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Abstract: Representation of self-face is vulnerable to cognitive bias, and consequently, people often
possess a distorted image of self-face. The present study sought to investigate the neural mechanism
underlying distortion of self-face representation by measuring event-related potentials (ERPs) elicited
by actual, aesthetically enhanced, and degraded images of self-face. In addition to conventional
analysis of ERP amplitude and global field power, multivariate analysis based on machine learning of
single trial data were integrated into the ERP analysis. The multivariate analysis revealed differential
pattern of scalp ERPs at a long latency range to self and other familiar faces when they were original
or aesthetically degraded. The analyses of ERP amplitude and global field power failed to find
any effects of experimental manipulation during long-latency range. The present results indicate
the susceptibility of neural correlates of self-face representation to aesthetical manipulation and the
usefulness of the machine learning approach in clarifying the neural mechanism underlying self-face
processing.
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1. Introduction

A subjective evaluation of one’s attributes colours their psychological landscape and
could be considered one of the primary determinants of their life course [1,2]. Existing
studies on self-recognition have repeatedly shown self-serving bias in the evaluation of
one’s attributes [3]. The most well-recognized illustration of this phenomena is “the Lake
Wobegon effect” according to which the majority of people estimate their ability “above
average” in several domains such as understanding of humour, driving skills, intellectual
ability, and socially desirable personality traits [4,5]. When feedback about one’s ability and
traits is delivered, positive appraisals are more likely to be integrated into self-evaluation
than negative appraisals, which makes self-serving bias even stronger [3].

The mental representation of self-face and body is an integral constituent of self-
concept [1,6]. Several studies have shown the possibility that even the representation itself,
not the evaluation, of self-face and body could be deformed by cognitive bias. In the
field of clinical psychology, people with body dysmorphia are known to have a deformed
mental image of their body shape [7]. Epley et al. revealed that people show self-serving
bias in representation of self-face [8]. In their study, a continuum of facial images was
created by morphing participants’ face and attractive or unattractive unfamiliar faces.
When participants were prompted to select their face from the continuum, they were more
likely to choose a morphed image falling between their face and an attractive one that is
not their actual face.

These findings indicate that representation of self-appearance is not as stable as
presumed and is malleable to psychological influences such as self-serving bias. Despite this,
a majority of previous studies on cognitive and neural mechanism of self-face processing
have used only actual self-face images as the stimuli [9–13], and a relatively small number of
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studies have investigated the behavioural and neural responses to deformed representation
of self-face that is different from actual self-face [14,15].

The primary goal of the present study was to fill in this gap in knowledge by measuring
electrophysiological responses to actual and deformed images of self and other familiar
faces. The experiment measured event-related potentials (ERPs) in response to three types
of facial images of one’s self and other familiar faces belonging to the same sex. Other
familiar faces were used instead of complete stranger’s faces to mitigate the influences
of perceptual familiarity on electrophysiological responses. Only females were recruited
as participants because previous studies have pointed out that females tend to be self-
conscious of their physical appearance [16,17]. Three types of images included actual face,
and two types of images comprised deformed face. One type of deformed image was
created by exaggerating morphological features generally perceived to be attractive and
the other type by diminishing them [18]. Thus, the three types of images can be deemed as
actual, aesthetically enhanced, and degraded versions of self and other familiar face.

In conventional ERP studies, effects of experimental manipulation are assessed on
mean amplitude of each ERP component independently. Many of the previous ERP studies
on self-face recognition focused on P100, N170, and P250 [9,13,19,20]. Among these, P100
and N170 have been proposed to reflect low-level visual processing in primary visual
cortex and face-selective activation in the occipito-temporal region [9,13,19,20], while P250
has been proposed to reflect the stage linked to face familiarity processing [19,20]. Thus,
the effect of facial identity and aesthetical manipulation was investigated in these ERP
components.

In addition to the conventional analysis, various methods for ERP and EEG analysis
have been developed; fractional latency/amplitude measurement [21] aims to increase
robustness of ERP measurement against fluctuating noise, and application of principal
component analysis to ERP time series [22,23] to disentangle overlapping components.
Another type of approach tried to detect ERP responses sensitive to experimental manip-
ulation without a priori specification of ERP components and latency range of interest.
These include ERP spatio-temporal cluster-based permutation of scalp ERP field [24] and
microstate segmentation analysis [25]. A recent surge of interest in machine learning led to
the utilization of machine learning algorithms in ERP/EEG analysis. This line of research
mainly focused on prediction of internal states [26–29]. Besides a practical application,
the machine learning approach had also given novel insights into the neurophysiological
mechanism of perceptual and cognitive processing [30,31].

