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Abstract: Speech emotion recognition is a crucial work direction in speech recognition. To increase
the performance of speech emotion detection, researchers have worked relentlessly to improve
data augmentation, feature extraction, and pattern formation. To address the concerns of limited
speech data resources and model training overfitting, A-CapsNet, a neural network model based
on data augmentation methodologies, is proposed in this research. In order to solve the issue of
data scarcity and achieve the goal of data augmentation, the noise from the Noisex-92 database is
first combined with four different data division methods (emotion-independent random-division,
emotion-dependent random-division, emotion-independent cross-validation and emotion-dependent
cross-validation methods, abbreviated as EIRD, EDRD, EICV and EDCV, respectively). The database
EMODB is then used to analyze and compare the performance of the model proposed in this
paper under different signal-to-noise ratios, and the results show that the proposed model and data
augmentation are effective.

Keywords: speech emotion recognition; data augmentation; data division; network model

1. Introduction

As science and technology have progressed, computers have invaded all parts of
daily life, and they now serve a key role in learning, entertainment, and work [1]. Human–
computer interaction (HCI) is a significant area of study, industry, and application as the
need of people for computer functions grows. The purpose of speech emotion processing is
to extract emotion parameters from speech signals so that the emotion information buried
in the sentence can be recognized [2]. It is an important part of information processing, and
it is used in artificial intelligence (AI), aided psychotherapy, and emotional translation. The
goal of emotional computing is to enable computers to observe, interpret, and think in the
same way as human do. The goal of affective computing is to provide computers with the
ability to observe anthropomorphically, to comprehend and generate various emotional
traits, to give computers human-like emotional intelligence, and finally, to realize natural,
friendly, and vivid HCI [3]. Traditional speech signal study focuses mostly on semantics,
but the emotional information embedded in the signal cannot be overlooked. The same
statement with varied emotional elements might cause significant perception variations in
the listener.

Speech signals can help a listener to form a more accurate assessment of the emotional
state of a speaker [4]. Human communication and emotion transmission rely heavily on
speech. Emotion recognition of speech signals is of great practical significance for accurately
judging human emotion and realizing man–machine natural communication and computer
intelligence [5]. Speech emotion recognition (SER) has become an active research area,
and it provides users with a smoother interface and gives them appropriate feedback or
recommendations [6]. Most of the SER systems mainly consist of the following two stages:
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feature extraction and emotion classification. Therefore, constructing an effective acoustic
model is a key factor to the success of SER systems [7].

In order for the HCI technique to be timely changed in accordance with the different
sorts of emotions, the computer must be able to precisely identify the operator’s feelings.
The recognition rate was calculated using the hidden Markov model (HMM) in the litera-
ture [8]. Literatures [9–13] use artificial neural networks (ANN), recurrent neural networks
(RNN) and convolution neural networks (CNN) to recognize speech emotion. Increasing
numbers of models are studied by scholars and the accuracy of recognition can be gradually
improved. Among the mentioned models, the HMM is a parametric representation of
time-varying features that simulate the process of human language processing, and it needs
many samples for time-consuming training [14]. A Gaussian mixture model (GMM) is
a probability density estimation model that can fit all probability distribution functions;
however, it depends heavily on data distribution or volume, and it is sensitive to data
noise [15]. Support vector machines (SVM) map the feature vectors from the input space to
a high-dimensional Hilbert space by using kernel tricks at first and then seeking an optimal
hyper-plane in the high-dimensional space to classify samples. However, it cannot solve
the problem of large-scale training samples that lead to a large or prohibitively large kernel
matrix [10].

