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Abstract: This paper presents a state observer for an elastic joint with nonlinear friction via the
information from an acceleration sensor. In order to avoid discontinuities, the nonlinear friction of
the motor, which includes static, coulomb, and viscous terms, is considered a smooth function. In
addition, it uses an acceleration sensor to obtain the information about the link with high uncertainty.
The proposed state observer guarantees that the estimation error for the position and velocity of
the link connected via an elastic joint containing a nonlinear stiffness (elasticity) converges to zero.
In addition, it is shown that the observer gain can be designed by LMI (linear matrix inequality)
optimization. Finally, to verify the performance of the proposed observer, the method proposed in
this paper is tested by experiments on a two-inertia system with an elastic shaft.

Keywords: elastic joint; state observer; acceleration sensor; nonlinear friction; Lipschitz; linear matrix
inequality (LMI)

1. Introduction

The design of a robust controller for elastic joint manipulators has attracted much
attention over the past several decades. The importance of the control applied to a system
is increased when precise and rapid movement needs to be obtained. To obtain high control
performance, the precise positioning problem of the elastic joint has been studied for a
long time. Several effective control strategies have been devised in [1-4]. The majority of
previously proposed methods need information on the exact state of the joint (position,
speed, etc.). However, the research on state estimation is extremely low. In particular, due
to the nonlinear characteristics of elastic joints, it is not easy to find the states (e.g., position
or velocity of link) of the link side under the constraint that only the states of the motor
are known [5,6].

In recent years, there have been several attempts to solve the problem of estimating the
position and velocity in mechanical systems [7-9]. In particular, the authors in [9] present
a robust state observer for elastic joints that contain nonlinear functional components in
the stiffness part. The state observer was designed using the results of [10-12]. However,
this study does not consider the effect of frictional forces. As depicted in Figure 1, elastic
joints generally have a nonlinear friction torque that is approximated as affecting the motor
side only. The nonlinear characteristics of its friction appear to be especially striking in the
low-speed region of the motor [13].

In this brief, we consider the nonlinear frictional force which was not considered in [9].
We present a state observer that overcomes the problem of the state estimation error not
being eliminated due to the nonlinear friction. In general, the nonlinear friction model is
discontinuous because of the signum function in coulomb friction [14,15]. In order to avoid
the discontinuities, the nonlinear friction of the motor, which includes the static, coulomb,
and viscous terms, is considered a smooth function. The proposed state observer guarantees
that the estimation error for the position and velocity of the link connected via an elastic

Appl. Sci. 2022,12,12991. https://doi.org/10.3390/app122412991

https://www.mdpi.com/journal/applsci


https://doi.org/10.3390/app122412991
https://doi.org/10.3390/app122412991
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5858-4702
https://doi.org/10.3390/app122412991
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122412991?type=check_update&version=2

Appl. Sci. 2022,12, 12991

2 0f 10

joint containing a nonlinear stiffness (elasticity) converges to zero. In addition, it is shown
that the observer gain can be designed by LMI (linear matrix inequality) optimization.
Finally, we conduct experiments on a two-inertia system consisting of two motors.
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Figure 1. Example of nonlinear friction: (a) static + coulomb + viscous friction, (b) static friction,
(c) coulomb friction, (d) viscous friction.

The rest of this paper is organized as follows: We introduce the problem formulation
and provide a design method of the state observer in Section 2. Next, Section 3 shows the
stability and performance analysis of the proposed observer. In Section 4, we experimentally
test the proposed observer on a servo drive system.

2. Problem Formulation and Solution

We consider an elastic joint model with nonlinear friction and stiffness, as described
by [7]:

Ji(61)6; + D(6; — 6) — K (61, 6.) + C(6,,6;) + G(6;) =0, O
=T.

