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Abstract: Model induction is one of the most popular methods to extract information to better
understand AI’s decisions by estimating the contribution of input features for a class of interest.
However, we found a potential issue: most model induction methods, especially those that compute
class activation maps, rely on arbitrary thresholding to mute some of their computed attribution
scores, which can cause the severe quality degradation of model induction. Therefore, we propose
a new threshold fine-tuning (TFT) procedure to enhance the quality of input attribution based on
model induction. Our TFT replaces arbitrary thresholding with an iterative procedure to find the
optimal cut-off threshold value of input attribution scores using a new quality metric. Furthermore,
to remove the burden of computing optimal threshold values on a per-input basis, we suggest an
activation fine-tuning (AFT) framework using a tuner network attached to the original convolutional
neural network (CNN), retraining the tuner-attached network with auxiliary data produced by TFT.
The purpose of the tuner network is to make the activations of the original CNN less noisy and
thus better suited for computing input attribution scores based on class activation maps from the
activations. In our experiments, we show that the per-input optimal thresholding of attribution scores
using TFT can significantly improve the quality of input attribution, and CNNs fine-tuned with our
AFT can be used to produce improved input attribution matching the quality of TFT-tuned input
attribution without requiring costly per-input threshold optimization.

Keywords: activation fine-tuning; class activation map; input attribution; class activation map;
convolutional neural network

1. Introduction

The wide acceptance of artificial intelligence (AI) in various application areas has
increased the need to understand the mechanisms of AI better. One motive behind this
can be to build more intelligent autonomous systems by analyzing their strengths and
weaknesses, thereby improving the effectiveness of AI systems [1]. Another motive can be
to protect human beings from the possible abuse of automated decisions. The EU General
Data Protection Regulation (GDPR) is an exemplary action toward this direction, which
grants the subject of an automated decision the right to obtain an explanation about the
decision when it has a legal effect [2].

According to David Gunning [1], XAI techniques can be grouped into three categories:
new explainable deep learning (DL) models, improving the prediction accuracy and in-
terpretability of pre-DL models, and model induction. We focus on the model induction
approaches since they can be computed without modifying the deep neural networks to
be investigated, where modifications often result in prediction performance degradation.
Among many model induction approaches, we focus on the popular activation-based
attribution methods [3–10] which make use of both the activation and the gradients of
the class score function of a classifier with respect to the activation. These methods are
computationally efficient and known to pass the sanity check [7,11]. Furthermore, these
methods generate a so-called class activation map (CAM), an attribution map (often scaled
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in the [0, 1] range, stretched to match the input dimensions, and presented as a heat map)
that indicates the relative importance of all features in a given input with respect to a
particular class. We also focus on convolutional neural networks (CNNs) and image-based
classification tasks.

Despite their success, we found that many activation-based approaches use arbi-
trarily chosen thresholds to mute some of their relevance scores (discussed more in
Sections 2 and 3), and the quality of input attribution can be significantly improved by
optimizing the thresholds. Therefore, we propose a simple but effective mechanism for
finding an optimal threshold on the per-input basis that improves attribution quality. In
addition, to remove the burden of computing the optimal threshold for each image, we
suggest an activation fine-tuning framework that regularizes the penultimate activations of
a target CNN with the masks created with optimal thresholding as auxiliary data, making
the activations better suited for computing CAM-based input attribution. Our contribution
can be summarized as follows:

• We suggest a threshold fine-tuning (TFT) procedure that finds the optimal threshold
values to cut-off relevance scores in a class activation map. TFT uses our new measure,
called the relative probability increase (RPI), to evaluate the quality of each thresholded
attribution map. We show in the experiment that when we apply the optimized
thresholds according to RPI, attribution maps can bring a significant improvement in
the average increase [5] and average drop [5].

• We provide a new activation fine-tuning (AFT) strategy that fine-tunes the activation
layer of a CNN at which activation-based input attribution is created. AFT consists
of a tuner network and a new loss term to minimize the gap between transformed
activations by the tuner and the masks as auxiliary data generated by the optimal
thresholding of TFT. Our experiment demonstrates that a CNN fine-tuned by AFT can
produce attribution maps of much better quality than the original CNN and with a
similar quality to the result of applying TFT without computing optimal per-input
thresholds.