Deep neural networks have better performance regarding their learning capabilities
when handling large-scale data. However, different models have their own pros and cons.
For example, an RNN is good at dealing with time series information [16] and a CNN
effectively collects spatial data [17]. The most well-known deep learning models are CNN-
based, and they perform exceptionally well when learning representations [18]. However,
CNNs have two significant flaws, which are as follows: they do not account for signifi-
cant spatial hierarchies between features, and they do not have rotational invariance [19].
Convolutional layers and pooling layers make up the typical CNN structure. When this
happens, the Max-pooling layer, one of the most popular pooling layers, unavoidably re-
moves the information that is not “max-information,” which is also important in SER. The
convolutional layer takes into account the data inside its receptive field and extracts charac-
teristics in this local region, but it disregards the spatial connections and orientation data
within the global region of the emotional speech [20]. To overcome these disadvantages,
Sabour et al. propose capsule networks (CapsNet) [19], which contain a set of neurons that
maintain activity vectors, whose lengths represent presence probabilities and orientations
represent entity attributes. However, the computational complexity of CapsNet is high.
Therefore, to overcome this problem, this paper proposes an average-pooling capsule
network (A-CapsNet), a speech emotion recognition method based on average-pooled
ensemble capsule networks. In addition, because existing databases such as the Chinese
language database (CASIA) [21], Berlin Emotional Database (EMODB) [22], and Surrey
Audio-Visual Expressed Emotion (SAVEE) database [23] have small data volumes, a data
division method is used to increase the data volume in order to address the problem of
model over-fitting brought on by data scarcity.

The main contributions of this study may be summed up as follows: (1) the data
augmentation approach is proposed to supplement baseline databases and further reduce
the overfitting issue; (2) the model A-CapsNet is proposed to identify emotions and reduce
the overfitting danger.

The structure of this paper is as follows. In Section 2, the used databases are described
and the data augmentation approach is shown. The preprocessing and feature extraction
processes are described in Section 3. In Section 4, the suggested model A-CapsNet is
introduced. The experimental and results analyses are described in Section 5. The suggested
model’s advantages and disadvantages are examined in Section 6, along with suggestions
for future research.
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2. Our Database

To query the effectiveness of the proposed A-CapsNet in SER, the traditional baseline
database EMODB [24] has been chosen. The EMODB is a German database, including
10 audio systems and seven emotions, i.e., boredom (B), anger (A), fear (F), disappointment
(Sa), disgust (D), happiness (H), and impartial (N), and it consists of 535 emotional sentences
in total.

To reinforce the baseline database EMODB, 15 noises from the noise database Noisex-
92 [25] are used for 5 signal-to-noise ratios (−10 dB, −5 dB, 0 dB, 5 dB, and 10 dB) and
15 exceptional varieties of noise are delivered with the 5 SNRs to achieve 5 augmented
unmarried SNR databases. The previously mentioned 15 types of noises are babble, bucca-
neer1, buccaneer2, volvo, f16, destroyerengine, destroyerops, factory1, factory2, hfchannel,
leopard, ml09, red, machinegun, and white, respectively. They may be further merged to
obtain a novel Multi-SNRs database (Multi-SNR-5-EMODB) with 40,125 samples, as shown
in Table 1. The number and proportion of emotional samples in the augmented EMODB
datasets with different SNRs are shown in Figure 1. A higher number of colored squares
indicates a higher number of samples of an emotion type.

Table 1. The augmented and merged database Multi-SNR-5-EMODB.

Database Emotion SNR Noises from
NoiseX-92 Total Samples

EMODB
Anger/A,

boredom/B,
fear/F,

disgust/D,
happiness/H,

neutral/N, and
sadness/S

−10 dB babble, white,
buccaneer1,
buccaneer2,

destroyerengine,
destroyerops, f16,
volvo, factory1,

factory2, hfchannel,
leopard, ml09, pink,

machinegun

8025
−5 dB 8025
0 dB 8025
5 dB 8025

10 dB 8025

Appl. Sci. 2022, 12, 12983 3 of 14 
 

2. Our Database 
To query the effectiveness of the proposed A-CapsNet in SER, the traditional baseline 

database EMODB [24] has been chosen. The EMODB is a German database, including 10 
audio systems and seven emotions, i.e., boredom (B), anger (A), fear (F), disappointment 
(Sa), disgust (D), happiness (H), and impartial (N), and it consists of 535 emotional sen-
tences in total. 

