchies and

constraints of roles; specific roles are responsible for assigning permissions and authoriz-

ing users. Platform personnel are divided into three categories: platform administrators,

domain administrators and ordinary users. The two types of administrators are managed

at the levels of platform and domain, respectively. Ordinary users can apply for author-

ized specific roles inner-domain or cross-domain, and access system resources with the

authorized specific roles. The model has four characteristics: support role name repetition,

platform–domain isolation management, inter-domain isolation management, and fine-

grained cross-domain sharing.

The rest of this paper is organized as follows. Section 2 describes the research status

in related fields. We introduce the proposed model by formal definition in Section 3. In

Section 4, we expound on the execution flow after applying RBAC-IC on the multi-domain

environment platform. Section 5 introduces how to apply RBAC-IC to the multi-domain

Appl. Sci. 2022, 12, 13036 3 of 27

information service platform. The features and security of RBAC-IC are analyzed in Sec-

tion 6. It is concluded in Section 7.

2. Related Work

Sandhu et al. introduced the concepts of role hierarchy, constraint, etc., extended

RBAC into four forms and collectively called it the RBAC96 model [13]; most of the later

RBAC improvement schemes depended on the RBAC96 model. Later, Sandhu et al. pro-

posed the ARBAC97 model [14], which divides the roles into mutually exclusive regular

roles and administrative roles granted to the security administrators in the system; AR-

BAC97 standardizes and defines the operations of administrative roles to regular roles

within the system. Ferraiolo et al. proposed a standard for RBAC [15], which defines some

components of RBAC and their semantics, and regulates the operation and management

of RBAC; The standard plays a normative role for subsequent RBAC research work. How-

ever, when solving inter-system cross-domain access control problems, if these traditional

RBAC models are used, it can lead to a situation of role explosion [16], resulting in many

redundant roles with similar permissions and easy confusion.

There have been many studies on improving the RBAC model to solve the shortcom-

ings of the traditional RBAC model. Uddin et al. proposed a dynamic access control model

AW-TRBAC [17], which assigns tasks according to users’ roles, and access permissions

are only available when tasks are executed in the workflow. The dynamic nature of the

model alleviates the role explosion problem, but the security administrator does not de-

fine the management scope in the model and cannot resolve the inter-domain manage-

ment conflict. In references [18–20], the concept of multi-dimensional roles is proposed to

isolate tenants. Among them, reference [20] uses 4D-Role with user categories, and user

categories include tenant users and platform users, making cloud platform management

independent of tenant management. Strictly isolating users among different tenants is

beneficial to privacy protection, but it is not conducive to information sharing among ten-

ants.

Freudenthal et al. proposed a distributed role-based access control (dRBAC) [21]. In

dRBAC, each entity uses its own name as the namespace of its publishing role, and the

entity can delegate the role assignment rights to other entities, which in turn reduces role

naming conflicts and permission sharing. However, these assignment rights can be passed

so continually that it cannot control its indirect delegation. Tang et al. [22] proposed a

multi-tenant RBAC model for collaborative cloud services. The issuer of the truster estab-

lishes a trust relation with the trustee, and the users in the trustee can authorize the roles

in the truster to complete multi-tenant data sharing and isolation. The issuer needs to rely

on each trustee to establish public role sets, and the truster cannot control the trustee’s

user authorization. Abdelfattah et al. [23] used the role-to-role (RTR) mapping rules to

map a role in the organization with other organizational roles through the proposed role

mapping algorithm, so that users can share other organizational resources. References

[24–26], respectively, use inter-domain role mapping (IDRM) and role cross-domain in-

heritance to solve the problem of cross-domain sharing. References [23–26] have the same

defects as in reference [22]. The truster domain cannot control how the trustee domain

administrator authorizes roles to users, and the grain is coarse.

Uikey et al. proposed an RBAC architecture for multi-domain cloud environment

[27]. Service providers and the domain administrators are, respectively, responsible for

access control and access control policy management. There is a certain isolation between

the service provider and the domain, but the service provider is allowed to modify the

domain policies. Following that modification, the domain administrator needs to review

and redefine the policy, which increases the management burden of the domain adminis-

trator. In addition, when users request cross-domain access, the domain administrator

sends the policy to the corresponding domain, without considering the policy differences

between different domains. There are also some studies that determine whether to au-

thorize roles to users based on attributes [28] or points [29]. These concepts make the

Appl. Sci. 2022, 12, 13036 4 of 27

granularity of RBAC model finer, but the computing process has to be guaranteed to be

reasonably reliable, otherwise the security of the access control process will be affected.

3. Proposed Model

3.1. Overview

In order to solve the problems of role naming conflicts, inter-domain management

conflicts and cross-domain sharing difficulties. RBAC-IC divides roles into abstract roles

and specific roles. Abstract roles do not need to assign permissions and authorize users.

It is to define the responsibilities of positions contained in the system, set inheritance re-

lationships and constraints among roles, and form the mapping various jobs or positions

to system roles. Specific roles are an instantiation of an abstract role, and its purpose is to

grant it to users to obtain the appropriate permissions. The specific role needs to be asso-

ciated with an abstract role, and assign corresponding permissions to it according to the

requirements. At the same time, the specific role inherits the role inheritance and con-

straints of the associated abstract role. Thus, RBAC-IC has the characteristics of support

role name repetition, inter-domain isolation management and fine-grained cross-domain

sharing.

In order to solve the problem of platform–domain management conflict, RBAC-IC

divides platform personnel into three categories: platform administrators, domain admin-

istrators and ordinary users (users). The platform administrator is responsible for man-

agement operations for platform level such as platform configuration, system develop-

ment and configuration (creating abstract roles, creating permissions, etc.), and deploying

systems for domain servers. The domain administrator is responsible for creating specific

roles of the deployed system, assigning permissions to specific roles, and authorizing or-

dinary users. At the same time, when users in a local domain apply for cross-domain ac-

cess, the local domain administrator is responsible for sending cross-domain authoriza-

tion requests to the application domain administrator. Ordinary users are users who use

the application system. After granting specific roles, they can execute permissions by es-

tablishing sessions. The sessions activate a subset of the specific roles that ordinary users

have. The permissions available to ordinary users are the aggregate of the permissions of

all roles in activated sessions. Ordinary users need permission discrimination to access

resources. After passing the discrimination, they can read or manipulate system data.

Thus, RBAC-IC has the characteristics of platform–domain isolation management.

A role-based access control model for inter-system cross-domain in multi-domain

environment (RBAC-IC) is defined in Figure 2.

Figure 2. RBAC-IC sketch map.

Appl. Sci. 2022, 12, 13036 5 of 27

3.2. Formal Definition of Model Sets

Ud (Users). Set up a user set for each domain and the elements are composed of user,

user is a subject in access control, which can be authorized specific roles and activate ses-

sions, usually a person, device, or process, etc.

A user is two-tuples formed as <category, domain>, where category includes platform

administrators, domain administrators and ordinary users; domain is used to identify the

domain of domain administrators and ordinary users; domain of platform administrators

is empty. Formally:

Ud = {user1, user2, …, usern} (d = 1, 2, …, m) (1)

is the set of all user in domain d; m is the number of domains in the platform; n is the

number of users in domain d.

P (Permissions). A permission set is set for the entire platform, and the elements are

composed of permission, permission is the authorization of the subject to perform some op-

eration on the object.

The permission is triple-tuples formed as <category, operation, system>, where category

identifies the type of object manipulated by the permission, operation is a way of operating

a category, such as read, write or executable; system indicates that the permission is valid in

the system. Formally:

P = {permission1, permission2, …, permissionn} (2)

is the set of all permission in the platform; n is the number of permissions in the platform.

Od (Objects). Set up an object set for each domain and the elements are composed of

object. The object is the object (resources) in the system and be manipulated by users, which

usually exist in the form of files, data, etc.

An object is triple-tuples formed as <category, domain, system>, where category identi-

fies the type of object; domain and system indicate that the object is stored in the system of

the domain. Formally:

Od = {object1, object2, …, objectn} (d = 1, 2, …, m) (3)

is the set of all object in domain d; m is the number of domains in the platform; n is the

number of objects in domain d.