The present study adopted a state-of-the-art multivariate analysis to evaluate con-
ditional differences in ERP based on machine learning of single-trial data [32,33]. In
multivariate analysis of ERP, a classifier is trained to discriminate trials in one experimental
condition from those in other experimental condition based on amplitude data from all the
recorded channels at each time point. Multivariate analysis of ERP is largely data driven.
Thus, in contrast to a conventional analysis of ERP peaks in which analyses are carried out
for pre-chosen ERP components, multivariate analysis has the potential to find conditional
differences that have hitherto been missed in the existing studies [33,34]. Multivariate anal-
ysis had first gained popularity in fMRI studies on object recognition [35,36]. The number
of ERP studies adopting a multivariate approach is relatively small; however, several recent
ERP studies have adopted this approach to further investigate the developmental course of
face processing [37], face processing in pathological conditions [38], and the process of face
memory formation [39].

2. Method
2.1. Participants

Ten pairs of right-handed females who had known each other for at least two years
participated in the present study after giving written informed consent. Data from one pair
were discarded due to failure in data storage. Thus, data from the remaining nine pairs (in
total of 18 participants; M = 23.4 yrs old; SD = 4.9) were used for further analysis. They all
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had normal or corrected-to-normal visual acuity. None reported history of psychiatric or
neurological conditions. The protocol of this study was approved by the ethical committee
of graduate school of biomedical sciences, Nagasaki University.

2.2. Stimulus

An image of each participant was taken against a cream-white background. The image
was cropped so that the size of the image was 512 × 512 pixels. Based on this original
image, aesthetically enhanced and degraded versions were created by exaggerating or
diminishing the morphological features that are generally perceived to be attractive [18].

To achieve this, the shape of the original face was quantified by measuring the coordi-
nates of 83 feature points of the original face. Based on the coordinates, the coordinates
of the deformed face were calculated by a custom-made program. The coordinates of
aesthetically enhanced versions of the faces were calculated by enlarging the eye region,
shrinking the nose, and narrowing the contour of the lower face. In contrast to this, the
coordinates of the aesthetically degraded versions were calculated by shrinking the eye
region, enlarging the nose, and broadening the contour of the lower face. Examples of
original, enhanced and degraded versions of face images are shown in Figure 1.
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Figure 1. (Left Upper panel): Examples of the actual, aesthetically enhanced and degraded images
of facial stimuli. These images were created using FaceGen software (Singular Inversions Inc.
Tronto, Canada) for demonstration purposes only, and were not used in the actual experiment. (Left
Lower Panel): Schematic representation of the temporal sequence of a single trial. (Right Panel):
Representation of channel locations. The sensors used for ERP mean amplitude analyses are filled in
grey. Sensors included in each occipito-temporal electrode cluster are circled by blue broken lines.

To synthesize the enhanced and degraded versions of the original face, the texture
of the original face was warped so that the location of each feature point matched the
location of the corresponding feature point of the aesthetically enhanced and degraded
versions. These images were cropped in oval-like shape and were presented against a black
background in a left–right reversed orientation following the previous studies on self-face
recognition [40,41].

The stimuli were presented on a 19-inch display viewed from about 110 cm away. We
wrote our experiments in Matlab, using the Psychophysics Toolbox extensions [42]. At
the start of each trial, a fixation cross subtending 3.6 deg in height and 3.6 deg in width
appeared at the centre of the screen for 500 ms. After the disappearance of the fixation
cross, a stimulus face subtending about 7.8 deg in width and 7.8 in height was presented
for 1 s. The temporal sequence of stimulus presentation is schematically shown in Figure 1.
The faces comprised original, aesthetically enhanced, and degraded versions of self and
other familiar faces. Participants viewed the paired participant’s face in familiar condition.
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Thus, participants were shown: Identity (2; Self, Familiar) × Version (3; Original, Enhanced,
Degraded) = six types of faces.