To reinforce the baseline database EMODB, 15 noises from the noise database Noisex-
92 [25] are used for 5 signal-to-noise ratios (−10 dB, −5 dB, 0 dB, 5 dB, and 10 dB) and 15 
exceptional varieties of noise are delivered with the 5 SNRs to achieve 5 augmented un-
married SNR databases. The previously mentioned 15 types of noises are babble, bucca-
neer1, buccaneer2, volvo, f16, destroyerengine, destroyerops, factory1, factory2, hfchan-
nel, leopard, ml09, red, machinegun, and white, respectively. They may be further merged 
to obtain a novel Multi-SNRs database (Multi-SNR-5-EMODB) with 40,125 samples, as 
shown in Table 1. The number and proportion of emotional samples in the augmented 
EMODB datasets with different SNRs are shown in Figure 1. A higher number of colored 
squares indicates a higher number of samples of an emotion type. 

Table 1. The augmented and merged database Multi-SNR-5-EMODB. 

Database Emotion SNR Noises from NoiseX-92  Total Samples 

EMODB  

Anger/A,  
boredom/B,  

fear/F,  
disgust/D,  

happiness/H,  
neutral/N, and  

sadness/S  

−10 dB babble, white,  
buccaneer1,  
buccaneer2,  

destroyerengine,  
destroyerops, f16,  
volvo, factory1,  

factory2, hfchannel,  
leopard, ml09, pink,  

machinegun 

8025 
−5 dB 8025 
0 dB 8025 
5 dB 8025 

10 dB 8025 

 
Figure 1. The number and proportion of emotional samples in the augmented EMODB datasets with 
different SNRs. 

3. Preprocessing and Feature Extraction 
3.1. Preprocessing 

The feature extraction process is a very important part of speech emotion recognition, 
and this is followed by two basic tasks, digitization and preprocessing [26], which are also 
essential. The preprocessing process is the same as that for speech signals, mainly 

Figure 1. The number and proportion of emotional samples in the augmented EMODB datasets with
different SNRs.

3. Preprocessing and Feature Extraction
3.1. Preprocessing

The feature extraction process is a very important part of speech emotion recognition,
and this is followed by two basic tasks, digitization and preprocessing [26], which are also
essential. The preprocessing process is the same as that for speech signals, mainly including
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anti-aliasing filtering, pre-emphasis, windowing, framing, and endpoint detection. After
preprocessing, the voice data are extracted. By training these voice data, we can achieve the
purpose of computer recognition of speech signals. The original speech signal is an analog
signal. So-called digitization is the process of converting an analog signal into a discrete
digital signal, and the two most important links are sampling and quantization. The reason
for pre-emphasis is that the speech signal will cause partial attenuation of high frequencies
after passing through the lips and nostrils [27]. Compared with low frequency, the spectrum
analysis of high frequency is harder to obtain. The purpose of pre-emphasis is to improve
the high-frequency parts of speech. After pre-emphasis, the spectrum of speech signals
is smoother, which is more conducive to spectrum analysis. A speech signal is a typical
non-stationary time-varying signal that carries various types of information. Because of its
short-time stability, it is divided into frames through the process of windowing to obtain
short-time voice signals.

The framing of the speech signal is realized by the process of weighting with a win-
dow function. There are usually two methods of framing, continuous segmentation and
overlapping segmentation [28]. However, to ensure a smooth transition between adjacent
frames, overlapping segmentation is usually adopted. Emotion is the basis of emotion
modeling, speech emotion synthesis, and speech emotion recognition. Only by establishing
a large-scale and highly realistic emotional speech database can we engage in the above
research. The emotional database provides a large amount of analysis data for emotional
speech analysis and modeling and provides a modeling basis for emotional speech synthe-
sis [29,30]. People can distinguish the emotions of different speakers because speech signals
contain speech data that can reflect different emotions, so the differences in emotions can
be reflected by the differences in speech data. Emotional acoustic features are divided
into prosodic features, sound quality features, and spectrum-based correlation features.
Prosodic features refer to the characteristics of pitch, duration, speed, and size of the middle
tone, including duration-related features, fundamental frequency-related features, and
energy-related features. Its existence will affect our emotional judgment of discourse, and
many existing feature sets contain prosodic features as emotional features [31].