AR (Abstract_Roles). An abstract set is set for the entire platform and the elements

are composed of abstract_role. The abstract_role is abstraction of a set of responsibilities

within a system of the platform. It cannot be authorized to users, nor can abstract roles be

assigned permissions.

An abstract_role is triple-tuples formed as <system, primary_role, constraint>, where sys-

tem indicates that the abstract_role is valid in the system; primary_role is the set of abstract

roles which it inherits; constraint is the constraint set of the abstract role. Formally:

AR = {abstract_role1, abstract_role2, …, abstract_rolen} (4)

is the set of all abstract role in the platform; n is the number of abstract roles in the plat-

form.

SRd (Specific_Roles). Set up a specific role set for each domain and the elements are

composed of specific_role. The specific_role is assigned a set of permissions according to the

responsibilities of the associated abstract role and the personalized requirements of the

domain, and authorized the users to complete a certain business.

A specific_role is five-tuples formed as <abstract_role, permissions, domain, system,

valid_time>, where abstract_role is the abstract role associated with the specific role, permis-

sions are a group of permission assigned to the specific role, domain and system indicate

that the specific_role is valid in the system of the domain, and valid_time is the valid time of

the specific role, which is generally set when users apply for cross-domain access. When

valid_time → +∞, it means that the specific role is permanently valid. Specific roles can only

Appl. Sci. 2022, 12, 13036 6 of 27

be used in the designated system within its set domain, and must be valid for a period.

Formally:

SRd = {specific_role1, specific_role2, …, specific_rolen} (d = 1, 2, …, m) (5)

is the set of all specific role in domain d; m is the number of domains in the platform; n is

the number of specific roles in domain d.

Sd (Sessions). Set up a session set for each domain and the elements are composed of

session. When the user performs tasks, the session is the mapping between the user and

the specific roles that need to be activated.

A session is two-tuples formed as <user, specific_role>, where user and specific_role rep-

resent the user and specific roles are activated by the user, respectively. Formally:

Sd = {session1, session2, …, sessionn} (d = 1, 2, …, m) (6)

is the set of all session in domain d; m is the number of domains in the platform; n is the

number of sessions in domain d.

3.3. Formal Definition of Model Relationships

USRd ⊆ Ud × SRd. denote a set of many-to-many relationships from users to specific

roles. Formally:

∀(useri, specific_rolej) ∈ USRd (useri ∈ Ud, specific_rolej ∈ SRd) (d = 1, 2, …, l; i = 1, 2, …, m; j = 1, 2, …, n) (7)

SRPd ⊆ SRd × Pd. denote a set of many-to-many relationships from specific roles to

permissions. Domain administrators need to assign permissions to specific roles accord-

ing to the principle of least privilege [30] and the associated abstract roles. The user needs

to access the object through specific roles that conforms to the principle of minimum au-

thority, and cannot directly access the object by bypassing the specific role, nor can they

directly assign the permission to the user. Formally:

∀(specific_rolei, permissionj) ∈ SRPd (specific_rolei ∈ SRd, permissionj ∈ Pd) (d = 1, 2, …, l; i = 1, 2, …, m; j = 1, 2, …, n) (8)

USd ⊆ Ud × Sd. denote a set of one-to-many relationships from a user to sessions. For-

mally:

∀(user, sessioni) ∈ USd (user ∈ Ud, sessioni ∈ Sd) (d = 1, 2, …, m; i = 1, 2, …, n) (9)

SRARd ⊆ SRd × AR. denote a many-to-one relationship set from specific roles to an

abstract role. A specific role can only be associated with one abstract role, and an abstract

role can be associated with multiple specific roles. Formally:

∀(specific_rolei, abstract_role) ∈ SRARd (specific_rolei ∈ SRd, abstract_role ∈ AR) (d = 1, 2, …, m; i = 1, 2, …, n) (10)

sr_association(specific_role ∈ SRd) → AR. denote a mapping from a specific role to

an abstract role. Formally:

sr_association(specific_role ∈ SRd) = {abstract_role ∈ AR | (specific_role, abstract_role) ∈ SRARd} (11)

Property 1. A specific role has one and only one associated abstract role.

Proof of Property 1. The formal proof is as follows:

Suppose,

∀specific_role1 ∈ SR1;

∀abstract_role1, abstract_role2 ∈ AR;

If,

Appl. Sci. 2022, 12, 13036 7 of 27

sr_association(specific_role1) = abstract_role1;

sr_association(specific_role1) = abstract_role2;

Because,

sr_association(specific_role ∈ SRd) → AR;

So,

abstract_role1 = abstract_role2.

□

3.4. Formal Definition of Model Hierarchies

ARH ⊆ AR × AR. denote a set of inheritance relationships among abstract roles,

which is an antisymmetric partial order relationship. Formally:

(abstract_role′ ⪰ abstract_role) ∈ ARH (abstract_role’, abstract_role ∈ AR) (12)

where abstract_role′ is called the senior abstract role of abstract_role, and abstract_role is

called the primary abstract role of abstract_role′.

SRHd ⊆ SRd × SRd. denote a set of inheritance relationships among specific roles,

which is an antisymmetric partial order relationship. Formally:

(specific_role′ ⪰ specific_role) ∈ SRHd (specific_role′, specific_role ∈ SRd) (d = 1, 2, …, n) (13)

where specific_role′ is called the senior specific role of specific_role, and specific_role is called

the primary specific role of specific_role′. In addition, specific_role′ inherits all the permis-

sions of specific_role.

Property 2. The inheritance relationship among specific roles is consistent with the inheritance

relationship among the associated abstract roles. The formal expression is as follows,

Suppose,

∀specific_role1, specific_role2 ∈ SR1;

∀abstract_role1, abstract_role2 ∈ AR;

If,

sr_association(specific_role1) = abstract_role1;

sr_association(specific_role1) = abstract_role2;

abstract_role1 ⪰ abstract_role2;

So,

specific_role1 ⪰ specific_role2.

Example 1. There are four abstract roles A, B, C and D in the system. B and C inherit A; D inherits

B and C; A has a constraint. Create four specific roles A′, B′, C′, and D′ to be associated with A,

B, C, and D, respectively. Then, the inheritance relationship between the four specific roles is B′

and C′ inherit A′; D′ inherits B′ and C′; A′ inherits constraints of A. There are no other inher-

itance relationships, as shown in Figure 3.

Appl. Sci. 2022, 12, 13036 8 of 27

Figure 3. Example diagram of role inheritance.

ar_primary_role(abstract_role ∈ AR) → 2AR. denote all abstract roles inherited by an

abstract role. Formally:

ar_primary_role(abstract_role ∈ AR) = {ARi | ARi ⊆ AR} (14)

Property 3. If the abstract role has multiple inheritance, the abstract role set it inherits includes

the directly inherited abstract role set, and the abstract role set that it inherits indirectly. The formal

expression is as follows,

Suppose,

∀abstract_role′, ARa∪b, ARa, ARb ⊆ AR;

If,

ARa denote the set of direct primary abstract roles of abstract_role′;

ARb denote the full set of indirect primary abstract roles for abstract_role′;

ARb =
abstract_role' abstract_role

ar_primary_role abstract_role () ;

So, all abstract roles inherited by abstract_role′ are,

ARa∪b = ar_primary_role(abstract_role′) = ARa ∪ ARb.

sr_primary_role(specific_role ∈ SRd) → 2 dSR . denote all specific roles inherited by a specific

role. Formally:

sr_primary_role(specific_role ∈ SRd) = {
id

SR |
id

SR ⊆ SRd} (15)

Property 4. If a specific role has multiple layers of inheritance, the set of specific roles it inherits

includes the set of directly inherited specific roles and the set of specific roles that it inherits indi-

rectly. The formal expression is as follows,

Suppose,

∀specific_role′,
a b

SR
1

,
a

SR
1

,
b

SR
1

 ⊆ SR1;

If,

a
SR

1
 denote the set of direct primary specific roles of specific_role′;

b
SR

1
 denote the full set of indirect primary specific roles for specific_role′;

b
SR

1
 =

specific_role' specific_role

sr_primary_role specific_role () ;

Appl. Sci. 2022, 12, 13036 9 of 27

So, all specific roles inherited by specific_role′ are,

a b
SR

1
= sr_primary_role(specific_role′) =

a
SR

1
 ∪

b
SR

1
.

