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Abstract: Systems that analyse faces have seen significant improvements in recent years and are today
used in numerous application scenarios. However, these systems have been found to be negatively
affected by facial alterations such as tattoos. To better understand and mitigate the effect of facial
tattoos in facial analysis systems, large datasets of images of individuals with and without tattoos are
needed. To this end, we propose a generator for automatically adding realistic tattoos to facial images.
Moreover, we demonstrate the feasibility of the generation by using a deep learning-based model for
removing tattoos from face images. The experimental results show that it is possible to remove facial
tattoos from real images without degrading the quality of the image. Additionally, we show that it
is possible to improve face recognition accuracy by using the proposed deep learning-based tattoo
removal before extracting and comparing facial features.

Keywords: facial tattoos; synthetic data generation; tattoo removal; face recognition

1. Introduction

Facial analysis systems are deployed in various applications ranging from medical
analysis to border control. Such facial analysis systems are known to be negatively affected
by facial occlusions [1,2]. A specific kind of facial alteration that partially occludes a
face is a facial tattoo. Facial tattoos have become more appealing recently and have been
described as a mainstream trend in several major newspapers [3,4]. Ensuring inclusiveness
and accessibility for all individuals, independent of physical appearance, is imperative
in developing fair facial analysis systems. In this regard, facial tattoos are especially
challenging, as they cause permanent alterations where ink is induced into the dermis layer
of the skin. For instance, Ibsen et al. investigated in [5] the impact of facial tattoos and
paintings on state-of-the-art face recognition systems. The authors showed that tattoos
might impair the recognition accuracy, and hence the security of such a facial analysis
system. In the paper, the authors considered the scenario where either the reference or
the probe image has been altered by tattoos. One way to address this issue is to re-enroll
the subject into the reference database. However, this is not always possible, e.g., in some
forensic applications and in other applications it requires that new documents are issued,
e.g., for automated border control gates. Additionally, it still requires that the identity of
the subject is verified before the facial image with tattoos is enrolled.

In coherence with the findings in [5], it is of interest to make facial analysis systems
more robust towards facial tattoos. Some research has explored methods for adopting face
recognition systems to be more robust towards occlusions, e.g., [6]. Another way to do
this is face completion, where missing or occluded parts of a face are reconstructed; such
approaches have, for instance, shown to improve face recognition performance for some
occlusions [7]. An additional benefit of using face completion over approaches such as
occlusion-aware face recognition is the potential to use the reconstructed facial image for
other purposes, e.g., visualising how a face might look without the occlusion or preventing
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that tattoos are used for recognition purposes, which is something that raises ethical issues
as discussed in [8].

However, one major problem with face completion for tattoo removal is the lack
of sufficient and high-quality training data, as no extensive database of facial tattoos is
currently available.

The main focus of this work is, therefore, two-fold. First, we propose a method for
synthetically adding tattoos to facial images, which we use to create a large database
of facial images with tattoos. The proposed method uses face detection and landmark
localisation to divide the face into regions, whereafter suitable placements of tattoos are
found. Subsequently, we approximate depth and construct depth and cut-out maps used to
blend tattoos onto a face realistically. It has recently been shown that synthetic data can
be beneficial for face analysis tasks and be a good alternative to real data [9,10]. Secondly,
we show the usefulness of our synthetic data by training a deep learning-based model for
tattoo removal (as illustrated in Figure 1) and evaluate the impact of removing facial tattoos
on a state-of-the-art face recognition system using a database comprising real facial images
with tattoos.

The approach for synthetically adding tattoos to a facial image in a fully automated
way is, to the authors’ best knowledge, the first of its kind. The proposed generator can
be used to create large databases which can be used in related fields, e.g., tattoo detection
or studying the effects of tattoos on human perception. Additionally, we are the first to
measure the effect of removing facial tattoos on face recognition systems.

Figure 1. Examples of using deep learning-based tattoo removal.