3.2. Feature Extraction

Feature extraction is a key component of an emotion recognition system. Whether
the extracted features can correctly reflect emotions exactly or not will directly affect the
recognition effect. The input of the proposed model A-CapsNet consists of 21D LLD
features [32]. Each speech is segmented into frames with a 25ms window and a 10ms
shifting step. For each frame, 21D LLD features, including 1D ZCR and 20D MFCCs, are
extracted. Some features of the samples are quite different, so when the samples are directly
inputted into the training, the contour of the loss function will be flat and long [33]. Before
finding the optimal solution, the gradient descent process is not only complex, but also very
time-consuming. Therefore, it is necessary to quantify each feature into a unified interval.

After data standardization, all indicators are in the same order of magnitude, and
they are suitable for comprehensive evaluation. After feature normalization, the contour
of the loss function will be a partial circle, the gradient descent process will be flatter [28],
and the convergence will be faster; therefore, the performance will be improved. The
StandardScaler [34] is used to normalize the data so that the new dataset has a mean and
standard deviation of zero. It should be noted that the normalization procedure should be
applied to each feature rather than each sample.

4. The Proposed Novel Model A-CapsNet

The deep neural network structure of voice emotion identification is becoming increas-
ingly sophisticated, as deep learning continues to advance. Compared with the previous
simple feedforward neural network (FNN) [24], a CNN encodes multiple low-level features
into more differentiated high-level features in the way of spatial context awareness, and
then reduces the dimension of the features through the pooling layer. A dense layer is used
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as a classifier to detect the emotion [35]. In this paper, we refer to the Capsnet structure
proposed by Sabour et al. in 2017 to solve the problem that CNN can only extract features,
but cannot extract the state, direction, location, and other information of features, resulting
in the poor generalization ability of the model.

Capsule networks represent a recent breakthrough in neural network architectures
that introduce an alternative to translational invariance other than pooling through the
use of modules, or capsules. Two key features distinguish them from CNNs, layer-based
squashing and dynamic routing. Whereas CNNs have their individual neurons squashed
through non-linearities, capsule networks have their output squashed as an entire vector.
Capsules replace the scalar-output feature detectors of CNNs with vector-output capsules
and max-pooling with routing-by-agreement. Capsnet architectures typically include
several convolution layers, with a capsule layer in the final layer [36].

4.1. Network Structure

The CapsNet differs from earlier CNNs in that it employs a collection of neurons
rather than a single neuron, whose activity vector reflects the instantiation parameters of a
certain type of item, such as an object or object portion. The length of an activity vector
reflects the chance that the entity exists, and the orientation of an activity vector represents
the instantiation parameters. Active capsules at one level anticipate the instantiation pa-
rameters of high-level capsules via transformation matrices. A high-level capsule becomes
activated when numerous forecasts coincide. CapsNet, in other words, produces a vector
rather than a single scalar, allowing it to model global geographical information and replace
pooling layers with a dynamic routing mechanism to prevent losing important data. The
dynamic routing process is an information selection method that ensures that child capsule
outputs are sent to the appropriate parent capsules [37,38].