3.5. Formal Definition of Model Functions

user_authorization(user ∈ Ud) → 2 eSR . denote all specific roles authorized to a user.

Formally:

user_authorization(user ∈ Ud) = {
ie

SR |
ie

SR ⊆ SRe, (user,
ie

SR) ∈ USRd} (e = 1, 2, …, n) (16)

when e = d,
ie

SR indicates the specific role set of local domain for the user; when
ie

SR =

∅, it explains that the user does not have any specific role of domain e.

sr_assignment(specific_role ∈ SRd) → 2P. denote all the permissions assigned to a

specific role. Formally:

sr_assignment(specific_role ∈ SRd) = {Pi | Pi ⊆ P, (specific_role, Pi) ∈ SRPd} (17)

Property 5. If a specific role has a primary specific role, its permission set includes the directly

assigned permissions and the permissions of all its primary roles. The formal expression is as fol-

lows:

Suppose,

∀specific_role′, specific_role ∈ SR1;

∀Pa∪b, Pa, Pb ⊆ P;

If,

Pa denotes a permission set directly assigned to specific_role′;

Pb denote the permission set of all primary specific roles of specific_role′,

Pb =
specific_role sr_inheritance specific_role

sr_assignment specific_role
(')

() ;

So, all permissions assigned by specific_role′ are,

Pa∪b = sr_assignment(specific_role′) = Pa ∪ Pb.

user_assignment(user ∈ Ud) → 2P. denote all permissions a user has. Formally:

user_assignment(user ∈ Ud) =
specific_role user_authorization user

sr_assignment specific_role
 ()

() (18)

user_sessions(user ∈ Ud) → 2 eS . denote all sessions activated by a user. Formally:

user_sessions(user ∈ Ud) = {
id

S |
id

S ⊆ SRd, (user,
id

S) ∈ USd} (19)

session_user(session ∈ Sd) → user ∈ Ud. denote from a session to a user mapping. Formally:

session_user(session ∈ Sd) = {user | user ∈ Ud, (user, session) ∈ USd} (20)

session_sr(session ∈ Sd) → 2 eSR . denote all specific roles activated by a session. Formally:

session_sr(session ∈ Sd) = {
ie

SR |
ie

SR ⊆ SRd, (session_user(session),
ie

SR) ∈ USRd} (e = 1, 2, …, n) (21)

when e = d,
ie

SR indicates the specific role set of the local domain activated for the session; when

ie
SR = ∅, it explains that the session does not activate any specific role of domain e.

session_permission(session ∈ Sd) → 2P. denote all permissions activated by a session. For-

mally:

Appl. Sci. 2022, 12, 13036 10 of 27

session_permission(session ∈ Sd) =
specific_role session_ sr session

sr_assignment specific_role
 ()

() (22)

4. RBAC-IC Execution

The workflow diagram of RBAC-IC is shown in Figure 4.

Figure 4. Workflow of RBAC-IC.

4.1. Initialization Work

When developing and configuring the system, the platform administrator needs to

create abstract roles for domain administrators to create specific roles. The platform ad-

ministrator uploads the name, system, primary_role and constraint of the abstract role to the

platform. The platform checks whether name of the abstract role exists and whether the

system is empty. After passing all checks, the platform database stores the abstract role

information and inheritance relationship into the abstract role set and inheritance rela-

tionship set. Finally, the platform returns the execution result to the platform administra-

tor. Formally:

AR = AR ∪ abstract_role<system, primary_role, constraint>;

ARH = ARH ∪ (abstract_role, abstract_role[primary_role])
(23)

Platform administrators also need to create permissions for domain administrators

to assign permissions to specific roles. When creating a permission, the platform admin-

istrator uploads the name, category, operation and system of the permission to the platform.

The platform checks whether the name of the permission exists and whether other infor-

mation is empty. After passing all checks, the platform database stores the permission

information into the permission set. Finally, the platform returns the execution results to

the platform administrator. Formally:

P = P ∪ permission<category, operation, system> (24)

After deploying the system for the domain server, the domain administrator needs

to create specific roles for the deployed system. Specific roles are used to authorize the

user to complete the access operation. The domain administrator also needs to create spe-

cific roles with timeliness to meet users’ needs for cross-domain sharing. When creating a

specific role, the domain administrator uploads the name, abstract_role, permissions, system

and valid_time to domain server. The domain server first checks whether the name of the

specific role exists, then checks whether the system is empty, and then checks whether the

associated abstract role and each assigned permission exist. If all checks pass, the domain

of the domain administrator will be taken as the effective range (domain) of the specific

role. The domain database stores the specific role information and associated relationships

into a corresponding set. Finally, the execution results will be returned to the domain ad-

ministrator. Formally:

SRd = SRd ∪ specific_role<abstract_role, permissions, domain, system, valid_time>; (25)

Appl. Sci. 2022, 12, 13036 11 of 27

SRARd = SRARd ∪ (specific_role, specific_role[abstract_role]);

SRPd = SRPd ∪ (specific_role, specific_role[permissions]);

SRHd = SRHd ∪ (specific_role, specific_role[primary_role])

After the deployment of the domain server is completed, ordinary users can register

to join the domain. Formally:

Ud = Ud ∪ user<ordinary_user, domain> (26)

4.2. Authorization and Access Control

The authorization and access control framework of RBAC-IC is shown in Figure 5.

Figure 5 shows that the domain administrators of domain A and domain B have created

a specific role associated with the same abstract role in their respective domains, and as-

signed different permissions. An ordinary user in domain A wants to access an object in

domain B, and needs to authorize a relevant specific role in domain B. The user first ap-

plies to the administrator of the local domain, and the administrator sends a notification

to domain B. If the administrator of domain B agrees, the specific role will be authorized

to the user. After the user obtains the specific role, he can access resources in domain B

across domains. Sections 4.2.1 and 4.2.2 describe the details of authorization and access

control processing.

Figure 5. Authorization and access control framework of RBAC-IC.

4.2.1. Authorization Management

Users who want to access the objects in the system need to have corresponding per-

missions, which are obtained by authorizing specific roles. For inner-domain authoriza-

tion, the user applies for a specific role to the domain server where he belongs. If the do-

main administrator agrees to authorize, the domain server will check the specific role and

Appl. Sci. 2022, 12, 13036 12 of 27

authenticate. After the authentication is passed, the domain server will check whether the

user meets the constraint required by the specific role. After the inspection is correct, the

domain server will authorize the specific role to the user. The sequence diagram of apply-

ing for inner-domain authorization is shown in Figure 6.

Ordinary user
Local domain server

(Database)
Domain

administrator

 Apply for inner-domain
 authorization

Return result

Send notice

Consent authorization

Upload database

Check specific role

Check constraint

Authenticate

Figure 6. Sequence diagram of applying for inner-domain authorization.

When users need to cross-domain accesses objects, it is necessary to apply for cross-

domain authorization, and the domain administrator of the requested domain authorizes

the specific role. The user applies for cross-domain authorization to the local domain

server. After the authentication is passed and the local domain administrator agrees, the

local domain server sends a request to the corresponding domain server. If the adminis-

trator of the requested domain also agrees to authorize, the requested domain server

checks the specific role and determines whether the user meets the constraint. After the

inspection is correct, the domain administrator authorizes the specific role to the user. In

addition, domain administrators can set a valid time of the specific role. When valid time

is reached, the specific role will become invalid, and the user will not be able to continue

to access corresponding resources in the domain. The sequence diagram of applying for

cross-domain authorization is shown in Figure 7.

Appl. Sci. 2022, 12, 13036 13 of 27

Ordinary user
Local domain server

(Database)
Local domain
administrator

 Apply for cross-domain
 authorization

Return result

Send notice

Consent authorization

Requested domain server
(Database)

Requested domain
administrator

Send request

Upload database

Send notice

Consent authorization

Authenticate

Check specific role

Check constraint

Figure 7. Sequence diagram of applying for cross-domain authorization.

4.2.2. Access Control

When the user requests to access objects of system, the system needs to control the

user’s behavior and decide whether to allow the user to access the objects through authen-

tication and authority judgement. The access control can be automatically determined by

the domain server without the operation of the administrator, as shown in Algorithm 1.