In summary, this work makes the following contributions:

• A novel algorithm for synthetically adding facial tattoos to face images.
• An algorithm for removing tattoos from facial images trained on only facial images

with synthetically added tattoos. We refer to this algorithm as TRNet.
• An experimental analysis of the quality of the tattoo removal.
• Showcasing the application of tattoo removal in a face recognition system by con-

ducting an experimental analysis on the effect of removing facial tattoos on a face
recognition system.
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The outline of the remaining article is as follows: Section 2 describes prominent related
works, Section 3 describes an automated approach for synthetically blending tattoos to
facial images, which is used in Section 4 to generate a database of facial images with tattoos.
Sections 5 and 6 show the feasibility of the synthetic generation by training a deep learning-
based model for tattoo removal and evaluating if it can improve biometric recognition
performance, respectively. Finally, Section 7 provides a summary of this work.

2. Related Work

The following subsections summarise some related works w.r.t. synthetic data genera-
tion for facial analysis (Section 2.1), facial alterations (Section 2.2), and facial completion
(Section 2.3). Readers are referred to the following comprehensive surveys for a more
in-depth comparison and overview of different approaches [1,10,11].

2.1. Synthetic Data Generation for Face Analysis

Synthetically generated data have seen many application scenarios in face analysis,
most notably for addressing the lack of training data. Synthetic data have especially
become relevant with the recent advances in deep learning-based algorithms, which usually
require a large amount of training data. Privacy regulations, e.g., the European General
Data Protection Regulation [12], make sharing and distributing large-scale face databases
impracticable as face images are classified as a special category of personal data when
used for biometric identification. As an alternative, researchers have explored the use
of synthetic data. The generation of realistic-looking synthetic face data have especially
become feasible with the recent advances in Generative Adversarial Networks (GANs),
first proposed by Goodfellow et al. in [13]. Prominent work in this field includes StyleGAN,
which was first introduced in [14] by Karras et al. and showed, at the time, state-of-the-art
performance for synthesising facial images. Since the original work, two improved versions
of StyleGAN have been proposed [15,16]. Much current research in this area focuses on
GAN-inversion, where existing face images are encoded into the latent space of a generator.
After that, the resulting latent code can be shifted in the latent space, whereby the inverted
image of the shifted vector results in an alteration of the original image. The technique can,
for instance, be used for face age progression [17]. In addition to the face, some research has
also been conducted for other biometric modalities, e.g., fingerprint [18–20] and iris [21,22].

Little work has been conducted regarding synthetic data generation of facial images
with tattoos. However, in [23], the authors proposed a method for transforming digital
portrait images into realistic-looking tattoos. In [24], the author also shows examples of
tattoo images added to facial and body images using an existing GAN for drawing art
portraits; however, details about this approach are not scientifically documented.

2.2. Facial Alterations

Facial alterations can occur in either the physical or digital domain and cause perma-
nent or temporary changes in a face. Several studies have explored the impact of physical
and digital alterations on face recognition systems. In the physical domain, predominantly,
the effects of makeup and plastic surgery on face recognition have been studied [11]. In [25],
the authors collected a database of 900 individuals to analyse the effect of plastic surgery
and found that the tested algorithms were unable to account for the appearance changes
caused by plastic surgery effectively. More recently, Rathgeb et al. showed in [26], using a
database of mostly ICAO-quality face images [27] captured before and after various types
of facial plastic surgeries, that different tested state-of-the-art face recognition systems
maintained almost perfect verification performance at an operationally relevant threshold
corresponding to a False Match Rate (FMR) of 0.1%. Numerous works have addressed
the impact of temporary alterations on face recognition systems. In [28], Dantcheva et al.
found that makeup can hinder reliable face recognition; similar conclusions were drawn by
Wang et al. in [29] where they investigated the impact of human faces under disguise and
makeup. The previous work shows that makeup might be successfully used for identity
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concealment; in [30], the authors additionally showed that makeup could also be used
for presentation attacks with the goal of impersonating another identity. In [31], the au-
thors found that especially high-quality makeup-based presentation attacks can hamper
the security of face recognition systems. In [32], the authors found that disguised faces
severely affect recognition performance, especially for occlusions near the periocular region.
The database used by the authors includes different types of disguises, including facial
paintings. Coherent with these findings, Ibsen et al. showed in [5] that facial tattoos and
paintings can severely affect different modules of a face recognition system, including face
detection as well as feature extraction and comparison.