• We demonstrate in experiments the effectiveness of TFT and AFT for the popular
activation-based input attribution methods, namely Grad-CAM [4], Grad-CAM++ [5],
Ablation-CAM [8], and Layer-CAM [9], on the ImageNet [12] and Pascal VOC [13]
datasets.

2. Related Works

This section summarizes recent XAI methods based on model induction, categorizing
them into perturbation-based, gradient-based, decomposition, and activation-based methods.

2.1. Perturbation-Based Methods

Perturbation-based methods estimate the importance of input features by monitoring
how the prediction score of an AI model changes due to specific perturbations of the
features [14–17]. Based on input perturbations, LIME [18] used simple models to capture
the local behavior of the classifier and to generate explanations. SHAP [19,20] used pertur-
bations to approximate the Shapley values, which could be applied to various types of AI
models. The amount of computation has been the issue of perturbation-based methods,
and recent approaches address the issue using more efficient estimation procedures [21,22].

2.2. Gradient-Based Methods

The class score function’s gradients for input features show how sensitive each feature
is regarding the score. Guided Backpropagation [23] used gradient information with the
deconvnet [17] to better estimate sparsity patterns. Integrated Gradients [24] used an
average of input gradients along a path between a given input and a baseline image.
DeepLIFT [25] decomposed gradient information according to the difference between the
activation and a reference activation for each neuron. Gradient-based attribution methods
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are usually fast to compute; however, they are known to suffer from gradient shattering [26],
resulting in noisy results.

2.3. Decomposition Methods

Decomposition methods are based on layer-wise relevance backpropagation, which is
known to be less affected by noisy gradient computation. LRP [27,28] first suggested such
relevance backpropagation to attribute input features based on output values of a neural
network. CLRP [29] modified the first updates of the LRP to resolve the class insensitivity
of the original LRP updates. RAP [30] improved CLRP to deal separately with relevant and
irrelevant attribution.

2.4. Activation-Based Methods

Suppose that we have a trained convolutional neural network whose output is given
in the form of y ∈ RK, the prediction probabilities for K classes such that yc ≥ 0 for each
class c = 1, 2, . . . , K, and ∑K

c=1 yc = 1. For a given input image x ∈ Rw×h, we denote the
activation of the penultimate layer of the CNN by A, the k-th channel of A by Ak, and the
value at the (i, j)-th location in Ak by Ak

ij.
Activation-based methods have been suggested by CAM [3], which uses channel-wise

spatial pooling at the final convolutional layer of a CNN to produce the prediction score yc

as follows:
yc = ∑

k
αc

k ∑
i,j

Ak
ij . (1)

where ∑i,j Ak
ij is the channel-wise spatial pooling, where the pooled values go through a

fully connected layer with weights αc
k. Then, CAM creates the attribution map as follows:

ICAM := S
(
T
(

∑
k

αc
k Ak

))
, (2)

where S and T are the scaling and the thresholding functions, where the latter mutes attri-
bution scores below a chosen threshold value as summarized in Table 1. Many variations
of the original CAM have been proposed to obtain improved attribution maps, and re-
cent activation-based methods have shown state-of-the-art explanation quality [6,8,9]. We
discuss some details of them in the following.

Table 1. Naïve thresholding of attribution maps in activation-based methods. The percentages of
muted relevance scores are shown.

Grad-CAM Grad-CAM++ Ablation-CAM Layer-CAM Score-CAM

85% 50% 80% 85% 50%

2.4.1. Grad-CAM

Grad-CAM [4] generalized the original CAM [3] by showing that channel-wise weights
can be computed using gradients without modifying the underlying architecture of the
target neural network. That is, αc

k = 1
Z ∑i,j

∂yc

∂Ak
ij

, where Z is the number of activations

at the final convolutional layer. The Grad-CAM attribution map is then computed as

IGrad-CAM := S
(
T
(

ReLU
(

∑k αc
k Ak

)))
.