The process of cross-domain access control is like that of inner-domain access control, but

it is different when applying for authorization. After the user applies for access to the

object, the user is authenticated in the user’s domain. Then, the permission discrimination

is carried out in the domain of the user’s target object. The permission discrimination pro-

cess checks the correctness of the object, specific role, and permission in turn. Then, the

permission discrimination is carried out in the domain of the user’s target object. It in-

cludes checking whether the object exists, whether the user has the declared specific role

and permission, whether the specific role and permission declared by the user are valid

in the applied domain and system, and whether the specific role is in valid time. After

checking that everything is correct, the user’s operation behavior is executed.

Algorithm 1. Access control.

Input: u(user), o(object), p(permission), sr(specific_role)

Output: bool

1: Domain Server ← Ordinary User(u, o, p, sr)

2: if Ud[u] != true || u[category] != ordinary_user then

3: return false

4: if Od[o] != true || sr[domain] != o[domain] || p[system] != o[system] || p[category] != o[category] then

5: return false

6: for i = 0 to user_authorization(u).length - 1 do

7: if user_authorization(u)[i] == sr && user_authorization(u)[i][valid_time][min_time] < current_time && user_au-

thorization(u)[i][valid_time][max_time] > current_time then

8: for i = 0 to sr_assignment(sr).length - 1 do

9: if sr_assignment(sr)[i] == permission then

10: Sd = Sd ∪ (u, sr)

11: return true

12: return false

Appl. Sci. 2022, 12, 13036 14 of 27

5. Case Analysis

In order to better understand and verify the RBAC-IC model, a set of multi-domain

information service platform is developed, which uses the RBAC-IC model as the access

control model. At present, the platform has been applied in Taishan Zhizhen Packaging.

The main business of the group is to produce metal cans.

5.1. Platform Architecture

Taishan Zhizhen Packaging has several production subsidiaries in different cities.

Each manufacturing subsidiary of this group has a domain server as a domain in the plat-

form, called the production domain. Some parts or processes of packaging cans (such as

can cover manufacturing, metal can printing, etc.) are processed by cooperative outsourc-

ing companies, and the domain server of the outsourcing company is called the out-

sourced domain. All administrative departments of the group are located at the group

headquarters, and they share a domain server called the administrative domain. Each pro-

duction and outsourced domain contain a production management information system

to manage production data, and a financial management information system to manage

the company’s finances. The administrative domain contains a sales management infor-

mation system, an HR management information system, and a financial management in-

formation system to, respectively, manage the corresponding business data. The multi-

domain environmental structure of Taishan Zhizhen Packaging is shown in Figure 8.

Clearly, the business logic has been suitably simplified by considering only a production

domain, an outsourced domain and an administrative domain, and three management

information systems: production, sales and finance.

Production
domain 1

Production
domain 2

Multi-domain environmental
of Taishan Zhizhen Packaging

Outsourcing
domain

Administra-
tive domain

1. Production system

2. Financial system

1. Sales system

2. HR system

3. Financial system

……

1. Production system

2. Financial system

1. Production system

2. Financial system

Figure 8. Multi-domain environmental structure of Taishan Zhizhen Packaging.

The back-end business and API interfaces of the platform and system are developed

using Spring Boot 2.7.0. MySQL 5.7 is used for platform database and domain database.

The data volume and concurrency of the production system in the production domain

and outsourcing domain are high, and users will interact with the production system un-

interruptedly during the production process. Therefore, it is deployed on a high-perfor-

mance cloud server, and the CPU is Intel Xeon (Cascade Lake) Platinum 8269CY@2.50

GHz (64 G memory). The administrative domain is deployed on the server, and the CPU

of the server is Intel Xeon E5-2620 v3@2.40 GHz (32 G memory).

5.2. Design of Platform Access Control Model

In the platform, platform administrators are responsible for the design of abstract

roles and permissions, while domain administrators are responsible for specific role de-

sign, user registration, and user authorization. The responsibilities of the two types of ad-

ministrators do not intersect, reflecting the platform–domain isolation management fea-

ture of the RBAC-IC and solving the platform–domain management conflict problem.

Appl. Sci. 2022, 12, 13036 15 of 27

5.2.1. Design of Abstract Roles

Abstract roles are designed as shown in Table 1. AR1 and AR3 are the primary roles

of AR2 and AR4, respectively. Specific roles associated with AR2 inherit all the permis-

sions of specific roles associated with AR1. The cardinality constraint limit for AR2, AR4

and AR7 is 1; that is, their associated specific roles can only be authorized to one user at

most. AR2 and AR4 have prerequisite constraints. When authorizing a specific role asso-

ciated with AR2 or AR4 to a user, the user must have authorized the specific role associ-

ated with AR1 or AR3. AR5 and AR6 are mutex, and their associated specific roles cannot

be authorized to a user at the same time.

Table 1. Design of abstract roles.

Serial Number Name System Primary Role Constraint

AR1 Production staff Production

AR2 Production executive Production AR1
Cardinality (1)

Prerequisite (AR1)

AR3 Sales staff Sales

AR4 Sales executive Sales AR3
Cardinality (1)

Prerequisite (AR3)

AR5 Accountant Finance Mutex (AR6)

AR6 Auditor Finance Mutex (AR5)

AR7 Treasurer Finance Cardinality (1)

5.2.2. Design of Permissions

Permissions are designed as shown in Table 2. The permissions are valid within the

specified systems of all domains.

Table 2. Design of permissions.

Serial Number Category Operation System

P1 Data of three-piece cans Input Production

P2 Data of three-piece cans Read Production

P3 Data of two-piece cans Input Production

P4 Data of two-piece cans Read Production

P5 Production report of product A Publish Production

P6 Production report of product B Publish Production

P7 Sales data Input Sales

P8 Sales data Read Sales

P9 Sales report Publish Sales

P10 Financial statement Publish Finance

P11 Financial statement Audit Finance

P12 Financial report Publish Finance

5.2.3. Design of Specific Roles

Specific roles are designed as shown in Table 3. The subsidiary is responsible for the pro-

duction of three-piece cans and two-piece cans. There are two specific roles SR1 and SR2 asso-

ciated with AR1 in the production domain. SR1 and SR2 are assigned the read and write per-

missions for the data of three-piece cans and two-piece cans, respectively. The printing com-

pany in the outsourcing domain is responsible for printing metal materials for the three-piece

cans. The printing company is only responsible for printing the three-piece cans. Therefore,

only one specific role SR5 associated with AR1 is required, and SR5 is assigned read/write

permissions for the data of two-piece cans. SR6, the production staff of the printing company,

only has the permission to publish the production report of three-piece cans. In addition, the

Appl. Sci. 2022, 12, 13036 16 of 27

printing staff need to work according to the processing data of the three-piece cans. At this

time, the domain administrator of the production domain needs to create the specific role SR4,

and only assign the data read permission of the three-piece cans. SR4 is designed to provide

cross-domain access for printing staff in outsourced domains.

Due to the inheritance relationship, SR3 inherits all the permissions of SR1, SR2 and SR4,

and SR6 inherits the permissions of SR5. Data and specific roles under different domain serv-

ers are isolated from each other, and the specific roles are valid in the designated systems and

domains. Therefore, RBAC-IC has inter-domain isolation management of the RBAC-IC and

solves the problem of inter-domain management conflict. SR3 and SR6 have the same name,

but the two roles have different permissions in different domains, so they have the feature of

support role name repetition, solving the problem of role naming conflicts. SR4 is set by the

administrator for users in other domain to cross-domain access, and the valid time is set to 12

h.

Table 3. Design of specific roles.