Ferrara et al. were among the first to show that digital alterations can impair the secu-
rity of face recognition systems. Especially notable is their work in [33], where they showed
the possibility of attacking face recognition systems using morphed images. Specifically,
they showed that if a high-quality morphed image is infiltrated into a face recognition
system (e.g., stored in a passport), it is likely that the biometric system positively authenti-
cates individuals contributing to the morph. Since then, there have been numerous works
on face recognition systems under morphing attacks. For a comprehensive survey, the
reader is referred to [34]. Facial retouching is another area which has seen some attention
in the research community. While some early works showed that face recognition can
be significantly affected by retouching, Rathgeb et al. showed more recently that face
recognition systems might be robust to slight alterations caused by retouching [35]. Similar
improvements have been shown for geometrical distortions, e.g., stretching [36]. A more
recent threat that has arrived with the prevalence of deep-learning techniques is so-called
DeepFakes [37], which can be used to spread misinformation and, as such, lead to a loss of
trust in digital content. Many researchers are working on the detection or generation of
deep learning-based alterations. Several arduous challenges and benchmarks have already
been established, for instance, the recent Deepfake Detection Challenge [38] where the top
model only achieved an accuracy of approximately 65% on previously unseen data. Genera-
tion and detection of deep learning-based alterations are continuously evolving and remain
a cat-and-mouse game; interested readers are referred to [39] for a comprehensive survey.

2.3. Facial Completion

Most methods for face completion (also called face inpainting) build upon deep
learning-based algorithms, which are trained on paired images where each pair contains a
non-occluded face and a corresponding occluded face. In [40], the authors proposed an
approach for general image completion and showed its applicability for facial completion.
In this work, the authors leveraged a fully convolutional neural network trained with
global and local context discriminators. Similar work was done in [41] where the authors
occluded faces by adding random squares of noise pixels. Subsequently, they trained an
autoencoder to reconstruct the occluded part of the face using global and local adversarial
losses as well as a semantic parsing loss. Motivated by the prevalence of VR/AR displays
which can hinder face-to-face communication, Zhao et al. [42] proposed a new generative
architecture with an identity-preserving loss. In [43], Song et al. used landmark detection
to estimate the geometry of a face and used it, together with the occluded face image, as
input to an encoder-decoder architecture for reconstructing the occluded parts of the face.
The proposed approach allows for generating diverse results by altering the estimated
facial geometry. More recently, Din et al. [44] employed a GAN-based architecture for
the unmasking of masked facial images. The proposed architecture consists of two stages
where the first stage detects the masked area of the face and creates a binary segmentation
map. The segmentation map is then used in the second stage for facial completion using a
GAN-based architecture with two discriminators: one focuses on the global structure and
the other on the occluded parts of the face. In [7], it was found that facial completion can
improve face recognition performance.



Appl. Sci. 2022, 12, 12969 5 of 19

3. Facial Tattoo Generator

To address the lack of existing databases of image pairs of individuals before and after
they got facial tattoos, we propose an automated approach for synthetically adding facial
tattoos to images. An overview of the proposed generation is depicted in Figure 2. The
process of synthetically adding tattoos to a facial image can be split into two main steps,
which are described in the following subsections: (1) finding the placement of tattoos in a
face and (2) blending the tattoos onto the face.

Figure 2. Synthetic facial tattoo generation workflow.

3.1. Placement of Tattoos

To find suitable placements of tattoos on a face, we start by localising the facial region
and detecting landmarks of the face. To this end, we use dlib [45], which returns a list of 68
landmarks as shown in Figure 3.

