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Abstract: Machine learning models have recently provided great promise in diagnosis of several
ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal
disorder characterized by progressive cornea thinning, is challenging to detect as signs may be
subtle. Several machine learning models have been proposed to detect KCN, however most of
the models are supervised and thus require large well-annotated data. This paper proposes a new
unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the
k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes
at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 and 579 KCN4)
from Department of Ophthalmology and Visual Sciences, Paulista Medical School, Federal University
of São Paulo, São Paulo in Brazil and 1531 eyes (Healthy = 400, KCN1 = 378, KCN2 = 285, KCN3 = 200,
KCN4 = 88) from Department of Ophthalmology, Jichi Medical University, Tochigi in Japan and
used several accuracy metrics including Precision, Recall, F-Score, and Purity. We compared the
proposed method with three other standard unsupervised algorithms including k-means, Kmedoids,
and Spectral cluster. Based on two independent datasets, the proposed model outperformed the
other algorithms, and thus could provide improved identification of the corneal status of the patients
with keratoconus.

Keywords: keratoconus detection; feature extraction; machine learning; k-means; flower pollination
algorithm

1. Introduction

Keratoconus (KCN) is a non-inflammatory disease typically affecting both eyes [1].
Early detection of KCN and monitoring its progression are challenging tasks that require
subjective evaluation of refractive corneal maps as well as other corneal parameters [2].
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While the shape of a normal cornea looks like a dome, the shape of a cornea with KCN
looks like a cone. Figure 1 shows the overall structure of a normal and KCN cornea.

Figure 1. Overall structure of a normal and KCN cornea.

Artificial intelligence (AI) techniques have shown promise for addressing several
ocular conditions and have achieved accuracy that equals or esceeds expert ophthalmolo-
gist [3–11]. Various machine learning techniques have been developed for KCN detection
and refractive surgery screening [12–15] and are becoming a crucial tool to aid ophthalmolo-
gists in making a better KCN diagnosis. Machine learning has been applied to discriminate
normal from KCN eyes based on corneal imaging parameters [12,15]. Most of these meth-
ods for KCN diagnosis rely on subjective evaluation of topographical maps [16]. However,
automated models may provide a more accurate and objective evaluation of KCN. Conven-
tional machine learning models such as neural networks, binary decision trees, and Zernike
polynomial have been applied to corneal topography indices for KCN diagnosis [12,17–19].
Maeda et al. [20] applied one of the first supervised ML models to corneal topographic
maps to classify KCN. Eleven topographic indices extracted from the topographic maps
were fed to neural network to classify different grades of KCN. Mosa et al. [21] applied
ML to extract sixteen features from the four topographic maps including five indices from
Pentacam measurements. The features were then fed to Support Vector Machine (SVM)
and decision tree classifiers, where accuracies of 90% and 87.5% were achieved for both
classifiers, respectively. Different ML techniques have been applied to corneal images
collected based on OCT-based instrument (CASIA, Tomey, Japan) [18]. A support vector
machine (SVM) was applied on eight corneal parameters that provided a 94% accuracy on
discriminating KCN from healthy eyes. Corneal parameters from 88 patients were analyzed
with machine learning to detect subclinical KCN from healthy eyes [17]. Using five param-
eters, the random forest method was able to achieve an area under the receiver operator
characteristics curve (AUC) of 0.97 for detecting subclinical KCN. Most of these models
have however used sole features from the anterior topography of corneal. Several follow
up models have used features from the posterior of the cornea to evaluate KCN [22–24].
However, from the machine learning perspective, it is ideal to evaluate a comprehensive
set of features and select features that are most promising in classification.

Most of the current methods for automatic detection of KCN are supervised [18,22–27].
Some models have achieved AUC up to 0.97 using Pentacam indices only and some have
combined Pentacam indices with OCT parameters and have obtained AUROCs up to
1.0 [26,27]. Rare unsupervised models have been developed to identify KCN. Such an unsu-
pervised approach requires no pre-labeled data avoiding expert annotation biases [28–30].
For instance, an unsupervised machine learning model was developed to identify KCN
stages [28]. Principal component analysis (PCA), manifold learning, and stochastic em-
bedding was used to cluster 4 classes of KCN for CASIA OCT imaging system. The
unsupervised methods for KCN detection may address of big data labeling challenge, as
medical data labeling by a human expert, is one of the challenges of applying ML for the
medical field [31].
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The main contributions of this study are: (i) to introduce a hybrid algorithm for
an unsupervised learning model and optimization techniques for KCN detection; (ii) to
evaluate the performance of the algorithm for KCN detection, and (iii) to assess the model
based on two independent real-world datasets from different populations. The performance
of the proposed model is evaluated based on five different metrics: precision, recall, F-Score,
purity, and accuracy. Furthermore, we evaluated the model based on two large dataset
collected from two independent centers (Brazil and Japan).