Serial

Number
Name

Abstract

Role
Permission Domain System Valid Time

SR1 Production staff of three-piece cans AR1 P1, P2 Production Production +∞

SR2 Production staff of two-piece cans AR1 P3, P4 Production Production +∞

SR3 Production Supervisor AR2 P5, P6 Production Production ∞

SR4 Outsourced printing staff AR1 P1 Production Production
2022-07-03T00:00:00Z

2022-07-05T23:59:59Z

SR5 Printing staff AR1 P1, P2 Outsourced Production +∞

SR6 Production Executive AR2 P5 Outsourced Production +∞

SR7 Sales staff AR3 P7, P8 Administrative Sales +∞

SR8 Sales Executive AR4 P9 Administrative Sales +∞

SR9 Accountant AR5 P10 Administrative Finance +∞

SR10 Auditor AR6 P11 Administrative Finance +∞

SR11 Treasurer AR7 P12 Administrative Finance +∞

5.2.4. User’s Authorization

Design and authorization of users is shown in Table 4. RBAC-IC has three ways of

authorizing the user a specific role. Users can be authorized multiple roles of a system in

their domain, as shown in Figure 9a. For example, U1 can produce three-piece cans and

two-piece cans, so it is authorized SR1 and SR2 of the production management infor-

mation system. Users also can be authorized to have a specific role for multiple systems

in their domain, as shown in Figure 9b. For example, U2 can be the sales executive and

treasurer at the same time, so it is authorized SR8 and SR11 (assuming constraints are

met). Users can be authorized specific roles in other domains, as shown in Figure 9c. For

example, U3, the printing staff in the outsourcing domain, needs to carry out printing

according to the data of three-piece cans in the production domain, and thus, it can be

authorized SR4.

Appl. Sci. 2022, 12, 13036 17 of 27

Domain

System1 System2 System3

Specific role1 Specific role2 Specific role3

User

Domain

System1

Specific role1 Specific role2 Specific role3

User

Domain2

System1

Domain1

Specific role2

User

(a) (b) (c)

Figure 9. Diagram of the way users are authorized to have specific roles. (a) Single system multi-role

authorize approach. (b) Multi-system multi-role authorize approach. (c) Cross-domain authorize

method.

When authorizing specific roles to users, this will be limited by the constraint. After

having already authorized SR3 to U1, authorizing SR3 to U4 will be denied because SR3

can only authorize one user at most. This is allowed when authorizing SR3 for U1, which

already has the prerequisite role SR1 or SR2 required by SR3, but cannot authorize SR8 to

U5 because U5 has not authorized the prerequisite role SR7 required by SR8, which vio-

lates prerequisite constraints. SR9 has been successfully authorized for U6, so continuing

to authorize SR10 for U6 would be rejected because the two specific roles are mutex.

Table 4. User authorization.

User Number Domain of User Specific Role Authorization Result

U1 Production SR1 Allowance

U1 Production SR2 Allowance

U2 Administrative SR8 Allowance

U2 Administrative SR11 Allowance

U3 Outsourced SR4 Allowance

U1 Production SR3 Allowance

U4 Production SR3
Denial

(Cardinality constraint)

U5 Administrative SR8
Denial

(Prerequisite constraint)

U6 Production SR9 Allowance

U6 Production SR10
Rejection

(Static mutex constraint)

5.2.5. User’s Access Control Operation

Suppose a user requests to input production data of three-piece cans into the produc-

tion management information system in the production domain, the access control exam-

ple is shown in Table 5. U7 does not exist in the production domain, so access is denied

due to authentication failure. When U1 requests access using SR5, the domain of SR5 is

inconsistent with that of the resource, and access is denied. When U1 requests access using

P3, the resource type of P3 does not match the requested resource type, and access is de-

nied. When U2 requests access using SR1, U2 does not authorize SR1, and access is denied.

When U1 requests access using SR1 and P1, SR2 does not assign P1, and access is denied.

When U1 requests access using SR1 and P1, at this point, authentication and permission

discriminations all pass, and access is allowed. When U4 uses SR4 and P1 to request ac-

cess, U4 performs authentication in the outsourced domain and determines the permis-

sion in the production domain. If they all pass, this cross-domain access is allowed.

Appl. Sci. 2022, 12, 13036 18 of 27

Table 5. Example access control table.

User Domain of User Specific Role Permission Result of Access Reason of Denial

U7 Production SR1 P1 Denial Authentication failed

U1 Production SR5 P1 Denial Mismatch between SR5 and resource

U1 Production SR1 P3 Denial Mismatch between P3 and resource

U2 Production SR1 P1 Denial U2 has not authorized SR1

U1 Production SR2 P1 Denial P1 is not assigned to SR2

U1 Production SR1 P1 Allowance /

U3 Outsourced SR4 P1 Allowance /

6. Model Evaluation

6.1. Model Characteristics

For support role name repetition, it is achieved by splitting roles into abstract and

specific roles. Domain administrators create specific roles for systems in the domain, then

assign permissions to specific roles based on responsibilities of the associated abstract

roles. Different permissions are allowed for specific roles with the same name in different

domains, so it will not cause role naming conflicts.

For platform–domain isolation management, RBAC-IC has designed three types of

personnel: platform administrators, domain administrators and ordinary users. Platform

administrators can create abstract roles, but abstract roles do not assign permissions and

authorize users. Therefore, platform administrators cannot control the database of the do-

main server. Domain administrators can create specific roles that are valid only within

their domain, and assign permissions to them and authorize them to ordinary users. In

this way, privacy disclosure to platform administrators is avoided.

For inter-domain isolation management, RBAC-IC regards specific roles as a five-

tuple, in which if domain and system element are different, the effective system and do-

main of the specific role are different. This ensures that systems and data in different do-

mains are isolated from each other.

For fine-grained cross-domain sharing, domain administrators create special specific

roles for cross-domain access, and users can cross-domain access after authorizing these

specific roles. These specific roles are authorized by the domain administrator of the do-

main where they are located, and the authorizing rights of the roles are not assigned to

other domain administrators, to achieve fine-grained authorization. In addition, domain

administrators can also set valid time for these specific roles, and these specific roles will

automatically become invalid after the expiration.

Table 6 shows the comparison between RBAC-IC and other schemes in the above

four characteristics.

Table 6. Characteristics comparison between RBAC-IC and other schemes.

Schemes
Support Role Name

Repetition

Platform–Domain

Isolation Management

Inter-Domain Isolation

Management
Cross-Domain Sharing

RBAC96

[13]
Not supported. Not supported. Not supported. Not supported.

ARBAC97

[14]
Not supported.

Not supported. (Admin-

istrative role can be

slightly refined to sup-

port.)

Not supported. Not supported.

Uddin et al.

[17]

Not supported. (Role redun-

dancy can be reduced through

highly dynamic workflow and

task concepts.)

Not applicable. Not applicable. Not applicable.

Appl. Sci. 2022, 12, 13036 19 of 27

Literature

[18,19]

Yes. (Expand the role to two

or three dimensions.)
Not supported.

Yes. (Roles are valid

only within the speci-

fied scope.)

Not supported.

Zhang et

al. [20]

Yes. (Expand the role to four

dimensions.)

Yes. (The category ele-

ment of the 4D role dis-

tinguishes the platform

administrator, tenant ad-

ministrator and user.)

Yes. (Roles are valid

only within the speci-

fied scope.)

Not supported.

Ferraiolo et

al. [21]

Yes. (Use the role namespace

as the role prefix.)
Not applicable.

Yes. (It can be isolated

through the role

namespace.)

Fine-grained is not sup-

ported. (By delegate the

role assignment rights to

other entities.)

Tang et al.

[23]
Not applicable. Not applicable.

Fine-grained is not supported. (After the issuer of

the truster establishes private role sets and public

role sets, it establishes a trust relationship with

the trustee. The issuer of the truster can authorize

users roles of the public role set.)

Uikey et al.

[22]
Not applicable.

Yes. (It designs service

providers and domain

administrators.)

Not applicable.

Yes, fine-grained is sup-

ported. (It supports the

way to forward access

control policies to other

domains.)

RBAC-IC

Yes. (Expand the role to ab-

stract roles and specific roles,

and allow the specific role un-

der different domains to have

the same name.)

Yes. (Administrators are

divided into platform ad-

ministrators and domain

administrators to handle

specified businesses, re-

spectively.)

Yes. (Different specific

roles are only valid in

the domain they belong

to.)

Fine-grained is not sup-

ported. (The domain ad-

ministrator can authorize

other domain users to

have specific roles, and

will not authorize the

role assignment right.)

6.2. Security Analysis

Some security violation formulas are proposed to verify the security of the model. In

any case, the security of the system can only be proved if these security violation formulas

cannot be satisfied.

6.2.1. Model Confidentiality Analysis

1. Unauthorized access;

sr ∉ user_authorization(u) ∧ s ∈ user_session(u) ∧ sr ∈ session_sr(s) (27)

This formula describes that if user u does not authorize the specific role sr, but the user

still activates session s, sr is used in session s. This indicates that the user has used an

unauthorized specific role for unauthorized access.