Figure 3. Facial landmarks detected by dlib.

The landmarks are used to divide the face into small regions of triangles by performing
a fixed Delaunay triangulation. The regions are then extended to the forehead by using
the length of the nose as an estimate. Each region now constitutes a possible placement
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of a tattoo; however, such a division is inadequate for the placement of larger tattoos.
Therefore, the face is divided into six larger regions. The division of the face into large
and small regions gives high controllability in the data generation. As indicated, some
regions are excluded, i.e., regions around the nostrils, mouth and nose. These regions are
estimated based on the detected landmarks. The division of a face into regions is illustrated
in Figure 4. The regions make it possible to avoid placing tattoos in heavily bearded areas
or on top of glasses if such information is available about the facial images during the
generation phase. In our work, we do not use beard or glasses detectors; however, for
some of the images, information about beard or glasses is available, which we use to avoid
placing tattoos in the affected regions.

(a) (b) (c)
Figure 4. (a) Division of a facial image into regions from landmarks, (b) extended to the forehead,
and (c) division into six pre-defined regions.

A tattoo can now be placed in one of the six pre-defined regions, or the regions can
be further combined to place the tattoos in larger areas of the face. A combined region is
simply a new region consisting of several smaller regions. The exact placement of a tattoo
within a region depends on a pre-selected generation strategy. The generation strategy
determines (1) possible regions where a tattoo can be placed, (2) the selection of tattoos, and
(3) the size and placement of a tattoo within a region. An example is illustrated in Figure 5
where one of the cheeks is selected as a possible region, whereafter the largest unoccupied
subset within that region is found. Thereafter, the tattoo is placed by estimating its largest
possible placement within the selected subset without altering the original aspect ratio
of the tattoo. In this work, we use a database comprising more than 600 distinct tattoo
templates, mainly consisting of real tattoo designs collected from acquired tattoo books.
Selecting which tattoos to place depends on the generation strategies, which are further
described in Section 3.3.
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(a) (b) (c)
Figure 5. Illustration shows an example of how a tattoo placement in a region can be found. The red
area in (b) illustrates that there might be some areas within a selected region where a tattoo cannot
be placed, e.g., if the area is reserved for another tattoo. (a) Selected region. (b) Find a subset of the
region not occupied (the green area). (c) Find a placement for the tattoo.

3.2. Blending

To blend the tattoos onto faces, various image manipulations are performed.
Given a facial image and placement of tattoos (see Section 3.1); each tattoo is placed

and overlayed on the facial image by multiplying the tattoo layer with the facial image.
Afterwards, the tattoo is displaced to match the contours of the face using displacement
mapping. Areas of the tattoo which have been displaced outside the face or inside the
mouth, nostrils and eyes are cut out. This is achieved by using cut-out maps (see Figure 2),
which are calculated from the landmarks detected by dlib in the placement phase. Lastly,
the tattoo is made more realistic by colour adjustment, Gaussian blurring, and lowering
the opacity of the tattoo.

As previously stated, displacement mapping is used for mapping tattoos to the con-
tours of a face. It is a technique which utilises depth information of texture maps to alter
the positions of pixels according to the depth information in the provided map. Contrary
to other approaches, such as bump mapping, it alters the source image by displacing pixels.
In displacement mapping, a map M containing values in the range 0–255 is used to displace
pixels in a source image I. As seen in the equation, a specific pixel, I(x, y), is displaced in
one direction if the corresponding pixel in the displacement map, M(x, y), is less than the
theoretical average pixel value of the map (127.5); otherwise, it is displaced in the opposite
direction. For the displacement technique used in this work, a pixel in the source image is
displaced both vertically and horizontally.