2. Features Extraction

Pentacam data comprises topography/tomography, pachymetry, anterior chamber
angle, volume, height, corneal and lens densitometry, and other ocular indices. Central
Corneal Thickness (CCT) is a fundamental pachymetric index that is the basis for identifying
corneal thinning disorders. Furthermore, the thinnest corneal thickness (TCT) is a valuable
diagnostic parameter in detecting primary ectatic disease, including Volume Parameters
and pupil position. The conic shape parameters also describe corneal shape. Conic shape
parameters are the minimum curvature radius of the cornea (MCR in mm) and corneal
eccentricity (ECC), indicating the corneal threshold of the peripheral curvature from the
apical radius defines the degree of asphericity. The corneal parameters obtained are
considered the most discriminative ones when it comes to KCN severity level identification.
The largest dataset corresponds to Topometric (corneal shape) and topographic (corneal
superficial landscape) indices that Pentacam captures and evaluates objectively. In addition
to topometric and topographic data, Pentacam also generates anterior elevation and Central
Keratoconus Index (CKI, which includes KCN index, index of height asymmetry, index
of height decentration, index of surface variance, index of vertical asymmetry). Other
features calculated by the difference between observed parameters and ideal shapes are
the Posterior Elevation (PE) of the cornea, representing the maximum PE in a zone above
the standardized reference shape, which is typically a best fit sphere (BFS) or best fit torric
ellipsoid (BFTE) [22–24,32–34].

3. Background

In this section, we will describe the Flower Pollination algorithm (FPA), k-means,
k-medoid, and Spectral Clustering algorithm briefly.

3.1. Flower Pollination Algorithm (FPA)

In the optimization context, metaheuristic algorithms are classified into three main
categories: evolutionary-based algorithms (EA), trajectory-based algorithms (TAs), and
swarm intelligence (SI) [35]. In fact, all the metaheuristic types are nature-inspired such as
the flower pollination algorithm (FPA). This algorithm was proposed by Yang in 2012 [36]
for global optimization. The main idea of the FPA is inspired from the flowering plants’
pollination behavior. Flowers are the main element in plant reproduction, which produce
large quantities of pollen to attract pollinators (such as birds, butterflies, and bees). Through
these pollinators, pollen grains will be transferred from one plant to another, and in
this process, pollination takes place, and the plant continues to reproduce. This type of
pollination is called global pollination, and it occurs between one plant and another. There
is another type of pollination called local pollination, which takes place in the same plant,
and the process of pollen transfer is carried out by wind or rain. Figure 2 shows some
examples of pollinators.
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Figure 2. Some examples of flower pollinators: (A) hummingbird, (B) honeybee, and (C) butterfly
pollination processes.

Yang [36] considered such concepts to model the fundamentals of FPA in optimization-
oriented problems. Table 1 presents the equivalence or relationship between flower context
and optimization terms.

Table 1. The explanation of the flower pollination algorithm terms in the optimization context.

Flower Pollination Terms Optimization Terms

Pollen Solution vector
Flower constancy Iteration

Lévy flight Value
Pollinators (birds, butterflies, etc.) Decision variable

Abiotic Local search
Biotic Global search

Optimal flower reproduction Optimal solution

The FPA has been applied to several real-world problems including medical, security
and privacy, image and signal processing, feature selection, and electrical and power
systems, with promising outcomes [37–39]. In this study, we have integrated FPA with
k-means to detect KCN from corneal imaging parameters.

3.2. K-Means

The k-means is one of the well-known heuristic clustering algorithms [40]. The primary
aim of k-means is identifying similar samples in the dataset based on their particular
characteristics (i.e., features). There are many approaches to calculate the similarity among
samples [41]. The k-means start with a random selection of sample as cluster center (i.e.,
cluster centroid) and then use similarity measures such as Euclidean distance to calculate
the similarity or dissimilarity between the cluster center and the sample. After assigning
the closest sample for each cluster, the centroids of the clusters are recalculated based on the
average values for all sample features. The k-means process is stopped once the predefined
number of iterations is meet or until no more changing of the clusters centroids values. The
main steps of k-means process are implemented in Algorithm 1.
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Algorithm 1. Psudo code of k-means clustering heuristic algorithm.

1: Input: Number of clusters k, row data (samples) S.
2: Output: Matrix contains S assigned to K.
3: Select random from S as for each K.
4: while the number of iterations is not meet or no more changing of the clusters centroids

values do
5: Calculate the similarity between the clusters centroids and S.
6: Assign S to the closest cluster centroid.
7: Calculate the clusters centroids.
8: end while

3.3. K-Medoid

k-medoid is another clustering algorithm based on partitions. It selects the actual
dataset and identifies the clusters based on the medoids. A medoid reflects the samples in
the data collection that is most centrally located. The primary objective of the k-medoid
is to minimize the dissimilarity among the samples in the same cluster and maximize the
dissimilarity among the rest of samples in others clusters based on the medoid.

The mechanism of the k-medoid algorithm is like the k-means algorithm. It also starts
with a random selection of sample as initial medoids to from the clusters. The sample with
the closest medoid are assigned to the same cluster. A new medoid then represents the
cluster. The samples are iteratively allocated to the clusters with the closest medoid—the
medoids’ positions changes with each iteration. The k-medoid seeks to reduce the number
of differences between each sample and its corresponding medoid [42]. As the k-means
algorithm, the k-medoid process is stopped once the predefined number of iterations is
meet or until no more changing of the clusters medoids values. Ultimately, K clusters
are created with center on medoids, and all samples are placed into the fitting cluster on
the basis of the nearest medoid. The main steps of k-medoid process are implemented in
Algorithm 2.

Algorithm 2. Psudo code of k-medoid clustering heuristic algorithm.