2.4.2. Grad-CAM++

Grad-CAM++ [5] suggests a scaling of the channelwise weights of Grad-CAM to
improve the locality of Grad-CAM. Grad-CAM++ uses second-order differentiation to
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compute skc
ij , which are used to compute αc

k = ∑i,j skc
ij ReLU

(
∂yc

∂Ak
ij

)
. Using the new weights,

the attribution map is created by IGrad-CAM++ = S
(
T
(

∑k αc
k Ak

))
.

2.4.3. Ablation-CAM

In Ablation-CAM [8], the authors replaced the use of gradient information in Grad-
CAM when estimating the importance of each activation channel Ak using different types

of scores: αc
k =

yc−yc
k

yc , where yc is the prediction score of the class c with the original
image and yc

k is the score obtained by removing the k-th channel from the activation by
setting the values to the zero value. Then, the attribution map is generated as follows,

similarly to Grad-CAM: IAblation-CAM = S
(
T
(

ReLU
(

∑k αc
k Ak

)))
. It has been shown that

Ablation-CAM can produce better attribution maps than Grad-CAM.

2.4.4. Layer-CAM

Layer-CAM [9] suggested using importance information from gradients in an element-
wise fashion rather than aggregating them spatially to evaluate the importance of each chan-

nel as a whole. That is, ILayer-CAM = S
(
T
(

ReLU
(

∑k Âk
)))

, where Âk
ij = ReLU( ∂yc

∂Ak
ij
) · Ak

ij.

It has been shown that Layer-CAM attribution maps, generated at each convolution layer,
have better quality than Grad-CAM, Grad-CAM++, and Score-CAM [6].

3. Motivation

In this section, we analyze activation-based attribution methods to motivate the need
for choosing attribution threshold values more carefully.

3.1. Activation-Based Input Attribution Maps

When an input x ∈ Rw×h is classified as a class c by a CNN, we consider the problem
of generating an explanation in the form of an attribution map I ∈ Rw×h using activation-
based approaches. The generation of an activation-based attribution map consists of
two steps:

Ipre := φ

(
∑
k

αc
k Ak

)
and Ifinal := S

(
T
(

Ipre
))

, (3)

where Ak is the k-th channel of the activation from the last convolutional layer of the
given CNN, and αc

k is the importance of Ak with respect to the class c. The function φ
is a preliminary cut-off function (usually ReLU(·) := max{0, ·} is used to consider only
the positive values), T is a thresholding function, and S is a scaling function to make the
attribution values in the [0, 1] range (this is often done during heatmap conversion). Since
the introduction of the original CAM [3] paper, many variants [4–9] have been proposed to
obtain better attribution maps: however, most of them have focused on different ways to
compute the weights αc

k, without giving enough consideration to the other parts of (3). We
claim that the thresholding function T is an important factor to improve attribution quality,
as we discuss in the next section.

3.2. The Need for Attribution Threshold Fine-Tuning

For proper input attribution, we need to deal with two aspects of the problem: detect-
ing important features and assigning appropriate scores representing the relative impor-
tance of detected features. Due to the similarity to a detection task of the former aspect, we
can conjecture that there can be a false detection of important features by input attribution
methods. An example of such false detection is demonstrated in Figure 1 (middle), which
shows the attribution map of Grad-CAM [4], one of the most popular input attribution
methods, overlaid on an original image from the Pascal VOC dataset [13]. The attribution
map is generated for the class “wine glass”. At first glance, one may think that Grad-CAM
has well-highlighted regions relevant to the wine glass. However, regions outside of the
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wine glass have received nonzero relevance scores with respect to the class. As a result, it is
unclear where the boundary between relevant and irrelevant regions is.

Figure 1. An example of input attribution and thresholding. (Left) An original image from Pascal
VOC 2012; (middle) the Grad-CAM attribution map computed from ResNet-50 overlaid with the
original image; (right) the attribution map produced by our threshold fine-tuning method.