Proof that RBAC-IC does not meet Formula (27).

Assume that user u has authorized sr, that is,

sr ∈ user_authorization(u) ∧ s ∈ user_session(u) ∧ sr ∈ session_sr(s) (28)

is established;

When the sr is not authorized to the user, if there is a case where s can be activated by the

user and sr can be used in s, Formula (27) holds;

At the same time. Illustrate the following formula,

Appl. Sci. 2022, 12, 13036 20 of 27

sr ∉ user_authorization(u) ∧ sr ∈ user_authorization(u) ∧ s ∈ user_session(u) ∧ sr ∈ session_sr(s) (29)

should be established;

However, due to sr ∈ user_authorization(u) and sr ∉ user_authorization(u), conflicts exist;

Therefore, Formula (29) does not hold; that is, Formulae (27) and (28) cannot hold at the

same time;

It can be proved that RBAC-IC does not meet Formula (27). □

2. Access with specific role without permission;

p ∉ sr_assignment(sr) ∧ sr ∈ user_authorization(u) ∧ s ∈ user_session(u) ∧ p ∈ session_permission(s) (30)

This formula describes that if user u authorizes the specific role sr, sr does not assign per-

mission p, but the user still activates session s, and p is used in session s. This indicates

that the user has used an unassigned permission for unauthorized access.

The proof process for RBAC-IC not meeting Formula (30) is similar to Formula (27).

3. Access with expired specific role;

current_time ∉ sr[valid_time] ∧ s ∈ user_session(u) ∧ sr ∈ session_sr(s) (31)

This formula describes that the specific role sr has expired, but user u can still use sr in the

activated session s. This indicates that the user is using an expired specific role.

Proof that RBAC-IC does not meet Formula (31).

Assume that the current time is within the effective time range of the specific role sr; that

is, sr[valid_time][min_time] ≤ current_time ≤ sr[valid_time][max_time];

If the current time is not within the valid time range; that is, sr[valid_time][min_time] >

current_time > sr[valid_time][max_time];

If there is a case where s can be activated by the user and sr can be used in s, Formula (31)

holds;

At the same time. Illustrate the following formula,

current_time ∉ sr[valid_time] ∧ current_time ∈ sr[valid_time] ∧ s ∈ user_session(u) ∧ sr ∈ session_sr(s) (32)

should be established;

However, current_time ∉ sr[valid_time] and current_time ∈ sr[valid_time] conflicts exist, and

RBAC-IC stipulates that specific roles can only be used within the validity period.

Therefore, Formulae (31) and (32) cannot hold at the same time.

It can be proved that RBAC-IC does not meet Formula (31). □

6.2.2. Model Constraint Security Analysis

1. Static mutex constraint;

static_mutex(sr1, sr2) ∧ sr1, sr2 ∈ user_authorization(u) (33)

where static_mutex(sr1, sr2) indicates that specific roles sr1 and sr2 have static mutual exclu-

sion constraints; that is, the two roles cannot be authorized to one user. This formula de-

scribes the sr1 and sr2 that authorize the user u with static mutex constraints at the same

time. This indicates that the static mutual exclusion constraint rule of the specific role is

violated.

Proof that RBAC-IC does not meet Formula (33).

Assume there is user u, and specific roles sr1 and sr2, sr1 ≠ sr2, and there is a static mutual

exclusion relationship between sr1 and sr2;

Assume that sr1 is authorized to u, and sr2 is not authorized to u; that is,

Appl. Sci. 2022, 12, 13036 21 of 27

static_mutex(sr1, sr2) ∧ sr1 ∈ user_authorization(u) ∧ sr2 ∉ user_authorization(u) (34)

is established;

If both sr1 and sr2 are authorized to u, Formula (31) is established;

According to the static mutual exclusion relationship between sr1 and sr2, users can only

be authorized to a specific role in the specific role set with static mutual exclusion rela-

tionship;

Therefore, both sr1 and sr2 cannot be authorized to u;

It can be proved that RBAC-IC does not meet Formula (33). □

Figure 10 shows an example of a static mutex constraint.

da

sr1 sr2

u

Static
mutex

①
② ②

①

Figure 10. There is a static mutex constraint between sr1 and sr2. The domain administrator da can

only authorize one of sr1 and sr2 to the user, that is, only one of ① and ② processes can be executed.

2. Cardinality constraint;

cardinality(sr, m) ∧ sr ∈ user_authorization(u1) ∧ sr ∈ user_authorization(u2) ∧ … ∧ sr ∈ user_authorization(un) (n > m) (35)

where cardinality(sr, m) means that the specific role sr can only be authorized to m users at

most, and there is a cardinality constraint. This formula describes that the specific role sr

is authorized to n users at the same time, and the number of authorizations exceeds the

maximum number of cardinals m. This shows that the cardinal constraint rule of the spe-

cific role is violated.

Proof that RBAC-IC does not meet Formula (35).

Assume that the specific role sr exists, and sr has cardinality constraints cardinality(sr, m);

In the current state, no user has authorized sr. At this time, if the domain administrator

has authorized sr for no more than m users, the cardinality(sr, m) constraint is satisfied;

That is

cardinality(sr, m) ∧ sr ∈ user_authorization(u1) ∧ sr ∈ user_authorization(u2) ∧ … ∧ sr ∈ user_authorization(un) (n ≤ m) (36)

is established;

If the number of users with sr is greater than m, Formula (35) is valid;

According to the pigeonhole principle [31], if m users have m + 1 sr, it means that at least

one user will have two identical sr, but the user cannot authorize this sr again if he has 1

sr;

Therefore, the number of users with sr cannot be greater than m;

According to cardinality(sr, m), sr can only be authorized to m users at most, and no more

than m users have sr.

Therefore, Formula (35) conflicts with cardinal constraint rules, and Formula (35) is not

valid;

It can be proved that RBAC-IC does not meet Formula (35). □

Appl. Sci. 2022, 12, 13036 22 of 27

3. Prerequisite constraint;

prerequisite(sr1, sr2) ∧ sr2 ∉ user_authorization(u) ∧ sr1 ∈ user_authorization(u) (37)

where prerequisite(sr1, sr2) indicates that the user must have the specific role sr2 before au-

thorizing the specific role sr1, and sr1 has prerequisite constraints. This formula describes

that the user u is authorized with sr1, but not with sr2. This indicates that the precondition

constraint rule of the specific role is violated.

Proof that RBAC-IC does not meet Formula (37).

Assume there is user u, and specific roles sr1 and sr2, sr1 ≠ sr2, and sr2 is a prerequisite role

of sr1;

Follow these steps to authorize users,

step1: Authorize sr2 to u;

step2: Authorize sr1 to u;

If step 1 is never executed and step 2 is directly executed, Formula (37) is established;

According to the prerequisite of the specific role, the user must have authorized the spe-

cific role that has the prerequisite specific role.

Therefore, step2 cannot be executed without step1;

It can be proved that RBAC-IC does not meet Formula (37). □

Figure 11 shows an example of a prerequisite constraint.

da

sr2

u

da

sr1

u

OA OB

Figure 11. sr2 is a prerequisite role of sr1. The OA operation indicates that the domain administrator

da authorizes sr2 to u, and the OB operation indicates that the domain administrator da authorizes

sr1 to u. Before performing the OB operation, OA must be executed, and the OA operation cannot be

skipped to execute OB.

4. Dynamic mutex constraint;

dynamic_mutex(sr1, sr2) ∧ sr1, sr2 ∈ user_authorization(u) ∧ s ∈ user_session(u) ∧ sr1, sr2 ∈ session_sr(s) (38)

where dynamic_mutex(sr1, sr2) indicates that specific roles sr1 and sr2 have a dynamic mu-

tual exclusion constraint; that is, two roles cannot be used by user in one session. This

formula describes that user u is authorized sr1 and sr2 with dynamic mutual exclusion

constraint at the same time, and session s is activated, but user can use sr1 and sr2 at the

same time in s. This shows that the dynamic constraint rules of the specific role are vio-

lated.

Proof that RBAC-IC does not meet Formula (38).