Referring to the paper [19,39], a brief introduction to the structure of Capsnet is pre-
sented in this section. A simple CapsNet architecture is shown in Figure 2 [19]. It contains
two halves. After three layers of processing, the first half produces a class prediction (two
convolution layers and one fully connected layer). The first layer is a convolutional layer
that uses a 9 × 9 kernel, 256 feature mappings, a stride of 1, and ReLU non-linearity to map
a 28 × 28 image to a 6 × 6×256 volume. The second layer is a convolution capsule layer
that uses a 9 × 9 kernel and stride of 2 to create a 6 × 6 × 256 volume. The volume is now
divided into 32 layers of 8-dimension capsules, for a total of 6632 capsules, along its depth.
A fully connected layer of 10 separate 16-dimension capsules, each of which represents an
output class, makes up the third layer. It must be noted that only the PrimaryCaps and
DigitCaps layers support dynamic routing. Finally, we generate a final prediction match
to the embedding with the largest magnitude using the magnitude of these 16-dimension
embeddings. Reconstruction as a regularization technique is implemented in the model’s
second half, also known as the decoder (Figure 3). Each class’s 16-dimension embeddings
are concatenated, with the exception of the winning class’s vector components, which are all
set to 0. In addition, 10-digit classes would mean a final embedding of length 160, which is
then fed through 3 fully connected layers with 512, 1024, and 764 neurons, respectively. The
final 784-dimension output is reshaped into a 28 × 28 reconstruction of the ground truth.
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The proposed model A-CapsNet, as illustrated in Figure 4, consists of three convo-
lutional layers, two average-pooling layers, an initial capsule layer, and a digital capsule
layer. The dynamic routing process of the proposed model A-CapsNet is referred to in
the literature [18], and differs from Capsnet, as its average-pooling layer can reduce the
computational complexity and avoid over fitting. Except for the primary capsule layer and
digital capsule layer, the activation function LeakyReLU is used after each convolutional
layer to enhance the non-linear mapping ability of the features.
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4.2. Fundamentals

The Capsnet model is mainly composed of stacked dynamic routing layers. This
section mainly explains the forward propagation principle of the dynamic routing layer.

The structure of the capsule network is similar to that of the full connection layer, as
shown in Figure 5. u1, u2, um is the bottom capsule, v1, v2, vN is the high-level capsule, W
and C are the parameters to be adjusted, W is updated through network back propagation,
and C is updated through the dynamic routing algorithm.
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4.2.1. Forward Propagation

The forward propagation formula is as shown in Equation (1).
ûj = Wj ∗ u
sj = ∑

i
cij·ûj

vj = squash
(
sj
) (1)

where ui is the output of the upper layer capsule and vj is the output of this layer capsule.
Wij is not necessarily a parameter in the form of a full connection, and “*” is not necessarily
a vector multiplication operation. Generally, “*” refers to a one-dimensional convolution
operation, and Wij refers to a convolution kernel, while cij is the coupling coefficient, which
is obtained by the dynamic routing algorithm.

Squash is the activation function, as shown in Equation (2).

vj = squash
(
sj
)
=

||sj ||2

1 + ||sj ||2
·

sj

||sj ||
(2)

It can be observed from the above formula that vj and sj have the same direction, and
the module length of vj is non-linearly mapped to (0,1) through the square () function,
which increases the non-linear mapping ability of the model.

4.2.2. The Dynamic Routing Algorithm

C is obtained by the dynamic routing algorithm. In the back-propagation of the model,
the value of C is not updated. The core formula of the dynamic routing algorithm is shown
in Equation (3). {

cij = so f tmax(bi)
bij ← bij +

〈
ûj, vj

〉 , (3)

where <,> represents the inner product operation. The dimension of bi is the same and the
initial value of ûj is 0. To clearly check the data flow in the capsule network, we draw the
data flow diagram as shown in Figure 6.

The red line indicates the flow direction of the forward propagation data, and the
green line indicates the flow direction of the dynamic routing data, and the variables with
a purple circle background represent the variables that will be updated in the dynamic
routing algorithm. As can be observed from Figure 6, the size of cij mainly depends on〈

ûj, vj
〉
, the similarity between vj and ûj.
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The schematic diagram of the parameter updates for capsule network dynamic routing
and backpropagation is shown in the Figure 7.
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4.2.3. The Margin Loss of the Model A-CapsNet

The loss function formula is shown in Equation (4).
Lj = yj·relu (m+ − ||vj||)

2
+ λ(1− yj)·relu(||vj|| −m−)2

m+ = 1−m
m− = m

. (4)

where y is the predicted value and m and λ are the parameters to be adjusted, which are
usually the following values: m = 0.1 and λ = 0.5.