2.3. Procedure
2.3.1. EEG Measurement

After arrival at the lab, an EEG sensor net was placed on the participant’s scalp. The
experiment started after the preparation of the EEG recording. Participants were instructed
to discriminate whether the presented face was her own face or not as soon as possible
while facial stimuli stayed on the display. Participants made their responses by key-pressing
with the left or right thumb. The correspondence between key and response (self or other’s
face) was counterbalanced across pairs. If they did not answer within the period of face
stimulus presentation, response in the trial was treated as incorrect. They were told to
classify aesthetically enhanced, aesthetically degraded and original versions of self-face as
their own face.

Each of the six types of faces were presented 90 times throughout the experiment, re-
sulting in a total of 540 experimental trials. The trials of six conditions were administered in
a pseudorandomized order. Pseudo-randomization of trials was achieved by the following
procedure. First, trials of the six conditions were randomized to form a sub-cluster of six
trials. Each block was created by concatenating 15 sub-clusters of trials. Thus, the number
of trials in each of the six conditions was equated to be fifteen within each block. Complete
randomization of 540 trials was not adopted to avoid the situation that trials of identical
trials are repeated many times in succession. The experimental trials were separated into six
experimental blocks with a brief rest for refreshments. Each block lasted for about 2.3 min.
The length of brief rest varied across participants, but was generally shorter than 1.5 min.
The rest period after the third block lasted for about 5 min for checking and, if necessary,
lowering contact impedance. EEG referenced to Cz was recorded by Geodesic 64 ch EEG
System (Electrical Geodesics Inc., Eugene, OR, USA) in 1kHz and stored in hard disk.

2.3.2. Post ERP Measurement Experiment

The behavioural task was administered after the EEG experiment to measure partic-
ipants’ subjective evaluations of the six types of faces. At each trial, one of the six faces
was presented on the left side of the display. Simultaneously, three vertical trackbars with
21 tics were presented to the right side of the face. The upper and lower edges of these
trackbars were labelled “Attractive–Unattractive”, “Pretty–Not Pretty”, and “Similar to
me–Not similar to me”, respectively. “Pretty–Not Pretty” evaluation was obtained because
“Kawaii”, the Japanese word for “Pretty”, is used to express many aspects of favourable
impression [43]. Thus, measurement of “Pretty–Not Pretty” evaluation is expected to reveal
aesthetic evaluation not captured by “Attractive–Unattractive” dimension. The partici-
pants evaluated the presented face by moving the trackbars to the location closest to their
subjective evaluation. After moving the trackbars to the preferred location, participants
clicked the “proceed” button directly below the trackbars. Clicking the button started the
next trial. Each of the Identity (2) × Version (3) = six types of faces were evaluated twice, re-
sulting in 12 experimental trials. The order of stimulus presentation was pseudo-randomly
determined.

2.4. Analysis
2.4.1. Behaviour

The reaction time (RT) data of correct trials in EEG measurement were entered into an
analysis of variance (ANOVA) with within-participant factors of Identity (2) and Version (3).
Subjective evaluations of perceived attractiveness, prettiness, and self-similarity were
analysed by ANOVAs with the same factorial design. The significance threshold was set
to 0.05. Statistical analyses were carried out by R Analytic Flow (ef-prime Inc., Tokyo,
Japan) and anovakun (retrieved from http://riseki.php.xdomain.jp/index.php?ANOVA%
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E5%90%9B, accessed on 10 July 2021). Significance threshold of multiple comparison was
adjusted by Modified Sequentially Rejective Bonferroni procedure.

2.4.2. ERP

EEG data were pre-processed using EEGLab [44]. EEG data were first downsampled
to 250 Hz (each time point covering 4 ms), bandpass filtered (0.1–30 Hz) and re-referenced
to average reference. The data from two electrodes (E62, E63) on the facial surface mainly
for the detection of eye-movement artifacts and those near the tragus (E23, E55) were
deleted from the dataset, and the data from the remaining 61 channels were entered into
further analysis. The channel layout on the scalp surface is shown in Figure 1.

Artifacts were removed from the data by performing independent component (IC)
analysis. After decomposition, ICs were checked by visual inspection, and those judged
to reflect blink and motion artifacts based on scalp distribution and temporal fluctuation
were removed from the data, resulting in removal of on average 3.9 ICs. EEG data were
epoched to −100–700 ms after stimulus onset and baseline-corrected with −100 to 0 ms as
the baseline. Because the data were downsampled to 250 Hz, each epoch contained 200 time
points. The trials in which EEG exceeded ±75 µV were excluded from further analysis and
visually checked afterwards. After pre-processing, 69.7 trials on average were retained for
further analyses. In self condition, 69.4, 71.0, 70.8 trials were retained for original, enhanced
and degraded versions, whereas in familiar condition, 67.8, 69.1, and 70.3 trials for original,
enhanced and degraded versions, respectively.