1: Input: Number of clusters k, row data (samples) S.
2: Output: Matrix contains S assigned to K.
3: Select random from S as for each K.
4: while the number of iterations is not meet or no more changing of the clusters centroids

values do
5: Calculate the similarity between the clusters medoids and S.
6: Assign S to the closest cluster medoids.
7: Calculate the clusters medoids.
8: end while

3.4. Spectral Clustering Algorithm

The Laplacian matrix (LM) eigenvectors that correspond to clustering the samples in
the dataset are used in the spectral clustering [43]. The first step in the spectral clustering al-
gorithm is to build an undirected graph based on the data points (i.e., features). The weight
on edge is the similarity among the data points, and each vertex on the graph corresponds
to a data point. To construct the similarity matrix, the researchers usually use the Gaussian
kernel function. We can then get a matrix with degrees, whose main diagonal element is
equal to the total of the row elements that fit the identity matrix. The Laplacian matrix
is typically constructed in three ways: (1) denormalized LM, (2) normalized symmetric
LM, and (3) normalized asymmetric LM. The eigenvector is utilized to calculate the first k
eigenvalues of the LM. Then, by normalizing the LM, a new feature matrix is created. A
sample is presented in each row of the feature matrix, clustered to produce clusters in the
next step. The main steps of the Spectral Clustering algorithm process are implemented in
Algorithm 3.
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Algorithm 3. Psudo code of Spectral Clustering algorithm.

1: Input: Let W be the weighted matrix, the number of clusters K, Similarity Matrix.
2: Output: Matrix contains S assigned to K.
3: Using the Gaussian kernel function to create the similarity matrix.
4: Generate a symmetric normalized Laplacian matrix.
5: Create the feature matrix from the feature vector corresponding to the first k eigenval-

ues.
6: Normalized matrix, which includes n space points reduced to dimensions of k by

normalize the feature matrix.
7: apply cluster algorithm to cluster the samples (rows of the matrix).

4. Proposed Method

In this study, we integrate flower pollination algorithm with k-means and evaluate
the model based on real-world datasets. The proposed method includes five steps in which
the output of each step is used as the input in the next step. Figure 3 presents the diagram
of the model that are described below.

Figure 3. Proposed method for unsupervised keratoconus detection based FPAk-means.
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4.1. Data Acquisition

The datasets utilized for this study consisted of Corneal parameters acquired with
Pentacam device and OCT (CASIA, Tomey, Japan) instruments (Scheimpflug Imaging,
Oculus, Germany) and OCT device from two independent cohorts in Brazil and Japan
with different KCN severity levels. The severity levels were collected from the instrument
without any expert intervention. The dataset from Brazil included 7339 corneal data col-
lected from Department of Ophthalmology and Visual Sciences, Paulista Medical School,
Federal University of São Paulo, São Paulo, Brazil hospital (3410 normal eyes and 3929 eyes
at four different stages of KCN) in which the KCN severity level was obtained from To-
pographical KCN Classification (TKC) of the Pentacam instruments without expert inter-
vention. The dataset from Japan included 9544 corneal data collected from Department of
Ophthalmology, Jichi Medical University, Tochigi hospital (8539 normal eyes and 1005 eyes
at four different stages of KCN) in which the KCN severity level was obtained from Ectais
Screening Index (ESI) of the CASIA instruments without expert intervention. Data use
agreements were signed among institutes and study was conducted in accordance with
ethical standards in the declaration of Helsinki and its later amendments [44]. The details
of the number of cases are illustrated in Table 2.

Table 2. Details of the Brazil and Japan datasets used in this study

No. Dataset Class TKC Classification Number of Samples

Class 1 Normal 3410
Class 2 KC1 331

1 Brazil Class 3 KC2 1319
Class 4 KC3 1699
Class 5 KC4 579

Class 1 Normal 8539
Class 2 KC1 378

2 Japan Class 3 KC2 285
Class 4 KC3 200
Class 5 KC4 88

4.2. Data Pre-Processing

Both datasets were examined and cases with examination error greater than zero
were excluded from the study. Moreover, the cases of KCN progression according to
TKC classification were considered with the highest grade (e.g., KC 3–4 was assigned to
the severity level of KC4). We included 50 raw Corneal Shape, Thickness, and Elevation
Parameters and excluded all parameters that were generated by the Pentacam instrument.
To assess KCN, i.e., ISV: Index of Surface Variance, IVA: index of vertical asymmetry, KI:
Keratoconus Index, CKI: Central Keratoconus Index, IHA: index of Height Asymmetry,
IHD: index of Height Decentration and Rmin: (the minimum sagittal curvature). Five,
three and two classes were investigated in this study where the 5-class problem refers to
healthy versus 4 levels of KCN severity (Table 2). The 2-class problem included tackling
the healthy cases versus all other abnormal cases of KCN. Finally, we constructed a 3-class
problem subset which was generated from the original Brazil dataset which includes
3410 normal cases, 1650 cases of moderate KCN (KC1 and KC2) and 2278 cases of severe
KCN (KC3 and KC4). All parameters were exported from the Pentacam to CSV file format
and they were changed to Mat files for further processing.

4.3. Feature Extraction

Although using a comprehensive set of features may seem ideal in machine learning
applications, but irrelevant features may confuse the classifier and degrade the accuracy.
As such, feature selection is a critical step in data mining pipelines.
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4.4. Clustering

Clustering algorithms try to group similar samples in the same cluster. As such,
possible solution (to the problem) and a fitness function to evaluate the solution are two
major components in the clustering process [45–47]. The possible solution is the first step
after pre-processing phase is providing feasible solutions for a particular problem while
the fitness function evaluates these solutions in the clustering process. These components
are discussed in the following subsections.