5. Experimental Results of the Proposed Model A-CapsNet

This section includes the experimental settings, data division methods, and results
analysis.

5.1. Experimental Settings

All studies are carried out on a powerful PC with 64GB of RAM with Windows 10. The
processing speed is 2.10 GHz, the core is 40, and the logic processor is 80. TensorFlow [40]
is used to implement all models. The following are the parameter combinations of the
proposed model A-CapsNet: the convolution kernel size is set to 3 × 3, the step size is 1,
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the pooling window size is set to 2 × 2, regardless of the average pooling, padding is 0, the
activation function is LeakyReLU [41], and the optimizer is Adam [42]. When the emotion
category is 7, the suggested model has 310,784 parameters.

5.2. Data Division Methods

It has been shown that data partitioning is a good approach for experiments with
low data volumes [31]. Therefore, in order to train the proposed model A-CapsNet more
adequately, four data partitioning methods, namely EIRD, EDRD, EICV and EDCV, are
used, as shown in Table 2 and Figure 8.
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Table 2. The performance of the proposed model A-CapsNet using the database EMODB under different SNRs with the batch size = 128.

Data
Division Folds

SNR = −10 SNR = −5
1 2 3 4 5 Avg ± std 1 2 3 4 5 Avg ± std

EDCV K_folds = 5 56.76 56.95 56.95 56.64 57.13 56.89 ± 0.03 74.14 73.02 67.66 71.84 71.84 71.70 ± 4.81
EICV K_folds = 5 57.26 58.69 58.13 56.88 56.01 57.39 ± 0.88 73.33 70.84 70.59 71.59 69.35 71.14 ± 1.72
EDRD 5 times 56.95 56.64 57.01 58.32 58.50 57.48 ± 0.59 73.08 73.96 71.78 73.15 73.27 73.05 ± 0.50
EIRD 5 times 58.07 57.82 55.58 59.25 57.69 57.68 ± 1.41 72.15 72.83 72.40 73.64 72.06 72.62 ± 0.33
Data

Division Folds
SNR = 0 SNR = 5

1 2 3 4 5 Avg ± std 1 2 3 4 5 Avg ± std
EDCV K_folds = 5 86.54 89.72 88.22 89.60 87.35 88.29 ± 1.54 96.07 96.76 96.32 96.51 96.20 96.37 ± 0.06
EICV K_folds = 5 87.60 87.73 87.29 90.03 85.86 87.70 ± 1.80 97.32 97.01 97.26 95.83 97.57 97.00 ± 0.37
EDRD 5 times 86.79 86.92 88.29 87.23 86.04 87.05 ± 0.53 96.14 96.07 94.83 95.89 95.08 95.60 ± 0.29
EIRD 5 times 87.91 87.98 88.29 88.10 88.10 88.08 ± 0.02 96.14 95.76 96.88 96.45 95.95 96.24 ± 0.16
Data

Division Folds
SNR = 10 Multi-SNR-5

1 2 3 4 5 Avg ± std 1 2 3 4 5 Avg ± std
EDCV K_folds = 5 99.44 98.88 99.07 99.31 99.44 99.23 ± 0.05 89.32 89.89 88.90 88.87 88.05 89.01 ± 0.36
EICV K_folds = 5 98.69 99.38 99.31 98.82 99.50 99.14 ± 0.10 89.37 89.46 89.26 89.50 88.91 89.30 ± 0.04
EDRD 5 times 98.94 99.56 99.50 99.25 99.56 99.36 ± 0.06 90.12 89.43 89.63 89.05 89.01 89.45 ± 0.17
EIRD 5 times 98.75 99.38 99.44 99.31 99.44 99.26 ± 0.07 89.05 90.36 89.46 89.53 88.85 89.45 ± 0.28
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The EIRD is the acronym for emotion-independent random division. That is, all
samples are randomly divided into five equal parts and four parts are selected as training
data, while the remaining part is used as test data. The EDRD is the acronym for emotion-
dependent random division. That is, the samples of each emotion category are divided
into five equal halves. One sample is chosen at random as the test data for each section,
while the samples are divided into five parts at random, and each part is used as test data
in turn, with the remaining four parts serving as training data. The EDCV is the acronym
for emotion-dependent cross-validation. That is, the samples of each emotion category are
divided into five parts at random using this procedure. The test data are used for each part
in turn, while the training data are used for the remaining four parts. The data division
methods EICV and EDCV can ensure that all samples are used in the training and the
remaining samples are used as training data. The EICV stands for emotion-independent
cross-validation, which refers to all the testing processes.