More specifically, let c be a coefficient, let (x, y) ∈ I, and let (x, y) ∈ M. The distance
for displacing a pixel, I(x, y), in the vertical and horizontal direction is then:

D(x, y) = c · M(x, y)− 127.5
127.5

(1)

To generate depth maps, PRNet is used [46]. PRNet is capable of performing 3D face
reconstruction from 2D face images, and as such, it can also approximate depth maps
from 2D facial images. PRNet proposes to use so-called UV position maps to represent
3D facial structure. The position map stores 3D positions as a 2D image in UV space. An
encoder-decoder network is trained to regress the UV position map from a 2D facial image.
An example of a depth map generated using PRNet is shown in Figure 6a.
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(a) Depth image generated by PRNet (b) Transformed depth image
Figure 6. Example of (a) a depth map generated from a facial image using PRNet and (b) after it has
been transformed. Note, that the original depth map (a) corresponds to the input image in Figure 2.

As seen in Figure 6a, the pixel values in the face region are rather bright, and there
is little contrast. The small contrast between the pixel values and the high offset from the
theoretical average pixel value implies that the depth map will not work very well, as
tattoos will be displaced too much in certain regions and too little in others. Therefore, to
make the displacement more realistic, the depth map generated by PRNet is transformed
by increasing the contrast and lowering the brightness of the map. Figure 6b shows an
example of a transformed depth map, and as can be seen, the pixel values are much closer
to the theoretical average value than the unaltered map, while the contrast around the
nose, eyes and mouth are still high. Figure 7 shows an example where two facial tattoos
are displaced to match the contours of a face and Figure 8 shows examples where tattoos
placed in undesired areas of a face has been cut out.

(a) not displaced (b) displaced
Figure 7. Facial images with tattoos (a) before and (b) after applying the displacement technique.
For (b), the tattoo is blended around the anticipated 3D shape of the nose. Best viewed in electronic
format (zoomed in).
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Figure 8. Examples of facial images where parts of one or more tattoos have been cut out.

Black ink tends to change in colour slightly over time due to the pigment used in
black ink. Therefore, for colour adjustment, all pixels of a tattoo which are similar to pure
black are selected and changed to simulate different colours of grey, green, and blue, which
causes black tattoos to appear differently for different facial images. The colour adjustments
of black pixels are determined per tattoo, and as such slight variations can occur between
different tattoos in the same facial image. Examples are given in Figure 9.

Figure 9. Examples of black tattoos blended to facial images.

3.3. Generation Strategies

By varying how tattoos are selected and placed (Section 3.1), many different types
of facial images with tattoos can be generated. For the database used in this work, we
employed two different strategies. In the first strategy, the desired coverage percent of
tattoos on a face is randomly chosen from a specified range. Subsequently, tattoos are
arbitrarily selected and placed on facial regions until the resulting coverage approximates
the desired coverage. The coverage of a tattoo on a face is calculated based on the total
amount of pixels in all the facial regions (see Figure 4c) and the number of non-transparent
pixels in the placed tattoos. In the second strategy, a specific region is always selected.
Using the first strategy, it is possible to create databases where tattoos are placed arbitrarily
until a selected coverage percent has been reached (see Figure 10a–c). Using the latter
approach allows for more controlled placement of tattoos, e.g., placing tattoos in the entire
face region (Figure 10d) or in a specific region (Figure 10e,f).
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(a) (b) (c)

(d) (e) (f)
Figure 10. Examples for different types of tattooed faces that can be generated: (a) 5%, (b) 15%,
(c) 25% coverage, (d) entire face, (e) single tattoo, and (f) specific region.

4. Synthetic Tattoo Database

This section describes the generation of a large database of facial images with tattoos.
The database is used in Section 5 to train deep learning-based models for removing tattoos
from facial images. To generate the synthetic tattoo database, subsets of original images
from the FERET [47], FRGCv2 [48], and CelebA [49] datasets were used. An overview of
the generated database is given in Table 1. For the FERET and FRGCv2 datasets, different
generation strategies were used, including facial images where tattoos have been placed
randomly, with specific coverage ranging from 5% to 25% as well as placement of single
tattoos. We generated two versions for the single tattoos: one version where the tattoo
is placed in the entire facial region and another where portrait tattoos are blended to a
random region in the face. For the CelebA database, which is more uncontrolled, facial
tattoos were placed randomly. Data augmentation was performed to simulate varying
image qualities by randomly applying differing degrees of JPEG compression or Gaussian
blur to all the images. Tattoo images and corresponding original (bona fide) images were
paired such that similar augmentation was applied to corresponding images.