4.4.1. Representation of Solutions

Possible solution is presented by a vector indexing by number (n) of samples (s), where
n is total number of KCN features datasets. Each element of that vector is presented any
cluster (k) number within the range [1, k].

4.4.2. Fitness Function

In this section, we explain the fitness function to evaluate features quality of each
solutions. The fitness function which is used in this work is the similarity measures. Usually,
a clustering algorithm is used a different technique to minimize the distance between the
centroids of the clusters and samples [48]. The main steps to evaluate solution quality of
the proposed clustering method can be summarized as the following.

For each cluster:

1. Find the cluster centroid;
2. Find the distance between input feature sample and the cluster centroid.

We can calculate the cluster centroid of cluster j. as shown in Equation (1).

Kj =
∑n

i=1 si

∑n
i=1 Dsji

(1)

where Dsji refers to a binary-valued vector, n represents the total number of dataset, and
Kj refers to the cluster j centroid. The Dsji defined as follows:

Dsji =

{
1 cluster j includes the sample i (si)
0 cluster j not includes the sample i (si)

(2)

Finally, the average distance of input samples for all clusters must be calculated. In
this work, the average distance of samples to the cluster centroid measure (Avecluster) is
defined as shown in Equation (3):

Avecluster =
∑k

j=1

(
1
nj

∑∀s∈Kj
D(Kj, sj)

)
k

(3)

where nj represents the total sample number for cluster j. D(Kj, sj refers to the total distance
between the input sample and the cluster centroid j with the cluster j. The main objective of
the proposed method is to find the best solution by minimize the Avecluster value for each
solution. That means, the proposed method assigns the input data to the optimal cluster or
near optimal. Figure 4 shows the fitness process.
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Figure 4. An example of the proposed method.

5. Experiments and Results

To evaluate the performance of the proposed method (FPAk-means) five quality as-
sessment measures are calculated: namely recall, accuracy, purity, precision, f-measure.
These measures are calculated using the following:

• Accuracy:

Acc =
Ta + Tr

Ta + Fa + Tr + Fr
× 100 (4)

where Ta, Tr, Fa, and Fr represent true acceptance, true reject, false acceptance, and
false reject, respectively.

• Precision:

P(i, j) =
Li,j∣∣Cj
∣∣ , (5)

where Lij is the number of tasks from class i correctly identified in cluster j, and
∣∣Cj
∣∣ is

the numbers of tasks (samples) in cluster j.
• F-measure:

F(i, j) =
2× P(i, j)× R(i, j)

P(i, j) + R(i, j)
(6)

• Purity:

Purity =
1
n

k

∑
i=1

max(i, j) (7)

where max(i, j) stands for the maximum number of correct label assignment (i.e.,
correct classification) from class i in cluster j.

• Recall:

R(i, j) =
L̂i,j

Ti
(8)
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where Ti is the total number of tasks (samples) from class i.

Figure 5 shows comparison of results between the proposed method (FPAK-means)
and standard K-means, Kmedoids, and Spectral clustering approaches.

Figure 5. Comparison results of the proposed method.

Table 3 presents the experiment results with 25 runs concerning standard K-means,
Kmedoids, and Spectral cluster. It is clear to notify that, the proposed hybrid method
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(FPAK-means) achieves almost the best results overall measures for all dataset with 2, 3,
and 5 classes. The best results obtained with 2 classes dataset where the FPAK-means
achieves 96.03, 96.29, 96.06, 96.17, and 96.03 for accuracy, Precision, Recall, F-measure,
and Purity, respectively. Same scenario with 3 classes dataset the FPAK-means achieves
71.02, 53.53, 75.37, 64.64, and 80.85 for accuracy, Precision, Recall, F-measure, and Purity,
respectively. With 5 classes dataset the FPAK-means almost achieves the best results except
with Recall and Purity measures the proposed method obtained second ranked after the
Spectral cluster. With such these results the FPAK-means suitable for keratoconus detection
and can be improved to get the best results.

Table 3. Experimental results.

Measures Data Size FPA-K-Means K-Means Kmedoids Spectral Cluster

Accuracy 96.03 53.71 59.40 50.00
Precision 96.29 50.12 62.34 50.00

Recall 2 classes 96.06 76.83 80.76 79.82
F-Score 96.17 60.66 65.94 60.94
Purity 96.03 53.71 80.87 79.81

Accuracy 71.02 54.99 55.61 43.69
Precision 53.53 33.72 41.04 34.59

Recall 3 classes 75.37 36.23 69.03 70.36
F-Score 64.64 35.43 39.98 33.32
Purity 80.85 36.17 72.52 71.23

Accuracy 75.20 65.23 73.97 47.61
Precision 35.01 20.65 33.80 20.23

Recall 5 classes 47.70 26.63 40.60 55.33
F-Score 48.97 26.63 46.22 37.10
Purity 53.64 26.22 45.61 55.12

Bold value indicates the best value.

Another evaluation measure is the plotting final the clustring Figure 6 shows a scatter-
ing plotting for the used datasets.

(a) FPA-Kmeans (b) K-means

(c) Kmedoids (d) Spectral cluster

Figure 6. Scattering plotting.