5.3. Experimental Analysis

1. The performance of the model A-CapsNet improves as the SNR increases. Under
the EIRD data division technique, the recognition performance with an SNR of −10
and 10 is 57.68 and 99.26, respectively, as illustrated in Figure 9. There is a rise of
40 percentage points, which is a significant improvement, and it suggests that the
SNR has a significant impact on the performance of the model.
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2. Using the same database, the performance of the proposed model under different
data division techniques varies, but no data division method outperforms the others,
as illustrated in Figure 10. For example, when the SNR is −10, the model A-CapsNet
performs best when using the data division technique EIRD, and when the SNR is 10,
it performs best when using the data division method EDRD. With the improvement
in the signal-to-noise ratio, no matter which data division method is used, the averages
of the accuracies are improved, which is a relatively ideal recognition result. When
the signal-to-noise ratio (SNR) is 10, there is minimal variation in the experimental
performance of the four data division algorithms.
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3. Figure 11 shows the outcomes of four data division techniques for varying model
validation times using the Multi-SNR-5-EMODB database. It can be demonstrated
that the suggested model A-CapsNet’s performance was higher than 88.06 percent,
which is an important recognition outcome. When compared to other data division
techniques, the model A-CapsNet performs better under the data division approach
EIRD. At the same time, it is also clear that the model’s performance fluctuates signif-
icantly when cross-validated at various intervals, suggesting that data partitioning
techniques may have an adverse effect on the model’s performance. Therefore, it
is important to assess the resilience and generalization of the model using various
data partitioning techniques. However, no consistent conclusion has been obtained
regarding which data partitioning method results in the best performance of the
model. It can be said that it is necessary to evaluate the performance of the model by
integrating the results of the four data partitioning methods.
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In order to further highlight the advantages of the proposed model, Table 3 summa-
rizes the performance improvement of the model A-CapsNet compared to the related peer
methods with the baseline database EMODB. It shows that the suggested model A-CapsNet
performs better with the EMODB databases compared to the findings of prior research,
indicating that the proposed model M-CapsNet is more efficient. Additionally, in this
experiment, the model parameters, feature dimensions, and training time are all relatively
small. As a result, it complies with real-time system requirements.
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Table 3. Performance of the proposed model A-CapsNet compared to the related models in the
literature wi8th the baseline database EMODB.

Literature CapCNN
[43]

ACRNN
[44]

AFSS
[45]

WADAN
[46]

SVM
[47] A-CapsNet

WAR / / / 84.49 / /
UAR 82.9 82.82 83.00 83.31 75.00 86.68

6. Conclusions

In this paper, A-CapsNet, an SER approach based on the average-pooling capsule
network (A-CapsNet), is presented to address data scarcity and reduce over-fitting. The
suggested model’s operation decreases the number of parameters, while retaining more
texture and background information for each feature. To increase the amount of samples
and make the model more thoroughly trained, a data augmentation approach was devised.
For the database EMODB, the model A-CapsNet is superior to the previous techniques.

The directions that may be further explored in the future are as follows: one may
(1) conduct experiments on other corpora, and further analyze the advantages and disad-
vantages of the model; (2) attempt to apply the model A-CapsNet to conduct automatic
speech recognition (ASR); (3) attempt to explore the optimal feature fusion technique; and
(4) explore an acoustic model with better robustness and generalization for speech emotion
recognition-related works.
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