Imém + D(ém - 91) —|—K(91,9m) + Fm(ém)

where 6; and 0, are the angular positions of the link-side and motor-side, respectively.
J1(6;) and G(6;), which depend on the position of the link, are the link inertia and the
gravity term, respectively. While the coriolis and centrifugal term C(6;, w;) depend on the
position and velocity of the link, the motor inertia J;; and the damping D have a constant
value. 7 is the torque input to the motor. As shown in Figure 1, the nonlinear friction on
the motor side Fy, (wy,) is given by:

En(wm) = fowm + fe(ux + (1 = py)sech(Bwn)) tanh (acwnm) €

where f;, and f. are the kinetic coefficients of viscous and coulomb friction, respectively. «,
B and 0 < yy < 1 are the suitable parameters of the nonlinear friction. Moreover, as shown
in [7,9], the stiffness K(6;, 8,;) with nonlinear characteristics is expressed by

—k105 — k29% — (k1 + 3k29%)(—9m +6,—06g), if6,—06, < —06p.
K(61,6m) = k1 (0 —6)) + ko (6 — 61)3, if |0m — 6] <65. (3
k10 + kzeg + (k1 + 3k29%)(9m — 6, — 93), if 6, — 6, > 0p.
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where ky, ky, and 6p are all position numbers. Here, k; and k; mean linear and nonlinear
stiffness coefficients, respectively. 0p is a break-point, which means the physical limit by the
torsion degree between the motor and the link. The representation of (1) can be obtained
as follows:

91 = wy,
@ = J;71(0) (D (wm — wp) + K (6;,0m) — C(6;,wp) — G(6))), @
gm = Wm,

Here, w; and wy; are the derivatives of 6; and 0,,, which represent the angular velocities
of the link and motor, respectively.

The final goal of this study is to design a robust state observer that guarantees the
asymptotic estimation performance for all the states of the Equation (4). Now, we pose
some conditions in order to solve the problem.

Assumption 1. The position of motor-side 8,, and the acceleration of link-side w; are measurable
while the link position 0;, the link velocity w;, and the motor velocity w,, are not.

Assumption 2. The motor inertia ], and the damping parameter D and all parameters of the
nonlinear friction (2) and stiffness (3) are known.

Now, let
T T
xi=[x1 x x3 x| =1[0 w O wul
Then, the observer design problem considered in this paper can be stated as follows.
For the given system (1), find a state observer given in the form

£(t) = f(t,%,0m, @, T) 5)

such that £(t) converges to x(t) as time goes to infinity.

Inspired by [12], a solution to the problem proposed in the above is given in terms of a
state observer for a Lipschitz nonlinear system, which will be described below. First of all,
it follows from (4) with (2) and (3) that

¥ =Ax+Y+Q(x)+ Bu

b cCx (6)

where u := T is the input torque and y := [y1  y2] T= 6 @] " are the values measur-
able by Assumption 1, and

0 1 0 0 0
1o o 0 0 R
A= 0 0 0 1 Y= 0l
'kt Ju'D o =Tn'ki —1,'(D+ fo) 0
i 0 0 01"
0 0 0
O(x) = X B=1 ol c=1i]
[T (P51, x3) + P(x4)) T 0
¢1(X1,X3) = 3k29123 (X3 — xl) + 2k29%, if x3 —x1 < —03p,
P(x1,x3) = ¢a(x1,x3) = ko(x3 — x1)3, if [|x3 — x1|| < 0B,
¢3(x1,x3) = 3k20% (x3 — x1) — 2ko63, if x3 — x1 > 05,

$(xa) = foxa + fe(p + (1 — p)sech(Bxy)) tanh (axy)
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Next, we present a state observer for the system (6) as follows:

£=A2+Y+Q(£) 4+ Bu+L(y; — )

7
71 =C% @)

where the observer gain L is

p-ic’T
L=—— (8)

Here, the matrix P > 0 is chosen such that for some small € > 0, the following LMI
(linear matrix inequality) [16] holds:

ATP+PA+2I-1CTC P

P 7 < 0. 9)

Now, we state the main result of this note, the proof of which is given in the following
section, along with a detailed explanation about the proposed observer.

Theorem 1. Under Assumption 1 and 2, the state observer (7) quarantees that the estimation error
e(t) := x(t) — 2(t) converges to zero as time goes to infinity.

3. Stability and Performance Analysis

In order to prove Theorem 1, we obtain that the nonlinear function Q(x) of (6) has the
following property.