Table 4 shows the comparison with previous machine learning-based studies for KCN
detection. It should be noted that most of the previous studies used supervised machine
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learning classifiers [18,20], apart from [28], where unsupervised machine leaning was used.
The unsupervised machine learning used in [28], included PCA, manifold learning and
t-SNE applied on 420 parameters obtained from CASIA corneal machine. Unlike [28], our
study flower pollination algorithm (FPA) and the k-means algorithm and applied it on
50 features of the corneal shape.

Table 4. Previous studies for KCN detection.

Study Corneal Device Input Size ML Types Methods Accuracy

[20] Tomy TMS-4 8 parameters Supervised Expert system 96%

[18] CASIA 8 parameters Supervised SVM 94%

[21] Pentacam 16 parameters Supervised SVM 90%

[21] Pentacam 16 parameters Supervised Decision Tree 87.5%

[28] CASIA 420 parameters Unsupervised PCAt-SNE 99.3%

This study CASIA 50 parameters Unsupervised FPAK-means 96%

Flower pollination algorithm (FPA), t-distributed stochastic neighbor embedding (t-SNE),
Principal component analysis (PCA), Support Vector Machine (SVM)

Although FPA-k-means outperforms competing methods, it takes longer to reach the
optimal solution and is more difficult to predict its generalizability in dealing with novel
datasets. Additionally, the computational complexity of the FPA-k-means algorithm was
calculated without considering the computational complexity of the objective function here
thus not reflecting the overall computational complexity of the problem that may vary
based on different applications. The time complexity of FPA-k-means calculated here does
not take into account the time complexity of calculating the object function, which varies
depending on the complexity of the problem.

6. Conclusions and Future Work

In this paper a new unsupervised machine learning model based on k-means optimiza-
tion through flower pollination algorithm for detecting KCN from corneal imaging data is
proposed. We showed that this model outperforms other unsupervised models including
simple k-means based on scenarios with two, three, and five clusters. As the clustering
approach does not require pre-labeled data, the model is resistant to expert labeling bias.
Validated model could be used in research and clinical practice to monitor the status of the
eyes with KCN.

Two different datasets are used in this work consisted of Corneal parameters acquired
with Pentacam device (Scheimpflug Imaging, Oculus, Germany) from two independent
cohorts in Brazil and Japan with different keratoconus severity levels.

To evaluate the performance of the proposed method (FPAk-means) five measures are
calculated: namely recall, accuracy, purity, precision, f-measure. Also, the performance
of the proposed method is compared with three differnt clustering methods which are
standard K-means, Kmedoids, and Spectral cluster. The proposed method achieved better
results for all datasets used.

There are several aspects of this study that can be improved in future studies. First,
other independent datasets are warranted to investigate the generalization of findings.
Second, the proposed model may be compared against emerging deep learning models.
Thirds, improving the computational aspects of the proposed model to work in near
real-time situations.



Appl. Sci. 2022, 12, 12979 13 of 15

Author Contributions: Conceptualization, S.Y., R.M.H. and H.T.; methodology, Z.A.A.A. and A.H.A.-
T.; software, Z.A.A.A. and A.K.A.; validation, Z.A.A.A., R.M.H. and H.J.M.; formal analysis, Z.A.A.A.,
A.H.A.-T. and A.K.A.; investigation, Z.A.A.A and S.Y.; resources, S.Y., R.M.H., H.T., J.A.M.F. and
M.C.; data curation, R.M.H., H.T., J.A.M.F. and M.C.; writing—original draft preparation, Z.A.A.A.,
A.H.A.-T. and A.K.A.; writing—review and editing, S.Y., A.H.A.-T., A.L. and R.M.H.; visualization,
H.J.M. and A.K.A.; supervision, S.Y.; project administration, S.Y.; funding acquisition, S.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: The APC was funded by the Department of Ophthalmology of the University of Tennessee
Health Science Center (UTHSC) in Memphis through Siamak Yousefi’s laboratory.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Ethic Committee: CEP-UNIFESP of Federal University
of São Paulo (Protocol code CAAE: 28091019.3.0000.5505 20/08/2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The first dataset used in this study from Brazil was collected from the
Department of Ophthalmology and Visual Sciences, Paulista Medical School, Federal University of
São Paulo, São Paulo, Brazil. The second dataset from Japan was collected from the Department of
Ophthalmology, Jichi Medical University, Tochigi hospital.

Acknowledgments: The authors would like to acknowledge University of Tennessee for supporting
research under grant number TS1234.

Conflicts of Interest: The authors declare that they have no conflicts of interests.

References
1. Rabinowitz, Y.S. Keratoconus. Surv. Ophthalmol. 1998, 42, 297–319. [CrossRef] [PubMed]
2. Lavric, A.; Anchidin, L.; Popa, V.; Al-Timemy, A.H.; Alyasseri, Z.; Takahashi, H.; Yousefi, S.; Hazarbassanov, R.M. Keratoconus

severity detection from elevation, topography and pachymetry raw data using a machine learning approach. IEEE Access 2021,
9, 84344–84355. [CrossRef]

3. Zarbin, M.A. Artificial intelligence: Quo vadis? Transl. Vis. Sci. Technol. 2020, 9, 1. [CrossRef] [PubMed]
4. Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.;

Cuadros, J.; et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus
photographs. JAMA 2016, 316, 2402–2410. [CrossRef] [PubMed]