Conventional ERP Analysis

ERP was computed by averaging the epochs of the same condition. All the eligible
trials were used for computation of ERP to increase the signal-to-noise ratio. Previous
studies revealed the effect of facial familiarity on early visual components in left and right
occipito-temporal regions [9,13,19,20]. The mean amplitude of P100 was measured in
bilateral occipital sensors (E39 for the right and E35 for the left) within 100 to 140 ms after
stimulus onset.

The left and right occipito-temporal clusters each included five electrode locations
(E40, E42, E45, E44, E43 for the right cluster, and E27, E28, E30, E31, E32 for the left
cluster) following the previous ERP studies on face processing. The following analyses
were carried out for averaged ERP waveform across the five electrodes included in each
cluster. The mean amplitude of N170 was measured in bilateral occipito-temporal sensor
clusters within 140 to 200 ms after stimulus onset. The mean amplitude of P250 was
quantified as averaged amplitude from 200 to 270 ms after stimulus onset in bilateral
occipito-temporal sensor clusters. Several ERP studies on self-face recognition found the
effect of self-relatedness in the long-latency positive component (LPC) [13,45]. Thus, the
average amplitude of LPC was measured as averaged amplitude from 500 to 700 ms
after stimulus onset in bilateral occipito-temporal sensor clusters. The mean amplitudes
were entered into an ANOVA with the within-participant factors of Hemisphere (left-
right) x Identity (2) × Version (3). The significance threshold was set to 0.05. Statistical
analyses were carried out by R Analytic Flow (ef-prime Inc., Tokyo, Japan) and anovakun
(retrieved from http://riseki.php.xdomain.jp/index.php?ANOVA%E5%90%9B, accessed
on 10 July 2021). When ANOVA revealed significant interaction, its source was examined
by simple main effect analysis.

Time Series Analysis by Cluster Permutation Statistics

We searched for the temporal windows within which the conditional difference is
statistically significant. ERP waveforms at occipito-temporal clusters were compared
between the self and other familiar faces for original, aesthetically enhanced, and degraded
versions by cluster–permutation statistics [46]. In this procedure, t value is computed at
each time point by paired t test between the ERP waveforms of the two conditions (Identity;
Self vs. Familiar), and time points are determined at which the difference in ERP amplitude
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between self and other familiar’s faces reaches significance threshold. Then, the temporal
cluster is formed by joining contiguous significant time points, and the test statistics are
computed as the sum of t values within the cluster. The test statistics are computed
1000 times by random permutation, i.e., randomly shuffling the conditions, through which
one can obtain a null distribution of test statistics. The probability of obtaining the observed
test statistics is computed based on the null distribution obtained by random permutation.
Maris and Oostenveld [46] have shown that extracting significant temporal clusters by this
procedure allows for sensitive detection of time windows of interest while controlling the
family-wise error rate to the expected level. The family-wise error rate was adjusted to
0.05/3 = 0.0167 because there were a total of three comparisons.

In addition to ERP waveform, the same comparisons were made for time series of
global field power (GFP) [47] computed across all 61 channels by cluster–permutation statis-
tics in the same procedure as described above to find any signs of conditional difference in
the global map of scalp EEG patterns. Time series of GFP in each condition was obtained
by computing across-sensor standard deviation of ERP amplitude at each time point.

Diagonal Decoding in Multivariate Analysis

Epoched EEG data were entered into multivariate analysis with the support of the
Amsterdam Decoding and Modeling Toolbox [34]. The same set of epoched data from
61ch as used in the conventional ERP mean amplitude analysis was used for multivariate
analysis. The procedure of multivariate analysis comprises subject-level analysis and
group-level analysis. In subject-level analysis, data were first downsampled to 50 Hz
(resulting in 40 time points in each trial). Linear discriminant classifier (LDC) was trained
to discriminate trials of self condition from those of familiar condition at each time point.
LDC was chosen because it showed superior performance in classification of ERP data
compared to other classification algorithms in previous studies [33,34].