Table 1. Overview of the generated database (before augmentation).

Database Subjects
Images

Bona fide Tattooed

FERET 529 621 6743
FRGCv2 533 1436 16,209
CelebA 6872 6872 6872
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Examples of images in the generated database are depicted in Figure 11.

Figure 11. Examples of generated facial images with tattoos.

5. Tattoo Removal

To show the feasibility of the synthetic data and their potential use in real-word
applications, we investigate a concrete case where the synthetic data are used for removing
real tattoos from facial images. To this end, two models are trained for the task of tattoo
removal using the synthetic data described in Section 4.

Section 5.1 briefly describes the different models used for removing tattoos. Section 5.2
describes different metrics for evaluating the quality of the tattoo removal which is then
evaluated in Section 5.3.

5.1. Models

Two different deep learning-based methods were trained for removing tattoos from
facial images:

• pix2pix is a supervised conditional GAN for image-to-image translation [50]. For
the generator, a U-Net architecture is used, whereas the discriminator is based on a
PatchGAN classifier which divides the image into N × N patches and discriminates
between bona fide (i.e., real images) and fake images.

• Tattoo Removal Net (TRNet) is a U-net architecture [24,51] which utilizes spectral
normalization and self-attention. The network was training using only the synthetic
data described in Section 4. An illustration of the used U-Net architecture is shown in
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Figure 12. The encoder of the network is based on ResNet34, and the decoder consists
of four main blocks and utilizes PixelShuffling [52]. The loss function is a combination
of feature loss (perceptual loss) from [53], gram matrix style loss [54], and pixel (L1)
loss. For the gram matrix loss and the feature loss, blocks from a pre-trained VGG-16
model are used [51,55].
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Figure 12. Architecture of the tattoo removal network (TRNet).

5.2. Quality Metrics

To evaluate the quality of the different tattoo removal models, we use three different
metrics commonly used in the literature:

• Peak signal-to-noise ratio (PSNR) is a measurement of error between an input and an
output image and is calculated as follows:

PSNR(X, Y) = 20 · log10 (
MAXI√

MSE(X, Y)
) (2)

where MAXI is the theoretical maximum pixel value (i.e., 255 for 8 bit channels) and
MSE(X, Y) is the mean squared error between the ground truth image X and the
inpainted image Y. The PSNR is measured in decibel, and a higher value indicates
better quality of the reconstructed image.

• Mean Structural Similarity Index (MSSIM) as given in [56], is defined as follows:

MSSIM(X, Y) =
1
M

M

∑
i=1

SSIM(xi, yi) (3)

where X and Y are the ground truth image and inpainted image, respectively, M is the
number of local windows in an image and xi and yi are the image content of the i’th
local window. The SSIM over local window patches (x, y) is defined as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1) + (σ2
x + σ2

y + C2)
(4)

where µx and µy are the mean values of the local window patches x and y, respectively;
σ2

x + σ2
y are their local variances and σxy is the local covariance of x and y. C1 and

C2 are constants set based on the same parameter settings as Wang et al. [56], i.e.,
C1 ≈ 6.55, C2 ≈ 58.98. MSSIM returns a value in the range of 0 to 1, where 1 means
that X and Y are identical.
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• Visual Information Fidelity (VIF) is a full reference image quality assessment mea-
surement proposed by Sheikh and Bovik in [57]. VIF is derived from a statistical
model for natural scenes as well as models for image distortion and the human visual
system. VIF(X, Y) returns a value in the range of 0 to 1, where 1 indicates that the
ground truth and inpainted images are identical. We use the pixel domain version as
implemented in [58].