In fact, many of the current activation-based input attribution methods use naïve
forms of relevance thresholding. Table 1 shows the percentage of muted relevance scores in
popular activation-based attribution methods, namely Grad-CAM [4], Grad-CAM++ [5],
Ablation-CAM [8], and Layer-CAM [9]. However, we found that such thresholding does
not always provide good attribution maps that depict relevant regions well—for example,
the Grad-CAM attribution map in Figure 1 (middle) shows only the top 15% of the Ipre map
of Grad-CAM, but it fails to highlight the specific region corresponding to the wine glass,
as we have discussed above. Therefore, we discuss how to perform better thresholding in a
structured way to generate attribution maps of higher quality.

4. Methodology

In this section, we first introduce the details of our threshold fine-tuning (TFT) proce-
dure to find an optimal threshold value that maximizes the measure of relative probability
increase. Then, we discuss our activation fine-tuning (AFT) strategy to refine the activations
of a target CNN with the help of a tuner network and the optimal masks obtained by TFT
as auxiliary data.

4.1. Threshold Fine-Tuning Procedure

To find an optimal threshold value that improves the quality of an attribution map,
we introduce our threshold fine-tuning procedure.

4.1.1. Thresholding an Attribution Map

Given an attribution map I with respect to an input image x, we define a thresholded
attribution map Iτ for a threshold value τ ∈ [0, 1] as follows:

[Iτ ]ij =

{
Iij if Iij ≥ τ

0 otherwise.
(4)

Based on Iτ , we also define the binary mask Mτ :

[Mτ ]ij =

{
1 if Iij 6= 0
0 otherwise.

(5)

Finally, we define the binary masked version x̂τ of the input image x, which we use in
our algorithm to evaluate the quality of Iτ ,

x̂τ = Mτ � x, (6)
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where � is the element-wise multiplication.

4.1.2. Finding an Optimal Threshold

To design an automated procedure for finding an optimal threshold value, we need
to check the quality of a thresholded attribution map Iτ . This can be done by asking
the target classifier we use to generate attribution maps. That is, for a masked input x̂τ

created according to (6), we measure how much the model’s predicted class probability has
increased due to masking: our conjecture is that if the masking has been successful, it will
remove class-irrelevant features, and therefore the model will output a higher probability
for the given class.

To be more specific, we define the relative probability increase (RPI) for the quality
measure as follows:

RPI(x̂τ , x) :=
max{ŷc − yc, 0}

yc , (7)

where ŷc is the prediction probability of a masked input x̂τ and yc is the prediction proba-
bility of the original image x, with respect to the class c. RPI measures the increase of class
probability due to masking, relative to the original probability.

We compute the RPI values for increasing values of τ so that x̂τs generated in the
process will contain progressively increasing numbers of features. Then, we choose the
best Iτ∗ for which we have the largest RPI value. Algorithm 1 shows our procedure, called
threshold fine-tuning (TFT), which uses GPU-based batch processing to accelerate the
computation of multiple forward passes (the lines 9 to 11 in Algorithm 1).

Algorithm 1 Threshold Fine-Tuning (TFT) Algorithm
Input: an input image x, an attribution map I, and a classifier f (x)
Input: an array T of increasing threshold values in [0, 1]

1: Initialize RPI as a |T|-dimensional array with the zero values.
2: Initialize X̂ as a |T|-dimensional array with the zero values.
3: for i = 1 : |T| do
4: τ ← T[i].
5: Compute Iτ and x̂τ according to (4) and (6).
6: X̂[i]← x̂τ .
7: end for
8: Transfer X̂ to a GPU.
9: GPUStart . Batch processing of all masked images at once.

10: Ŷc ← the prediction probability of X̂ for the class c.
11: GPUEnd
12: for i = 1 : |T| do
13: RPI[i]← the quality of x̂τ according to (7) based on Ŷc[i].
14: end for
15: τ∗ = T[ arg maxi=1,2,...,|T| RPI[i] ].
16: Return Iτ∗ .