In order to avoid overfitting, cross-validation (CV) was performed by 5-fold CV proce-
dure. In 5-fold CV, one fifth of the trials were used as test data and the remaining trials as
training data. Using the training data, LDC was trained at each time point (−100 to 700 ms
after stimulus onset) to classify self and familiar trials, and its classification performance
was quantified using the test data. Every trial was used as test data once during the CV.
In this step of CV, termed “diagonal decoding” [34], classification performance of LDC
trained at time point t1 was tested by the test data at the same time point t1.

Based on the performance of test data classification, area under the curve (AUC) of
the receiver operator characteristics (ROC) curve was calculated at each time point within
the time widow of −100 to 700 ms after stimulus onset. Training of LDC was carried out
separately for the three Version conditions (Original, Enhanced, and Degraded). Thus,
a total of three time series of AUC was obtained for each participant in the subject-level
analysis.

In the group-level analysis, time series of AUC in each Version condition was tested
against chance level (AUC = 0.5) at each time point. Significant temporal cluster was
searched for while controlling for the family-wise error rate by the permutation clustering
approach with 1000 iterations [46]. Because a total of three comparisons were made, the
significance threshold was set to 0.05/3 = 0.0167.

Temporal Generalization Analysis

The temporal stability of the scalp EEG pattern that differentiates self and familiar
condition was tested by temporal generalisation analysis [48,49]. The same set of epoched
data from 61ch as used in the multivariate analysis was used for temporal generalization
analysis. If the scalp EEG pattern that distinguishes self and familiar conditions is stable
across time points t1 and t2 (t1 is different from t2), the model for classifying self and
familiar trials trained at time point t1 should succeed in classifying trials at time point t2
as well. Temporal stability of neural activation that dissociates self and other familiar face
processing was tested based on this logic in temporal generalization analysis.
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The flow of temporal generalization analysis in the present study was essentially the
same with diagonal decoding in 2.4.2.3., with one important exception. In diagonal decod-
ing, classification performance of LDC trained at time point t1 was quantified as the ability
to classify test trials at the identical time point t1. However, in temporal generalization
analysis, performance of LDC trained at time point t1 was tested at all the other temporal
points as well as at t1. Thus, in contrast to the case of diagonal decoding, AUC is computed
for every combination of temporal points resulting in a matrix of 40 × 40 AUCs that is
generally termed “temporal generalization matrix”. In the subject-level analysis, temporal
generalization matrix was computed in each of the three Version conditions. Thus, three
temporal generalization matrices were obtained for each participant.

In the group-level analysis, the cluster of AUCs that is significantly different from
chance level (AUC = 0.5) was searched for within the temporal generalization matrix by
cluster–permutation statistics. In contrast to the cluster–permutation statistics described
thus far, the cluster in the temporal generalization matrix was two-dimensional. Aside from
this point, the principle underlying this procedure was the same with cluster–permutation
tests for time series data [46].

3. Results
3.1. RT and Accuracy Rate

The mean and standard deviations of RT and accuracy rate in each condition are
summarised in Table 1. ANOVA on RT revealed no significant effect either on the main
effects or on the interaction, Fs < 2.2, ps > 0.13. There was no significant effect for accuracy
rate either, Fs < 1.45, ps > 0.7.

Table 1. Mean and standard deviation of RT and accuracy rate in each condition. Standard deviations
are in parenthesis.

Self Other Familiar
Original Enhanced Degraded Original Enhanced Degraded

RT (ms) 494.1 505.8 513.3 493.3 484.4 492.2
(73.7) (87.0) (104.8) (68.9) (84.1) (68.3)

Accuracy (%) 93.6 93.7 93.7 95.1 93.6 94.9
(4.9) (4.5) (5.9) (4.7) (5.4) (5.4)

3.2. ERP Results
3.2.1. ERP Mean Amplitude Analysis at Occipital Electrodes

The grand averaged waveforms in occipital sensors are shown in Figures 2 and 3.
ANOVA revealed a significantly larger P100 amplitude in the right than in the left hemi-
sphere, F (1, 17) = 13.12, p = 0.002, ηp

2 = 0.43. No other significant effects were observed for
P100 amplitude, Fs < 1.4, ps > 0.26.
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The grand averaged waveforms in occipito-temporal electrode clusters are shown in
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In order to clarify the source of the interaction, simple main effect analysis was
conducted. Simple main effect analysis revealed significantly larger N170 in response to
self than other familiar faces in the degraded version condition, F (1, 17) = 7.28, p = 0.015,
ηp

2 = 0.29. Simple main effect of Identity did not reach significance in the other Version
conditions, Fs < 3.4, ps > 0.08.