Lemma 1. Q(x) of (6) is globally Lipschitz. In other words, there exists a positive number 7y (the
so-called Lipschitz constant) that satisfies the following Lipschitz condition:

10(x) — Q@) < vllx— %, Yx,2 R
In addition, the Lipschitz constant is expressed as:
7= I (6k20F + afe). (10)

Proof. The Jacobian matrix of () at x is given by:

0 0 0 0
O 0 0 0 0
ox 0 0 0 0
—19¢(xq,x —19¢(x1,x —199P(x.
- 47(6;1 3 - ¢(a;3 3) - 1!55644)
where
) — _3k,03, if x3 — x; < —0p,
P55 _§els) - gty — )2, if va— x| < 6,
1
) — _3k,03, if X3 — x; > 6,
( ’ \) — 1
¢(x1 x3) al aX;sxz = 3k29%, if x3 —x1 < —93,
oy L) 3k vy — 1), if [|x3 — x1]| < 65,
3 2
4’3(5‘;:53) = 3k29%, if x3 — x1 > 6p,
9P (xs) = afopsech? (axy)
aX4

+ fe(1—uy) <—ﬁsech(/3x4) tanh(Bx4) tanh(axy) + ocsech(,Bx4)sech2(ax4)>
< afepy+ fe(1— p)a = afe.
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Thus, the function Q(-) is continuously differentiable on R*. In addition, the %—? is
uniformly bounded as follows:

— ]71 <‘ (P(xl/ x3)

8x1

aﬁ
ox

+ ‘ (P(xll X3)

aX3

n ‘alP(xU

8x4

) < I (skat} + a1,

Therefore, the proof is complete from ([17] Lemma 3.3). O
Now the dynamics for the estimation error e(t) can be expressed as follows:
b=x—2%
= (A—-LC)e+ (Q(x) —Q(%)). (11)
Consider a quadratic Lyapunov function candidate

V(t) =e' (t)Pre(t).

Then, it follows from Lemma 1 that the derivative of V(t) is given by:

V=eT((A=LC) P+ P;(A—LC))e+ 2P (Q(x) — Q%))
<el((A—LC)"Pi+ Pi(A - LC))e + 2| Pre]|[|(Q(x) — Q(2))]|
<e'((A=LC)TP + Py(A - LC))e + 27| Pre] |le]|
<eT((A=LC) P+ Pi(A—LC))e+ v P Pie+e’e
=eT((A=LC)"P + Pi(A—LC) +*P, P, + De. (12)

Next, let P; = ’y‘lP,' it then follows from the Schur complement that the LMI (9) can
be written as:

1
ATP 4+ PA+ %1 — ECTC+PP <0
& (A—LC)'Py+ P (A—LC) ++9*PP, +1<0 (13)
where L = £ 721€CT. From Equations (12) and (13), V < 0, and the error dynamics (11) are
asymptotically stable by ([17] Theorem 4.1), i.e., lim;_, e(t) = 0.

In actual system, the acceleration y, of the vector Y contains measurement noise. On
the other hand, the encoder noise for motion position y; is small enough to be ignored.
For the optimal design for the measurement noise, instead of (6), we consider the noise
corrupted system:

¥ =Ax+Y +Q(x) + Bu + Yyd(t) (14)
y1 = Cx

. . . T
where d(t) € R is measurement noise for accelerationand Y;:= [0 1 0 0] . Now, we
consider the minimization of the induced L; gain between the acceleration measurement
noise d and the estimation error e, i.e., || Hj_s¢ || co-

Theorem 2. For the given system (14) and the proposed observer (7), it is supposed that the

noise d(t) is bounded. Then, it follows from the observer gain L = szlecT that |Hy_selleo < K if
P >0, >0, and x > 0 such that

ATP+PA+(1+9%)I-1cTCc P Py,
P -1 0 | <o (15)
YIp 0 —x’I
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The detailed proof is omitted since it is similar to the proof of ([12] Theorem 5). From
the above result, it is noted that the observer gain L can be designed by the solution P of
the LMI (15) for a given € > 0 and « > 0.

4. Experiment Results

Even though our goal is to observe all states of the elastic joint expressed as (1), we
carry out experiments for a two-inertia system shown in Figure 2 to verify the effectiveness
of the proposed observer in the previous section because it represents quite well the
dynamic properties of the manipulator having a flexible joint [18]. As shown in Figure 3,
a two-motor system consisting of a driving motor and a load motor is illustrated in this
experiment. The two motors connected with an elastic shaft and a friction adjustment on
the driving motor side are similar to [19]. The proposed observer has been implemented in
a high-performance embedded motion controller (manufactured by National Instruments
Corporation) with servo motor drivers (manufactured by Panasonic Industry Corporation).