Assume there is user u, and the specific roles sr1 and sr2, sr1 ≠ sr2, sr1 and sr2 have a dynamic

mutual exclusion relationship, and sr1, sr2 ∈ user_authorization(u), sr1 and sr2 cannot exist

in the same session at the same time,

If both sr1 and sr2 exist in session s, Formula (38) holds;

According to the dynamic mutual exclusion relationship between sr1 and sr2, sr1 and sr2

cannot exist in a session.

Appl. Sci. 2022, 12, 13036 23 of 27

Therefore, Formula (38) is not valid;

It can be proved that RBAC-IC does not meet Formula (38). □

Figure 12 shows an example of a dynamic mutex constraint.

Figure 12. There is a dynamic mutual exclusion constraint between sr1 and sr2. The domain admin-

istrator da allows to authorizes both sr1 and sr2 roles to user u. However, after u activates session s,

only one of sr1 and sr2 can exist in s; that is, only one of ① and ② processes can be executed.

6.2.3. Model Cross-Domain Security Analysis

For cross-domain authorization and cross-domain access in the model, security in-

teroperability needs to be met. For authorization, the domain administrator cannot au-

thorize the specific role of other domains to users. For access, users cannot hold the spe-

cific role or permission of other domains to access the objects of the requesting domain.

1. Cross-domain authorization;

(da[category] = domain_administer ∧ da[domain] = domain1 ∧ sr[domain] = domain2) ∧ authorization(da, u, sr) (39)

where authorization(da, u, sr) means that the domain administrator da authorizes the spe-

cific role sr for user u. This formula describes that da is the domain administrator of do-

main1, sr is the specific role in domain2, and da authorizes sr to user u. This indicates that

the domain administrator authorizes the specific role of other domains to users, which

violates the inter-domain isolation management.

Proof that RBAC-IC does not meet Formula (39).

Assume domain administrator da and user u exist in domain1, and the specific role sr exists

in domain2. da authorizes sr to u, and Formula (39) is established;

However, RBAC-IC requires that the domain administrator can only authorize the specific

roles in the local domain to users;

Formula (39) does not meet the above rules, and the authorization(da, u, sr) operation can-

not be executed;

It can be proved that RBAC-IC does not meet Formula (39). □

Figure 13 shows an example of cross-domain authorization.

da

sr1 sr2

u

Authorization Authorization

s

① ①

Dynamic
mutex

② ②

Appl. Sci. 2022, 12, 13036 24 of 27

da

sr1

u

sr2

Authorization Authorizationdomain1 domain2

Figure 13. The solid line indicates that it is feasible for domain administrator da to authorize the

specific role sr1 of local domain to user u. The dotted line indicates that the da authorizes the sr1 of

other domains to the u, but it is not feasible.

2. Cross-domain access (Wrong specific roles);

(sr[domain] = domain1 ∧ o[domain] = domain2) ∨ (sr[system] = system1 ∧ o[system] = system2) ∧ s ∈ user_session(u) ∧ sr ∈

session_sr(s) ∧ access(u, sr, o)
(40)

where access(u, sr, o) means that user u uses the specific role sr to access object o. This

formula describes that the specific role sr can be used in domain1 or system1. User u has

activated session s, sr is allowed in s and u successfully uses sr to access object o, but o is

stored in a system in domain2 or system2 in a domain. This indicates that the user has per-

formed an illegal cross-domain operation.

When RBAC-IC uses a specific role to access an object, the specific role cannot be

different from the domain or system of the target object. Figure 14 shows an example of

cross-domain access, which illustrates that RBAC-IC does not satisfy Formula (40).

sr1 o1 sr2 o2

o3

system1

system3

system2

domain1 domain2

②

u

① ① ② ②

①

④

④

③

③

Figure 14. ① Indicates that user u accesses object o1 using the specific role sr1 of system1 under do-

main1, which is allowed. ② Indicates that u uses the specific role sr2 of system2 under domain2, to

access object o2 across domains, which is also allowed. ③ Indicates that sr1 is not allowed to access

o2 across domains. ④ Indicates that it is not allowed to use sr1 to access object o3 in system3 across

systems.

3. Cross-system access (Wrong permissions);

(p[domain] = domain1 ∧ o[domain] = domain2) ∨ (p[system] = system1 ∧ o[system] = system2) ∧ s ∈ user_session(u) ∧ sr ∈

session_permission(s) ∧ access(u, p, o)
(41)

where access(u, p, o) indicates that user u accesses object o with permission p. This formula

describes that permission p can be used in domain1 or system1, user u has activated session

s, p is allowed in s and u has successfully used p to access object o, but o is stored in a

Appl. Sci. 2022, 12, 13036 25 of 27

system in domain2 or system2 in a domain. This indicates that the user has performed an

illegal cross-domain operation.

Explanation and examples of Formula (41) is similar to Formula (40).

6.2.4. Model Platform–Domain Isolation Security Analysis

create_ar(da, ar) indicates that domain administrator da creates abstract role ar. This

formula describes the abstract role ar created by the domain administrator da. This violates

the platform–domain isolation management. In addition, the security violation formula of

the domain administrator performs other operations on platforms, and the platform ad-

ministrator’s operations in the domain are similar to Formula (42).

da[category] = domain_administer ∧ create_ar(da, ar) (42)

Assume there is a domain administrator da in a domain under a platform. If the do-

main administrator creates an abstract role ar, Formula (41) holds. However, according to

the platform–domain isolation management feature in RBAC-IC, domain administrators

cannot perform platform level operations, such as creating abstract roles. Therefore,

RBAC-IC does not satisfy Formula (38).

Figure 15 shows an example of platform–domain isolation management.

pa

ar

da

sr
Create

Create Create

domain

platform

Create

Figure 15. The platform administrator pa creates an abstract role and domain administrator da cre-

ates a specific role are allowed. However, platform administrators create specific roles, and domain

administrators create abstract roles, which are not allowed.

7. Conclusions and Future Work

A role-based access control model for inter-system cross-domain in multi-domain

environment (RBAC-IC) is proposed. This model is based on the traditional RBAC model,

where roles are divided into abstract roles and specific roles play different functions; users

are divided into three categories: platform administrators, domain administrators and or-

dinary users. This paper explains the concepts of the model through formal definitions,

and it expounds upon different functions of abstract roles and specific roles. The execution

process of RBAC-IC is described by pseudocode. RBAC-IC has four features that support

role name repetition, platform–domain isolation management, inter-domain isolation

management, and fine-grained cross-domain sharing. RBAC-IC carried out a typical case

verification under the information service platform of the packaging can manufacturing

group, and it conducted model security analysis by establishing security violation formu-

las. It is proved that RBAC-IC can run securely, and it is suitable to be used as the access

control model of multi-domain information service platform to address the issue of inter-

system cross-domain access control.

The security analysis of the model still needs further research, especially in the aspect

of cascading security threats [32]; for example, the security events of system X in domain

Appl. Sci. 2022, 12, 13036 26 of 27

A may affect other systems in other domains. In the future work, we will carry out more

research in this area.

Author Contributions: Conceptualization, Y.L. and Z.D.; methodology, Y.L. and L.L.; software,

Y.L.; validation, Y.L., L.L.; formal analysis, Y.L. and L.L.; writing—original draft preparation, Y.L.,

L.L. and Z.D.; writing—review and editing, Y.L. and Z.D.; supervision, Z.D. and Y.F.; funding ac-

quisition, Y.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Shaanxi Natural Science Basic Research Project (Grant

Number: 2021KW-07) and the Shaanxi International Science and Technology Cooperation Program

Project (Grant Number: 2022QFY01-14).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank Timechainer (Beijing) Technology Co., Ltd. and its general

manager Mao Ye for their support in software development. The authors thank Taishan Zhizhen

Packaging Technology Co., Ltd. and Zhipeng Cai of North Automatic Control Technology Institute

for their support in verification.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jiao, T. Mobile English Teaching Information Service Platform Based on Edge Computing. Mob. Inf. Syst. 2021, 2021, 2082282.

https://doi.org/10.1155/2021/2082282.

2. Pynnönen, S.; Haltia, E.; Hujala, T. Digital forest information platform as service innovation: Finnish Metsaan.fi service use,

users and utilisation. For. Policy Econ. 2021, 125, 102404. https://doi.org/10.1016/j.forpol.2021.102404.