P250 amplitude was significantly larger in the right than in the left hemisphere,
F (1, 17) = 4.86, p = 0.041, ηp

2 = 0.22, and significantly larger in response to other familiar
than self-faces, F (1, 17) = 7.81, p = 0.013, ηp

2 = 0.31. No other effects reached significance,
Fs < 3.2, ps > 0.05.

The ANOVA revealed no significant effects for LPC amplitude, Fs < 1.9, ps > 0.17.
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3.2.3. Time Series Analysis by Cluster Permutation Statistics

The cluster permutation analysis of ERP time series revealed no statistically significant
temporal clusters in the occipito-temporal electrode clusters. The waveforms of GFP are
shown in Figure 6. The analysis of GFP did not reveal significant temporal clusters either.
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Figure 7. Temporal course of AUC for classification of self and other familiar faces in each condition.
The black thick horizontal bar at the level of AUC = 0.5 represents the temporal window during
which AUC was determined to be statistically above chance level by cluster–permutation statistics.
The dotted lines represent standard errors.

3.4. Temporal Generalization Analysis Results

Temporal generalisation matrix and the significant cluster in each condition are de-
scribed in Figure 8. A statistically significant cluster was observed at the long-latency range
for original faces, cluster p < 0.005, but not for aesthetically manipulated versions.
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Figure 8. Temporal generalization matrix for classification of self and other familiar faces in each
condition. In the upper panes, colour represents the values of AUC. The significant cluster is described
in red in the lower panels.

3.5. Subjective Evaluation

The mean and standard deviations of subjective evaluations for each type of facial
image are summarised in Table 2. As for attractiveness evaluation, participants rated other
familiar face significantly more attractive than their own face, F (1, 17) = 28.4, p < 0.001,
ηp

2 = 0.63. There was also a significant main effect of Version, F (2, 34) = 31.2, p < 0.001,
ηp

2 = 0.65. Multiple comparisons revealed significantly higher attractiveness rating to en-
hanced than the original, t (17) = 2.18, adjusted p = 0.044, and degraded version, t (17) = 5.99,
adjusted p < 0.001. Original images were rated more attractive than the degraded ver-
sion, t (17) = 6.22, p < 0.001. The interaction between Identity and Version failed to reach
significance, F (2, 34) = 0.04, p = 0.96, ηp

2 = 0.002.

Table 2. Subjective ratings given to faces in each condition. In the parenthesis are the standard
deviations.

Self Other Familiar
Original Enhanced Degraded Original Enhanced Degraded

Attractiveness 9.4 10.5 5.5 13.2 14.3 9.1
(3.9) (3.3) (3.1) (1.5) (2.6) (1.9)

Prettiness 8.9 11.1 5.9 12.4 14.6 9.3
(3.4) (3.7) (3.1) (1.4) (2.5) (2.1)

Similarity 18.6 15.3 14.8 4.8 4.9 5.1
(3.3) (3.4) (2.9) (3.1) (3.1) (3.0)

As for prettiness evaluation, participants rated other familiar faces as significantly
prettier than their own face, F (1, 17) = 25.6, p < 0.001, ηp

2 = 0.60. There was also a signif-
icant main effect of Version, F (2, 34) = 30.9, p < 0.001, ηp

2 = 0.65. Multiple comparisons
revealed significantly higher prettiness rating to enhanced than the original, t (17) = 4.02,
adjusted p < 0.001, and degraded version, t (17) = 5.91, adjusted p < 0.001. Original images
were rated prettier than the degraded version, t (17) = 5.89, adjusted p < 0.001. The inter-
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action between Identity and Version failed to reach significance, F (2, 34) = 0.046, p = 0.96,
ηp

2 = 0.003.
As for self-similarity ratings, the ANOVA revealed significant main effects of Identity,

F (1, 17) = 140.9, p < 0.001, ηp
2 = 0.89, and Version, F (2, 34) = 6.29, p = 0.005, ηp

2 = 0.27.
These main effects are qualified by a significant interaction between Identity and Version,
F (2, 34) = 13.57, p < 0.001, ηp

2 = 0.44. A simple main effect of Version was significant in self,
F (2, 34) =10.44, p < 0.001, ηp

2 = 0.38, but not in familiar condition, F (2, 34) = 0.42, p = 0.66,
ηp

2 = 0.02. Multiple comparisons revealed that the original image was rated more similar
to self-face than to the enhanced, t (17) = 3.22, adjusted p = 0.005, and degraded version,
t (17) = 4.63, adjusted p < 0.001. The self-similarity ratings for enhanced and degraded
versions did not differ significantly between each other, t (17) = 0.61, adjusted p = 0.55.