5. Ting, D.S.W.; Cheung, C.Y.L.; Lim, G.; Tan, G.S.W.; Quang, N.D.; Gan, A.; Hamzah, H.; Garcia-Franco, R.; San Yeo, I.Y.;
Lee, S.Y.; et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using
retinal images from multiethnic populations with diabetes. JAMA 2017, 318, 2211–2223. [CrossRef]

6. Li, X.; Hu, X.; Yu, L.; Zhu, L.; Fu, C.W.; Heng, P.A. CANet: Cross-disease attention network for joint diabetic retinopathy and
diabetic macular edema grading. IEEE Trans. Med. Imaging 2019, 39, 1483–1493. [CrossRef]

7. Campbell, J.P.; Kim, S.J.; Brown, J.M.; Ostmo, S.; Chan, R.P.; Kalpathy-Cramer, J.; Chiang, M.F.; Sonmez, K.; Schelonka, R.;
Jonas, K.; et al. Evaluation of a Deep Learning–Derived Quantitative Retinopathy of Prematurity Severity Scale. Ophthalmology
2021, 128, 1070–1076. [CrossRef]

8. Burlina, P.; Freund, D.E.; Joshi, N.; Wolfson, Y.; Bressler, N.M. Detection of age-related macular degeneration via deep learning.
In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16
April 2016; pp. 184–188.

9. Thompson, A.C.; Jammal, A.A.; Berchuck, S.I.; Mariottoni, E.B.; Medeiros, F.A. Assessment of a segmentation-free deep learning
algorithm for diagnosing glaucoma from optical coherence tomography scans. JAMA Ophthalmol. 2020, 138, 333–339. [CrossRef]

10. Thakur, A.; Goldbaum, M.; Yousefi, S. Predicting glaucoma before onset using deep learning. Ophthalmol. Glaucoma 2020,
3, 262–268. [CrossRef]

11. Sun, J.; Huang, X.; Egwuagu, C.; Badr, Y.; Dryden, S.C.; Fowler, B.T.; Yousefi, S. Identifying mouse autoimmune uveitis from
fundus photographs using deep learning. Transl. Vis. Sci. Technol. 2020, 9, 59–59. [CrossRef]

12. Lin, S.R.; Ladas, J.G.; Bahadur, G.G.; Al-Hashimi, S.; Pineda, R. A review of machine learning techniques for keratoconus detection
and refractive surgery screening. In Seminars in Ophthalmology; Taylor & Francis: London, UK, 2019; Volume 34, pp. 317–326.

13. Hazarbassanov, R.M.; Lavric, A.; Milhomens Filho, J.A.P.; Anchidin, L.; Popa, V.; Al-Timemy, A.H.; Alyasseri, Z.; Takahashi, H.;
Yousefi, S. Evaluation of keratoconus detection from elevation, topography and pachymetry raw data using machine learning.
Investig. Ophthalmol. Vis. Sci. 2021, 62, 2154–2154.

14. Rim, T.H.; Lee, A.Y.; Ting, D.S.; Teo, K.; Betzler, B.K.; Teo, Z.L.; Yoo, T.K.; Lee, G.; Kim, Y.; Lin, A.C.; et al. Detection of features
associated with neovascular age-related macular degeneration in ethnically distinct data sets by an optical coherence tomography:
Trained deep learning algorithm. Br. J. Ophthalmol. 2021, 105, 1133–1139. [CrossRef] [PubMed]

http://doi.org/10.1016/S0039-6257(97)00119-7
http://www.ncbi.nlm.nih.gov/pubmed/9493273
http://dx.doi.org/10.1109/ACCESS.2021.3086021
http://dx.doi.org/10.1167/tvst.9.2.1
http://www.ncbi.nlm.nih.gov/pubmed/32518706
http://dx.doi.org/10.1001/jama.2016.17216
http://www.ncbi.nlm.nih.gov/pubmed/27898976
http://dx.doi.org/10.1001/jama.2017.18152
http://dx.doi.org/10.1109/TMI.2019.2951844
http://dx.doi.org/10.1016/j.ophtha.2020.10.025
http://dx.doi.org/10.1001/jamaophthalmol.2019.5983
http://dx.doi.org/10.1016/j.ogla.2020.04.012
http://dx.doi.org/10.1167/tvst.9.2.59
http://dx.doi.org/10.1136/bjophthalmol-2020-316984
http://www.ncbi.nlm.nih.gov/pubmed/32907811


Appl. Sci. 2022, 12, 12979 14 of 15

15. Takahashi, H.; Al-Timemy, A.H.; Mosa, Z.M.; Alyasseri, Z.; Lavric, A.; Milhomens Filho, J.A.P.; Yuda, K.; Hazarbassanov, R.M.;
Yousefi, S. Detecting keratoconus severity from corneal data of different populations with machine learning. Investig. Ophthalmol.
Vis. Sci. 2021, 62, 2145–2145.

16. World Medical Association. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving
human subjects. Bull. World Health Organ. 2001, 79, 373.

17. Cao, K.; Verspoor, K.; Sahebjada, S.; Baird, P.N. Evaluating the performance of various machine learning algorithms to detect
subclinical keratoconus. Transl. Vis. Sci. Technol. 2020, 9, 24–24. [CrossRef]

18. Lavric, A.; Popa, V.; Takahashi, H.; Yousefi, S. Detecting keratoconus from corneal imaging data using machine learning. IEEE
Access 2020, 8, 149113–149121. [CrossRef]

19. Marsolo, K.; Twa, M.; Bullimore, M.A.; Parthasarathy, S. Spatial modeling and classification of corneal shape. IEEE Trans. Inf.
Technol. Biomed. 2007, 11, 203–212. [CrossRef]

20. Maeda, N.; Klyce, S.D.; Smolek, M.K. Neural network classification of corneal topography. Preliminary demonstration. Investig.
Ophthalmol. Vis. Sci. 1995, 36, 1327–1335.