4.2. Activation Fine-Tuning

In experiments, we show that our threshold fine-tuning (TFT) can produce optimally
thresholded attribution maps with significantly higher attribution quality than the original
attribution maps. However, one downside is that TFT has to be performed on every input,
which can be costly for providing an AI-based inference service with input attribution.

Therefore, we propose an activation fine-tuning (AFT) strategy that uses TFT to
generate auxiliary data to adjust the activations of a target CNN so that they will be better
suited for creating attribution maps. The idea is that since the optimal masks Mτ∗ contain
the information of class-relevant regions in activations, we can use the masks as new data
to fine-tune the activations. Figure 2 illustrates our AFT strategy, which takes activations
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(at a specific layer where we generate input attribution) and uses a tuner network to fit the
shape of activations with multiple channels to the masks with no channel information.

CE Loss

Total Loss

Convolution
Convolution

Tuner Network

Image

MSE Loss

Activations Mask

Target 
CNN Model

Figure 2. An overview of our activation fine-tuning strategy.

4.2.1. Tuner Network

Let us say that the activation A of a target CNN has the shape of dh × dw × K, where
dh, dw, and K denotes the height, width, and the number of channels of the activations.
To use the optimal mask Mτ∗ of the shape dh × dw × 1 to fine-tune the activation A teaching
class-relevant regions, we need to transform the shape of A to that of the optimal mask. In
addition, the combination of the K channels will be better to learn since the activation-based
attribution methods use the gradient information of the CNN with respect to the activations
to construct a weighted combination of A to construct input attribution maps, from which
the optimal masks have been computed.

Therefore, we use a tuner network with two layers of 1 × 1 convolutions, which
creates a linear combination of input channels without changing the spatial dimension of
input tensors [31]. The network use three 1× 1 convolution filters to reduce activations
to H ×W × 3 at the first layer (the number of filters has been determined empirically)
and then one 1× 1 filter to reduce it further to H ×W × 1 as desired.

4.2.2. Optimization Problem for Activation Fine-Tuning

For a training image x, let us denote the target CNN for which we want to create
input attribution as f (x; w) and the layer as the `-th layer, where we obtain activations for
creating activation-based input attribution and also attach our tuner network. We consider
the learning weights w in three parts, namely w = (w0, w1, w2) where w0 corresponds to
the first to (` − 1)-th layers, w1 corresponds to the `-th layer, and w2 to the remaining
layers. Note that we freeze the weights in w0 to their pre-trained version to prevent the
original CNN from fluctuating too much from its optimal weights, losing its best prediction
performance. We also denote the activations at the `-th layer as A(x; w1) ∈ Rdh×dw×K: A
depends on both w0 and w1, but only w1 is used for fine-tuning.

For the tuner network ftuner(A(x; w1); w′) and the optimal mask Mτ∗(x) generated by
TFT, we define activation fine-tuning as the following optimization problem:

min
w1,w2,w′

nAFT

∑
i=1
LCE( f (xi; w1, w2), yi) + λ‖ ftuner(A(xi; w1); w′)−Mτ∗(x)‖2

2, (8)

where the input–label pairs (xi, yi) are from training data, LCE is the cross-entropy loss,
and λ > 0 is a hyper-parameter balancing the strength of the tuner network.
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5. Experiments

In our experiments, we applied our method on two large-scale CNNs: ResNet-50 [32]
and VGG-16 [33]. We used ImageNet [12], and Pascal VOC 2012 [13] datasets, two popular
datasets for object classification. For TFT experiments, we used pre-trained models of
ResNet-50 and VGG-16. For AFT experiments, we retrained the pre-trained models using
the original training sets of the two datasets and additional data created by applying TFT
on the training data. All performance numbers have been measured on the test sets of the
two datasets, summarized in Table 2.

Table 2. The summary of datasets used in the experiments.

Dataset # Train # Test # Classes

ImageNet [12] 1,281,167 10,000 1000
Pascal VOC 2012 [13] 1464 1449 20

We implemented our method with PyTorch and tested against the four activation-
based input attribution methods, namely Grad-CAM [4], Grad-CAM++ [5], Ablation-
CAM [8], and Layer-CAM [9]. Our implementation is available in an open-source format at
https://github.com/sanglee/AFT (accessed on 14 September 2022).