4. Discussion and Conclusions

Self-face recognition holds a unique status in human social cognition [50,51], possibly
serving as the basis of indispensable functions such as empathy [52,53]. Many people see
their faces every day. However, the representation of self-face is known to be vulnerable to
cognitive bias such as self-serving bias [8,53,54], which is demonstrated in several studies
showing that people tend to select aesthetically enhanced versions of their face as the actual
self-face [8]. The present study sought to clarify the neural basis of such a bias in self-face
recognition by measuring ERPs elicited by original, aesthetically enhanced, and degraded
versions of self and other familiar faces.

Conventional analysis of ERP mean amplitude revealed larger P100 in the right than
in the left occipital region. Although P100 is generally considered to reflect processing
of low-level visual attributes such as luminance, this component is also reported to be
sensitive to face-specific information [55,56]. Taking this together with the oft-reported
right-lateralization of face processing [57], presentation of facial stimuli might have enlarged
P100 in the right hemisphere in the present study.

A previous study [20] examined the influence of facial familiarity on early ERP com-
ponents in the occipito-temporal region and found that N170 amplitude increases and
P250 amplitude decreases as facial familiarity is higher. Our observation of larger P250
amplitude in response to other familiar versus self-face replicates their findings, which
probably reflects the process of matching structural information of viewed faces with stored
facial representations [19,20]. In the present study, N170 amplitude was larger for self than
other familiar faces, partially replicating the facial familiarity effect in [19], but puzzlingly,
this trend was not observed for the original version. One plausible explanation for this null
result is cultural differences. Many existing studies recruited participants from Western
countries, whereas the participants of the current study were Japanese, where people accept
collectivistic view [58], and familiar people are deemed as an extension of the self. Such
collectivistic tendency might have blurred any differences in neural activations elicited
by self and other familiar faces [59]. Another potential explanation is that the adaptation
to the aesthetically manipulated version of self-face influenced processing of the original
and aesthetically enhanced self-face. Recent studies using a serial dependence paradigm
indicate that high-level adaptation to visual stimuli takes place after viewing an image
just for a short duration [60,61]. Unfortunately, the experimental design of the present
study does not afford examination of perceptual adaptation and habituation effects on ERP
components because a relatively small number of trials were conducted for an ERP study.
However, it is conceivable that structural encoding stages of self and other faces as reflected
in N170 [19,20,62] might have been modified by the repeated exposure to aesthetically
manipulated faces.

Multivariate analysis and cluster-based permutation statistics of ERP time series failed
to detect statistically significant effects of facial identity in the N170 component, which
indicates that a theory-driven approach of conventional analysis still has an edge over
a data-driven approach in the analysis of early components. The sampling rate of the
dataset was only 50 Hz, and the data from all the 61 channels were used in the multivariate
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analysis. In contrast to this, data from occipto-temporal clusters sampled at 250 Hz were
submitted to ERP mean amplitude analysis. One may conceive that such differences in
datasets explain the failure of multivariate analysis to find any effects in early component.
However, it is not the case at least in the present study. Multivariate analysis of the data in
occipito-temporal clusters sampled at 250 Hz still failed to find a statistically significant
effect in the N170 component as observed in ERP mean amplitude analysis.

Occipito-temporal electrodes were chosen based on the existing findings [19,20,62] to
optimize the chance of finding any effects of experimental manipulation on early visual
components. This is one advantage of ERP mean amplitude approach over multivariate
analysis. Another reason for superior performance of ERP mean amplitude analysis is
its sensitivity to short-lasting effects. A previous study [34] has pointed out the possibil-
ity that cluster-based permutation is less sensitive than alternative procedures such as
FDR correction [63] in detecting small clusters of activation, which is disadvantageous
particularly for the detection of ephemeral effects in the early latency range. It is of great
value for the advancement of data-driven analysis of ERP data to refine a novel procedure
to balance sensitivity to and controlling false-positives of meaningful but short-lasting
temporal clusters.