K(9,0) Link

m

M

J,(6) \
[E /
T |I_ 0
m D !
7777777
F(6) A

Figure 2. The two-inertia system.

Figure 3. Experiment Setup.

The parameters of the two-inertia system, including the nonlinear stiffness and friction,
are listed in Table 1. In addition, the link acceleration w; of (6) is obtained from the encoder
value of the load motor in Figure 3. In other words, the angle acceleration is obtained by
differentiating the position value of the encoder twice. Figure 4 shows the block diagram
of the overall system with the proposed state observer. Here, the block ()(£) means the
nonlinear terms of the friction and stiffness in the elastic joint model. The difference in
design approach between the proposed method and the linear observer is the addition of
the block ()(%) and the design method of the observer gain L that depends on the Lipschitz
constant y of Q(x), as shown in the Equations (7) and (9). The design parameters, including
the observer gain L of (8), are chosen as depicted in Table 2.
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Table 1. Parameters of the experimental system.

Parameter Value Unit
damping (D) 600 Nm - s/rad
motor inertia (J;;;) 0.001027 kg - m?
linear stiffness coefficient (k1) 1.5 x 10° Nm/rad
nonlinear stiffness coefficient (k) 9.85 x 101! Nm/rad3
breakpoint deflection (6p) 2 arcmin
viscous friction coefficient (f;) 0.006 Nm - s/rad
coulomb friction coefficient (f) 1.5 Nm

Uk 0.5

B 0.5

o 5

Table 2. Design parameters for experiments.

Parameter Value

€ 1.0 x 107

observer gain L [3.2477, 3.0286, 1.6021, 6.6788}T - 102
motor torque: Elastic Joint Model 0,.(=u)

U= 1)
+
[ [
T (0

link acceleration:

i (=1,) ’C? < 4

Figure 4. Block Diagram of the Overall System.

Now, as shown in Figure 5, we perform an experiment to compare the proposed
observer considering the nonlinear stiffness and friction with the conventional observer
considering only the nonlinear stiffness of [9]. The actual link trajectory (black solid
line) controlled by the pre-installed PID controller is the measured value from the optical
incremental encoder on the load motor. From the conventional and proposed observer, the
estimated values of the actual link trajectory are indicated by the dash-dot (red color) line
and dashed (blue color) line, respectively. For a more detailed performance comparison,
we enlarge Figure 5 at 1.2 s and 6.2 s, as depicted in Figure 6. In order to evaluate the
estimation performance, we calculate the RMSE (Root Mean Square Error) of the link
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position estimation error for the conventional method and proposed approach, respectively,

as follows.

The comparison of the observation performance can also be confirmed from the

RMSE(6;,6;) = {

124.8400 for conventional method,
7.8889 for proposed method.

estimation error of the actual link trajectory, as shown in Figure 7.

40 ‘
—Actual
---Conventional
30 —---Proposed
20
@
Q
(o))
[0}
o
[0}
IS
C
<
—10
-20
30 \ \ \ \ \ \ \
0 1 2 3 4 5 6 7 8
Time (sec)
Figure 5. Observer performance comparison (link position).
—6 T T —6 T T T
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S o
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2
210}
<
—11+
12}
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Figure 6. Enlarged version of Figure 5.
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Figure 7. Estimation error of the link position.

5. Conclusions

In this brief, we have proposed a state estimator for an elastic joint with nonlinear
friction based on LMI (linear matrix inequality) optimization. From the assumption that
the elastic joint has a nonlinear friction model that is considered a smooth function, the
proposed estimator has guaranteed that the estimation error of link position and velocity
converges to zero. Although the positive definite solution satisfying the LMI cannot
be found if the Lipschitz constant is too large, we have applied to a two-inertia system
to validate the proposed method, and thus its performance has been verified. Finally,
the nonlinear friction model could demonstrate jumping resonance phenomena that can
appear in practical nonlinear systems [20]. Thus, further investigation seems to be needed
in the future.
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