5.1. Qualitative Comparison of Original and Optimally Thresholded Attribution Maps

To show the effectiveness of our threshold fine-tuning (TFT) algorithm, we compared
the original attribution maps with optimally thresholded attribution maps generated by
TFT. For the comparison, we have chosen several images from each dataset and generated
attribution maps. We have applied our TFT algorithm to the attribution maps, computing
the RPI values over increasing threshold values in [0, 1] with an increment of 0.1. The attri-
bution maps were thresholded to maximize the RPI measure. Figure 3 shows the results in
the order of the input image, the original attribution map I without thresholding, the thresh-
olded attribution map Iτ∗ , and a curve of RPI values (y-axis) over increasing threshold
values (x-axis) indicating the best threshold τ∗ with vertical dotted lines.

In Figure 3, we can observe that (i) the best threshold values are different depending
on the datasets, networks, and images, although the best threshold values were similar
across different attribution methods for a specific network and image combination; (ii) most
of the RPI curves have prominent peaks so that we can find the maximum point; and
(iii) our thresholding does make the boundary of highlighted regions more apparent, which
will be beneficial for finding important regions, parts, or objects.

5.2. Quantitative Improvements of Attribution Maps

To show that our TFT and AFT can improve the quality of input attribution, we com-
pared the quality of attribution maps generated by the original model, TFT and AFT. For the
comparison, we computed attribution quality measures widely used in model induction-
based XAI research in image domains: average increase and average drop. Denoting by yc

i
the predicted probability of the original input xi for the class c, by ŷc

i the predicted probabil-
ity for the class c of the binary-masked image (x̂τ)i based on a thresholded attribution map
(Iτ)i, and by yi the true label, we define the attribution quality measures as follows [5]:

Average Increase =
1
n

n

∑
i=1

1[ŷc
i > yc

i ]

Average Drop =
1
n

n

∑
i=1

max{yc
i − ŷc

i , 0}/yc
i ,

where 1[z] has the value 1 if z is true and 0 otherwise.

https://github.com/sanglee/AFT
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Figure 3. Qualitative comparison of the original attribution map and thresholded attribution map
by threshold fine-tuning (TFT). The input images, the original attribution maps, and thresholded
attribution maps are shown, along with the RPI curves over threshold values in [0, 1] with an increment
of 0.1. The best threshold values are depicted with the red dotted lines in the RPI plots.

Table 3 shows the comparison results for attribution quality. Higher values are better
for the average increase, while lower values are better for the average drop. We can see
that TFT improves the quality of attribution maps in all quality measures. Compared
to the original cases, the attribution maps optimized by TFT have improved the average
increase and average drop by ×1.31 and ×1.16 on average, respectively. Interestingly,
the attribution maps generated with AFT-tuned CNN show similar improvements in the
two quality measures by×1.51 and×1.26 on average, respectively, compared to the original
attribution maps. In the case of AFT, activation tuning has been done with the optimal
masks generated with the same attribution method to be used for the attribution quality
assessment, and no threshold fine-tuning has been applied. Still, using AFT, we achieved
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an attribution quality similar to (sometimes better than) TFT, except for a few cases in the
Pascal VOC dataset.

Table 3. Comparison of the quality of attribution maps: the original attribution maps (Original),
the original attribution maps optimized by the threshold fine-tuning (TFT), and the attribution
maps generated with the CNN optimized by the activation fine-tuning (AFT) without any threshold
fine-tuning. The numbers in boldfaces indicate performance improvements over the original cases.