21. Mosa, Z.M.; Ghaeb, N.H.; Ali, A.H. Detecting Keratoconus by Using SVM and Decision Tree Classifiers with the Aid of Image
Processing. Baghdad Sci. J. 2019, 16, 1022–1029.

22. Ambrósio, R., Jr.; Alonso, R.S.; Luz, A.; Velarde, L.G.C. Corneal-thickness spatial profile and corneal-volume distribution:
tomographic indices to detect keratoconus. J. Cataract Refract. Surg. 2006, 32, 1851–1859. [CrossRef]

23. Piñero, D.P.; Alió, J.L.; Alesón, A.; Vergara, M.E.; Miranda, M. Corneal volume, pachymetry, and correlation of anterior and
posterior corneal shape in subclinical and different stages of clinical keratoconus. J. Cataract Refract. Surg. 2010, 36, 814–825.
[CrossRef] [PubMed]

24. Pérez, J.F.; Marcos, A.V.; Peña, F.J.M. Early diagnosis of keratoconus: What difference is it making? Br. J. Ophthalmol. 2014,
98, 1465–1466. [CrossRef]

25. Hwang, E.S.; Perez-Straziota, C.E.; Kim, S.W.; Santhiago, M.R.; Randleman, J.B. Distinguishing highly asymmetric keratoconus
eyes using combined Scheimpflug and spectral-domain OCT analysis. Ophthalmology 2018, 125, 1862–1871. [CrossRef] [PubMed]

26. Lopes, B.T.; Ramos, I.C.; Salomão, M.Q.; Guerra, F.P.; Schallhorn, S.C.; Schallhorn, J.M.; Vinciguerra, R.; Vinciguerra, P.; Price,
F.W., Jr.; Price, M.O.; et al. Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence. Am. J.
Ophthalmol. 2018, 195, 223–232. [CrossRef] [PubMed]

27. Saad, A.; Gatinel, D. Evaluation of total and corneal wavefront high order aberrations for the detection of forme fruste keratoconus.
Investig. Ophthalmol. Vis. Sci. 2012, 53, 2978–2992. [CrossRef]

28. Yousefi, S.; Yousefi, E.; Takahashi, H.; Hayashi, T.; Tampo, H.; Inoda, S.; Arai, Y.; Asbell, P. Keratoconus severity identification
using unsupervised machine learning. PLoS ONE 2018, 13, e0205998. [CrossRef]

29. Zéboulon, P.; Debellemanière, G.; Gatinel, D. Unsupervised learning for large-scale corneal topography clustering. Sci. Rep. 2020,
10, 1–8. [CrossRef]

30. Yousefi, S.; Takahashi, H.; Hayashi, T.; Tampo, H.; Inoda, S.; Arai, Y.; Tabuchi, H.; Asbell, P. Predicting the likelihood of need for
future keratoplasty intervention using artificial intelligence. Ocul. Surf. 2020, 18, 320–325. [CrossRef]

31. Kanimozhi, R.; Gayathri, R. Keratoconus Detection using Hybrid Density Supervision model with Clustering and Classification
Techniques. Des. Eng. 2021, 617–634.

32. Smolek, M.K.; Klyce, S.D. Current keratoconus detection methods compared with a neural network approach. Investig.
Ophthalmol. Vis. Sci. 1997, 38, 2290–2299.

33. Chastang, P.J.; Borderie, V.M.; Carvajal-Gonzalez, S.; Rostène, W.; Laroche, L. Automated keratoconus detection using the EyeSys
videokeratoscope. J. Cataract Refract. Surg. 2000, 26, 675–683. [CrossRef]

34. Twa, M.D.; Parthasarathy, S.; Roberts, C.; Mahmoud, A.M.; Raasch, T.W.; Bullimore, M.A. Automated decision tree classification
of corneal shape. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 2005, 82, 1038. [CrossRef] [PubMed]

35. Blum, C.; Roli, A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Comput. Surv.
(CSUR) 2003, 35, 268–308. [CrossRef]

36. Yang, X.S. Flower pollination algorithm for global optimization. In Proceedings of the International Conference on Unconventional
Computing and Natural Computation, Orléans, France, 3–7 September 2012; pp. 240–249.

37. Alyasseri, Z.A.A.; Khader, A.T.; Al-Betar, M.A.; Awadallah, M.A.; Yang, X.S. Variants of the Flower Pollination Algorithm: A
Review. In Nature-Inspired Algorithms and Applied Optimization; Springer: Berlin/Heidelberg, Germany, 2018; pp. 91–118.