We estimate the different quality metrics both on portrait images, i.e., where the entire
face is visible and on the inner part of the face (corresponding to the area covered by the 68
dlib landmark points; see Figure 3) where we focus on only the area from the eyebrows to
the chin; these regions are shown in Figure 13.

(a) Portrait (b) Inner
Figure 13. Examples of (a) a full portrait image where the entire face is visible and (b) a crop of the
inner face region.

5.3. Removal Quality Results

We use a total of 41 facial images with tattoos from [5] where the tattoos have been
manually removed using PhotoShop; we refer to these as our ground truth images. Exam-
ples of using the different deep learning-based methods for removing tattoos are given in
Figure 14. As seen, the best model (TRNet) is able to remove most tattoos with only a few
artefacts, whereas the other models perform less well and, for some images, alter the face
or fail to remove all tattoos accurately.

Different quality scores are reported in Table 2, which shows that the TRNet model
performs best in most scenarios, especially when only looking at the inner part of the face.

The results indicate that the synthetic data can be used to train an algorithm for remov-
ing real tattoos from facial images, which performs well in many scenarios. However, as
shown in Figure 15, the depicted images illustrate the limitation of the presented approach
of not being able to remove tattoos entirely.

Table 2. Quality measurements of the reconstructed images compared to ground truth images where
tattoos have been manually removed. “Tattooed” denotes the baseline case where the tattooed images
are compared to the ground truth images.

Scenario
Portrait Inner

MSSIM PSNR VIF MSSIM PSNR VIF

Tattooed 0.947 (±0.053) 31.31 (±5.04) 0.884 (±0.093) 0.974 (±0.027) 35.37 (±6.63) 0.879 (±0.097)
pix2pix 0.943 (±0.043) 33.24 (±4.82) 0.732 (±0.081) 0.978 (±0.021) 37.66 (±5.39) 0.779 (±0.087)
TRNet 0.967 (±0.034) 36.22 (±6.00) 0.883 (±0.079) 0.987 (±0.015) 42.34 (±6.74) 0.891 (±0.083)
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Input Ground Truth
(Photoshopped) pix2pix TRNet

Figure 14. Examples of using deep learning-based algorithms for facial tattoo removal. Best viewed
in electronic format (zoomed in).

Figure 15. Facial images with extreme coverage of tattoos, which remain challenging for our tattoo
removal approach. Before (left) and after (right) tattoo removal.

6. Application to Face Recognition

This section, describes how tattoo removal can be integrated and used in a face
recognition system. A face recognition system consists of several preprocessing modules,
such as face alignment and quality estimation. These modules help minimise factors that
are unimportant for face recognition and ensure that only images of sufficient quality are
used during authentication. As part of the preprocessing, we propose to use the deep
learning-based removal algorithms described in Section 5. While facial tattoos can be
seen as distinctive and helpful in identifying individuals, tattoo removal is useful for face
recognition in cases where only one of the face images in a comparison contains tattoos [5].
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In our experiments, we trained the classifiers to remove facial tattoos from aligned images
and as such will assume that our input images have already been aligned since our focus is
on improving feature extraction and comparison. Note that the proposed tattoo removal
method could also be retrained on unaligned images and placed before the detection
module to improve detection accuracy.

6.1. Experimental Setup

In the following, we describe the database, the employed face recognition system, and
metrics used to evaluate the biometric performance:

• Database: for the evaluation, we use the publicly available database HDA Facial Tattoo
and Painting Database https://dasec.h-da.de/research/biometrics/hda-facial-tattoo-
and-painting-database (accessed on 13 December 2022), which consists of 250 image
pairs of individuals with and without real facial tattoos. The database was originally
collected by Ibsen et al. in [5]. The images have all been aligned using the RetinaFace
facial detector [59]. Examples of original image pairs (before tattoo removal) are given
in Figure 16. These pairs of images are used for evaluating the performance of a face
recognition system. For evaluating the effect of tattoo removal, the models described
in Section 5.1 are employed on the facial images containing tattoos, whereafter the
resulting images are used during the evaluation.