Neither the conventional ERP analysis nor the GFP analysis revealed notable effects
during the late latency range (500–700 ms after stimulus onset). At the same time, the
results of diagonal decoding in multivariate analysis have shown that the pattern of scalp
ERP elicited by self-face can be discriminated from that elicited by familiar faces after
500 ms for original and degraded versions. These results show the benefit of multivariate
analysis in investigating electrophysiological bases of face processing.

The averaged RT for making manual responses was about 500 ms in the present task.
Thus, the long-latency effect revealed by multivariate analysis is not directly linked to
perceptual discrimination of facial identity, but presumably to later cognitive and evaluative
stages of self-face processing. Temporal generalization analysis revealed that this effect was
temporally stable for the original, but not for the degraded version of faces, which indicates
that neural activation underlying the long-latency effect differs between the original and
degraded versions.

As for actual self-faces, several previous studies have shown that an attentional effect
of self-related information emerges around 500 ms after stimulus onset [13,19]. Thus, one
explanation for the long-latency effect for original faces is the vigorous neural activations
originating from the potency of self-face to capture one’s visuo-spatial attention [40,41,64].

To the best of our knowledge, the present study is the first to measure ERP responses
to aesthetically degraded versions of self-face. Thus, one can only make speculations about
the functional significance of an identity-related effect observed for aesthetically degraded
versions of faces at the long-latency range. Several behavioural studies found that self-
threatening information triggers a psychological defence mechanism that protects positive
self-image. Schwinghammer et al. (2006) [6] investigated how activation of negative self-
conception influences evaluation of own and other’s attractiveness. Their main finding was
that the participants primed with negative conception avoided negative self-evaluation
and gave lower attractiveness ratings to attractive others to maintain their self-esteem.
Based on these findings, I tentatively propose that differential ERP pattern between self and
other familiar faces in aesthetically degraded condition reflects the activation of a defensive
reaction triggered by viewing aesthetically degraded self-images that are demeaning to the
participants.

There are several limitations to the present study. First, only young adult females
with relatively small sample size were recruited as participants, which severely limits
the generalizability of the present findings. A recent study [65] reported that a larger
proportion of females versus males makes an effort to edit their selfies shared on social-
networking services. Thus, it is highly conceivable that males, who are less accustomed
to viewing aesthetically manipulated self-representation, show neural activation different
from females. Second, low-level visual features, such as global luminance and distribution
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of spatial frequency power, were not strictly controlled, which leaves open the possibility
that any observed effects of experimental manipulation can be explained by differences in
low-level visual features, especially in cases of early ERP components. However, care was
taken to ensure that effects of low-level visual features do not introduce unintentional effects
into the results. First, three versions of facial images were created by warping identical
skin texture. Second, self and familiar faces were presented in a folked-tier design [66].
Images of self-face served as other familiar faces for the paired participant. Thus, although
potential effects of low-level features cannot be excluded entirely, I can say that such
undesirable effects must have been minimized. Lastly and most importantly, findings of
the present study tell little about functional significance and psychological mechanisms
underlying the observed effects of aesthetic manipulation and facial identity on ERPs.
For example, manipulation of facial morphology adopted in the present study probably
influenced multiple aspects of facial impression other than facial beauty; large eyes and
small nose in aesthetically enhanced versions are generally linked to baby schema [67,68],
and a larger jaw in the degraded version is a prominent feature of facial masculinity [69,70].
However, it is unclear which dimension of facial evaluation, e.g., facial beauty, babyishness
or masculinity, the observed pattern of ERP responses is linked to.

In summary, the present study found a differential pattern of neural activation in
response to self and other familiar faces and that the effect of facial identity was most
prominent for aesthetically degraded versions of facial images. Effects of identity were
observed both in N170 and the long-latency range for the aesthetically degraded version.
Importantly, the effect of self-relatedness in the long-latency range was detected only by
multivariate analysis based on machine learning but not by conventional ERP amplitude
or GFP analysis. In contrast, the identity effect on the N170 component was observed
only by a conventional approach of ERP mean amplitude analysis. Taken together, these
results suggest the necessity of integrating both theory- and data-driven approaches in a
complementary manner to clarify the neural activation associated with self-face processing
in its entirety.
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