3. Qian, C.; Zhang, Y.; Liu, Y.; Wang, Z. A cloud service platform integrating additive and subtractive manufacturing with high

resource efficiency. J. Clean. Prod. 2019, 241, 118379. https://doi.org/10.1016/j.jclepro.2019.118379.

4. Liu, B.; Chen, H.; Junmei, H. Design and Implementation of University Continuing Education Informatization Platform Based

on SaaS Model. In Proceedings of the 2020 15th International Conference on Computer Science & Education (ICCSE), Delft, The

Netherlands, 18–22 August 2020; pp. 253–256. https://doi.org/10.1109/iccse49874.2020.9201626.

5. Mahalle, A.; Yong, J.; Tao, X. Challenges and Mitigation for Application Deployment over SaaS Platform in Banking and Finan-

cial Services Industry. In Proceedings of the 2021 IEEE 24th International Conference on Computer Supported Cooperative

Work in Design (CSCWD), Dalian, China, 5–7 May 2021; pp. 288–296. https://doi.org/10.1109/cscwd49262.2021.9437798.

6. Celesti, A.; Ruggeri, A.; Fazio, M.; Galletta, A.; Villari, M.; Romano, A. Blockchain-Based Healthcare Workflow for Tele-Medical

Laboratory in Federated Hospital IoT Clouds. Sensors 2020, 20, 2590. https://doi.org/10.3390/s20092590.

7. Wen, J.; Deng, B.; Peng, L.; Zhang, Y.; Zhang, B. Building of SaaS platform of hospital operational risk monitoring based on

blockchain and smart contract. J. Med. Inform. 2019, 40, 18–22.

8. Ferraiolo, D.; Kuhn, D. Role-based access controls. In Proceedings of the 15th NIST-NCSC National Computer Security Confer-

ence, Baltimore, MD, USA, 13 October 1992; pp. 554–563.

9. Pan, N.; Sun, L.; He, L.-S.; Zhu, Z.-Q. An Approach for Hierarchical RBAC Reconfiguration with Minimal Perturbation. IEEE

Access 2017, 6, 40389–40399. https://doi.org/10.1109/access.2017.2782838.

10. Ghafoorian, M.; Abbasinezhad-Mood, D.; Shakeri, H. A Thorough Trust and Reputation Based RBAC Model for Secure Data

Storage in the Cloud. IEEE Trans. Parallel Distrib. Syst. 2018, 30, 778–788. https://doi.org/10.1109/tpds.2018.2870652.

11. Thakare, A.; Lee, E.; Kumar, A.; Nikam, V.B.; Kim, Y.-G. PARBAC: Priority-Attribute-Based RBAC Model for Azure IoT Cloud.

IEEE Internet Things J. 2020, 7, 2890–2900. https://doi.org/10.1109/jiot.2019.2963794.

12. Chao, L.; He, D.; Huang, X.; Choo, K.K.R.; Vasilakos, A. V B. SeIn: A blockchain-based secure mutual authentication with fine-

grained access control system for industry 4.0. J. Netw. Comput. Appl. 2018, 116, 42–52. https://doi.org/10.1016/j.jnca.2018.05.005.

13. Sandhu, R.S.; Coyne, E.J.; Feinstein, H.L.; Youman, C.E. Role-based access control models. IEEE Comput. 1996, 29, 38–47.

https://doi.org/10.1109/2.485845.

14. Sandhu, R.; Bhamidipati, V.; Munawer, Q. The ARBAC97 model for role-based administration of roles. ACM Trans. Inf. Syst.

Secur. 1999, 2, 105–135. https://doi.org/10.1145/300830.300839.

15. Ferraiolo, D.F.; Sandhu, R.; Gavrila, S.; Kuhn, D.R.; Chandramouli, R. Proposed NIST standard for role-based access control.

ACM Trans. Inf. Syst. Secur. 2001, 4, 224–274. https://doi.org/10.1145/501978.501980.

16. Balusamy, B.; Ramachandran, S.; Priya, N. Achieving fine-grained access control and mitigating role explosion by utilising ABE

with RBAC. Int. J. High Perform. Comput. Netw. 2017, 10, 109–117.

17. Uddin, M.; Islam, S.; Al-Nemrat, A. A Dynamic Access Control Model Using Authorising Workflow and Task-Role-Based Access

Control. IEEE Access 2019, 7, 166676–166689. https://doi.org/10.1109/access.2019.2947377.

Appl. Sci. 2022, 12, 13036 27 of 27

18. Zhang, C.X.; LI, J.F.; Liu, Y.; Zhao, W.D. Design and implementation of universal management system based on roles and scopes.

Comput. Eng. 2008, 34, 47–49. https://doi.org/10.1080/10286600801908949.

19. Li, J.; Zhang, C. A three-dimensional role based user management model in web information systems. In Proceedings of the 2012

International Conference on Information Technology and Software Engineering; Springer: Berlin/Heidelberg, Germany, 2013; pp. 657–

665. https://doi.org/10.1007/978-3-642-34528-9_69.

20. Li, J.; Liao, Z.; Zhang, C.; Shi, Y. A 4D-Role Based Access Control Model for Multitenancy Cloud Platform. Math. Probl. Eng.

2016, 2016, 2935638. https://doi.org/10.1155/2016/2935638.

21. Freudenthal, E.; Pesin, T.; Port, L.; Keenan, E.; Karamcheti, V. dRBAC: Distributed role-based access control for dynamic coali-

tion environments. In Proceedings 22nd International Conference on Distributed Computing Systems, Vienna, Austria, 2–5 July

2002; pp. 554-563. https://doi.org/10.1109/ICDCS.2002.1022279.

22. Tang, B.; Li, Q.; Sandhu, R. A multi-tenant RBAC model for collaborative cloud services. In Proceedings of the 2013 Eleventh

Annual Conference on Privacy, Security and Trust, Tarragona, Catalonia, 10–12 July 2013; pp. 229–238.

https://doi.org/10.1109/pst.2013.6596058.

23. Abdelfattah, D.; Hassan, H.A.; Omara, F.A. A novel role-mapping algorithm for enhancing highly collaborative access control

system. Distrib. Parallel Databases 2022, 40, 521–558. https://doi.org/10.1007/s10619-022-07407-9.

24. Shafiq, B.; Joshi, J.; Bertino, E.; Ghafoor, A. Secure interoperation in a multidomain environment employing RBAC policies.

IEEE Trans. Knowl. Data Eng. 2005, 17, 1557–1577. https://doi.org/10.1109/tkde.2005.185.

25. Du, S.; Joshi, J.B.D. Supporting authorization query and inter-domain role mapping in presence of hybrid role hierarchy. In

Proceedings of the Eleventh ACM Symposium on Access Control Models and Technologies, Lake Tahoe, CA, USA, 7–9 June

2006. https://doi.org/10.1145/1133058.1133090.

26. Gouglidis, A.; Mavridis, I.; Hu, V.C. Security policy verification for multi-domains in cloud systems. Int. J. Inf. Secur. 2013, 13,

97–111. https://doi.org/10.1007/s10207-013-0205-x.

27. Uikey, C.; Bhilare, D.S. RBACA: Role-based access control architecture for multi-domain cloud environment. Int. J. Bus. Infor-

Mation Syst. 2018, 28, 1–17. https://doi.org/10.1504/IJBIS.2018.091160.

28. Qi, H.; Di, X.; Li, J. Formal definition and analysis of access control model based on role and attribute. J. Inf. Secur. Appl. 2018,

43, 53–60. https://doi.org/10.1016/j.jisa.2018.09.001.

29. Geethakumari, G.; Negi, A.; Sastry, V.N. A cross-domain role mapping and authorization framework for RBAC in grid systems.

Int. J. Comput. Sci. Appl. 2009, 6, 1–12.

30. Denning, P.J. Fault tolerant operating systems. ACM Comput. Surv. (CSUR) 1976, 8, 359–389.

31. Trybulec, W.A. Pigeon hole principle. J. Formaliz. Math. 1990, 2, 575–579.

32. Ebad, S.A. Security assessment of large-scale IT infrastructure. Sci. J. King Faisal Univ. Basic Appl. Sci. 2021, 22, 136–143.

https://doi.org/10.37575/b/cmp/0055.