38. Alyasseri, Z.A.A.; Khader, A.T.; Al-Betar, M.A.; Alomari, O.A. Person identification using EEG channel selection with hybrid
flower pollination algorithm. Pattern Recognit. 2020, 105, 107393. [CrossRef]

39. Alyasseri, Z.A.A.; Al-Betar, M.A.; Awadallah, M.A.; Makhadmeh, S.N.; Abasi, A.K.; Doush, I.A.; Alomari, O.A. A hybrid flower
pollination with β-hill climbing algorithm for global optimization. J. King Saud-Univ. Comput. Inf. Sci. 2021, 34, 4821–4835.
[CrossRef]

40. Abasi, A.K.; Khader, A.T.; Al-Betar, M.A.; Naim, S.; Alyasseri, Z.A.A.; Makhadmeh, S.N. A novel hybrid multi-verse optimizer
with K-means for text documents clustering. Neural Comput. Appl. 2020, 32, 17703–17729. [CrossRef]

41. Abasi, A.K.; Khader, A.T.; Al-Betar, M.A.; Naim, S.; Makhadmeh, S.N.; Alyasseri, Z.A.A. Link-based multi-verse optimizer for
text documents clustering. Appl. Soft Comput. 2020, 87, 106002. [CrossRef]

42. Abasi, A.K.; Khader, A.T.; Al-Betar, M.A.; Naim, S.; Makhadmeh, S.N.; Alyasseri, Z.A.A. A novel ensemble statistical topic
extraction method for scientific publications based on optimization clustering. Multimed. Tools Appl. 2021, 80, 37–82. [CrossRef]

http://dx.doi.org/10.1167/tvst.9.2.24
http://dx.doi.org/10.1109/ACCESS.2020.3016060
http://dx.doi.org/10.1109/TITB.2006.879591
http://dx.doi.org/10.1016/j.jcrs.2006.06.025
http://dx.doi.org/10.1016/j.jcrs.2009.11.012
http://www.ncbi.nlm.nih.gov/pubmed/20457375
http://dx.doi.org/10.1136/bjophthalmol-2014-305120
http://dx.doi.org/10.1016/j.ophtha.2018.06.020
http://www.ncbi.nlm.nih.gov/pubmed/30055838
http://dx.doi.org/10.1016/j.ajo.2018.08.005
http://www.ncbi.nlm.nih.gov/pubmed/30098348
http://dx.doi.org/10.1167/iovs.11-8803
http://dx.doi.org/10.1371/journal.pone.0205998
http://dx.doi.org/10.1038/s41598-020-73902-7
http://dx.doi.org/10.1016/j.jtos.2020.02.008
http://dx.doi.org/10.1016/S0886-3350(00)00303-5
http://dx.doi.org/10.1097/01.opx.0000192350.01045.6f
http://www.ncbi.nlm.nih.gov/pubmed/16357645
http://dx.doi.org/10.1145/937503.937505
http://dx.doi.org/10.1016/j.patcog.2020.107393
http://dx.doi.org/10.1016/j.jksuci.2021.06.015
http://dx.doi.org/10.1007/s00521-020-04945-0
http://dx.doi.org/10.1016/j.asoc.2019.106002
http://dx.doi.org/10.1007/s11042-020-09504-2


Appl. Sci. 2022, 12, 12979 15 of 15

43. Abasi, A.K.; Khader, A.T.; Al-Betar, M.A.; Naim, S.; Alyasseri, Z.A.A.; Makhadmeh, S.N. An ensemble topic extraction approach
based on optimization clusters using hybrid multi-verse optimizer for scientific publications. J. Ambient Intell. Humaniz. Comput.
2021, 12, 2765–2801. [CrossRef]

44. World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving
human subjects. JAMA 2013, 310, 2191–2194. [CrossRef]

45. Abasi, A.K.; Khader, A.T.; Al-Betar, M.A.; Naim, S.; Awadallah, M.A.; Alomari, O.A. Text documents clustering using modified
multi-verse optimizer. Int. J. Electr. Comput. Eng. 2020, 10, 6361–6369. [CrossRef]

46. Hazarbassanov, R.M.; Alyasseri, Z.A.A.; Al-Timemy, A.; Lavric, A.; Abasi, A.K.; Takahashi, H.; Milhomens Filho, J.A.; Campos, M.;
Yousefi, S. Detecting keratoconus on two different populations using an unsupervised hybrid artificial intelligence model. Investig.
Ophthalmol. Vis. Sci. 2022, 63, 2088-F0077.

47. Alyasseri, Z.A.A.; Abasi, A.K.; Al-Betar, M.A.; Makhadmeh, S.N.; Papa, J.P.; Abdullah, S.; Khader, A.T. EEG-Based Person
Identification Using Multi-Verse Optimizer as Unsupervised Clustering Techniques. In Evolutionary Data Clustering: Algorithms
and Applications; Springer: Singapore, 2021; p. 89.

48. Abasi, A.K.; Khader, A.T.; Al-Betar, M.A.; Naim, S.; Makhadmeh, S.N.; Alyasseri, Z.A.A. A text feature selection technique based
on binary multi-verse optimizer for text clustering. In Proceedings of the 2019 IEEE Jordan International Joint Conference on
Electrical Engineering and Information Technology (JEEIT), Amman, Jordan, 9–11 April 2019; pp. 1–6.

http://dx.doi.org/10.1007/s12652-020-02439-4
http://dx.doi.org/10.1001/jama.2013.281053
http://dx.doi.org/10.11591/ijece.v10i6.pp6361-6369

	Introduction
	Features Extraction
	Background
	Flower Pollination Algorithm (FPA)
	K-Means
	K-Medoid
	Spectral Clustering Algorithm

	Proposed Method
	Data Acquisition
	Data Pre-Processing
	Feature Extraction
	Clustering
	Representation of Solutions
	Fitness Function


	Experiments and Results
	Conclusions and Future Work
	References