Figure 16. Examples of image pairs in the HDA facial tattoo and painting database.

• Face recognition system: to evaluate the applicability of tattoo removal for face recogni-
tion, we use the established ArcFace pre-trained model (LResNet100E-IR,ArcFace@ms1m-
refine-v2) with the RetinaFace facial detector.

• Recognition performance metrics: the effect of removing facial tattoos is evaluated
empirically [60]. Specifically, we measure the FNMR at operationally relevant thresh-
olds corresponding to a FMR of 0.1% and 1%:

– False Match Rate (FMR): the proportion of the completed biometric non-mated
comparison trials that result in a false match.

– False Non-Match Rate (FNMR): the proportion of the completed biometric mated
comparison trials that result in a false non-match.

Additionally, we report the Equal Error Rate (EER), i.e., the point where FNMR and
FMR are equal. To show the distribution of comparison scores, boxplots are used. The
comparison scores are computed between pairs of feature vectors using the Euclidean
distance.

A subset of semi-controlled images from the FRGCv2 dataset are used to obtain
non-mated comparison scores during the experiments. These scores are used during the
experimental evaluating for calculating the operating points corresponding to a FMR
of 0.1% and 1% and together with mated scores, obtained on the tattoo database, for
computing the EER before and after tattoo removal.

6.2. Experimental Results

The effect of removing tattoos on the computed comparison scores is visualised in
Figure 17. As can be seen, the comparison scores are not significantly affected for the
pix2pix model, which only showed moderate capabilities of removing tattoos from facial

https://dasec.h-da.de/research/biometrics/hda-facial-tattoo-and-painting-database
https://dasec.h-da.de/research/biometrics/hda-facial-tattoo-and-painting-database
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images. However, for TRNet, which has been trained on the synthetic database, it is shown
that the dissimilarity scores, on average, gets lower, which indicates that the recognition
performance might improve.

Table 3 shows the biometric performance scores calculated on the tattooed images
and the inpainted facial images for the different used models. The scores indicate that
realistic removal of tattoos (TRNet) might improve face recognition performance since we
can observe that, compared to the baseline (tattooed), the EER is halved, and the FNMR at
an FMR of 1% is reduced to 0%. The results indicate that a tattoo removal module can be
integrated into the processing chain of a face recognition system and help make it more
robust towards facial tattoos.

Table 3. Biometric performance results for ArcFace.

Type EER%
FNMR%

FMR = 0.1% FMR = 1%

Tattooed 0.80 1.20 0.80
pix2pix 0.80 1.60 0.80
TRNet 0.40 1.20 0.00

Tattooed pix2pix TRNet
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Figure 17. Boxplots showing the effect of tattoo removal on biometric comparison scores.

7. Conclusions

In this paper, we proposed an automatic approach for blending tattoos onto facial
images and showed that it is possible to use synthetic data to train a deep learning-based
facial tattoo removal algorithm, thereby enhancing the performance of a state-of-the-art
face recognition system. To create a facial image with tattoos, the face is first divided
into face regions using landmark detection whereafter tattoo placements can be found.
Subsequently, deep reconstruction maps and cut-out maps can be estimated from the input
image. Thereafter, the information is combined to realistically blend tattoos onto the facial
image. Using this approach, we created a large database of facial images with tattoos
and used it to train a deep learning-based algorithm for removing tattoos. Experimental
results show a high quality of the tattoo removal. To further show the feasibility of the
reconstruction, we evaluated the effect of removing facial tattoos on a state-of-the-art face
recognition system and found that it can improve automated face recognition performance.
Hence, the findings of this paper demonstrate the usefulness of synthetic data for the facial
analysis tasks of tattoo removal. Further experiments and optimisations are out of scope
of this work but could be investigated in the future. Additionally, it could be relevant
to explore if synthetic data can be generated for other types of facial manipulations and
leveraged for facial analysis tasks on real data.
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