Dataset
Attribution

Measure
ResNet-50 VGG-16

Method Original TFT AFT Original TFT AFT

Im
ag

eN
et

Grad-CAM Avg Increase 0.334 0.439 (×1.32) 0.449 (×1.35) 0.294 0.385 (×1.31) 0.561 (×1.91)
Avg Drop 0.130 0.117 (×1.11) 0.116 (×1.11) 0.159 0.144 (×1.10) 0.124 (×1.28)

Grad-CAM++ Avg Increase 0.342 0.454 (×1.33) 0.507 (×1.48) 0.228 0.322 (×1.42) 0.505 (×2.22)
Avg Drop 0.136 0.123 (×1.11) 0.105 (×1.29) 0.188 0.174 (×1.08) 0.153 (×1.23)

Ablation-CAM Avg Increase 0.342 0.456 (×1.33) 0.514 (×1.50) 0.261 0.352 (×1.35) 0.496 (×1.90)
Avg Drop 0.137 0.123 (×1.12) 0.109 (×1.25) 0.173 0.159 (×1.09) 0.136 (×1.27)

Layer-CAM Avg Increase 0.340 0.452 (×1.33) 0.512 (×1.50) 0.230 0.325 (×1.42) 0.492 (×2.14)
Avg Drop 0.128 0.124 (×1.11) 0.104 (×1.33) 0.187 0.172 (×1.09) 0.150 (×1.25)

Pa
sc

al
V

O
C

Grad-CAM Avg Increase 0.546 0.679 (×1.24) 0.659 (×1.21) 0.569 0.670 (×1.17) 0.698 (×1.23)

Avg Drop 0.055 0.045 (×1.20) 0.037 (×1.46) 0.054 0.045 (×1.20) 0.053 (×1.02)

Grad-CAM++ Avg Increase 0.522 0.674 (×1.29) 0.618 (×1.18) 0.445 0.583 (×1.31) 0.618 (×1.39)
Avg Drop 0.059 0.046 (×1.28) 0.041 (×1.43) 0.067 0.056 (×1.20) 0.062 (×1.08)

Ablation-CAM Avg Increase 0.523 0.682 (×1.31) 0.666 (×1.27) 0.519 0.638 (×1.23) 0.674 (×1.30)
Avg Drop 0.049 0.036 (×1.34) 0.033 (×1.48) 0.052 0.044 (×1.18) 0.050 (×1.03)

Layer-CAM Avg Increase 0.486 0.645 (×1.33) 0.620 (×1.28) 0.420 0.538 (×1.28) 0.562 (×1.34)
Avg Drop 0.063 0.051 (×1.23) 0.042 (×1.52) 0.069 0.058 (×1.19) 0.059 (×1.16)

5.3. Impact of AFT on Prediction Performance

Since our AFT can modify the optimal learning parameters of the original CNN, one
concern will be that the prediction accuracy of the CNN may drop due to the application of
AFT. Therefore, to check the impact of AFT on the classification accuracy of the AFT-tuned
CNN, we compared the accuracy rate of the original and the AFT-tuned models in Table 4,
for all combinations of the datasets, CNNs, and attribution methods we have tried.

Table 4. Comparison of test set prediction accuracy rates of the original and the AFT-tuned CNNs.

Dataset
Attribution ResNet-50 VGG-16

Method Original AFT-Tuned Original AFT-Tuned

ImageNet

Grad-CAM

0.737

0.736

0.720

0.720
Grad-CAM++ 0.737 0.718
Ablation-CAM 0.737 0.720

Layer-CAM 0.736 0.719

Pascal VOC

Grad-CAM

0.922

0.922

0.905

0.904
Grad-CAM++ 0.923 0.903
Ablation-CAM 0.922 0.903

Layer-CAM 0.922 0.904

The results show that AFT consistently preserves the original model’s prediction
performance, keeping the accuracy rates within 0.002 percentage points of the original
accuracy rates in all cases. Therefore, we expect that AFT can be applied to CNNs without
significantly sacrificing the original prediction accuracy.

5.4. Computational Cost of TFT

In Algorithm 1, the bottleneck is computing the RPI scores for masked images at
different threshold values, where each of them requires a forward pass of the target CNN
to produce prediction probability for the class c for each masked image. We have tried
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10 different threshold values in our experiments, and therefore a serial evaluation of the
prediction probabilities requires an equal number of forward passes. To curtail runtime,
we have adopted GPU-based batch processing to calculate the prediction probabilities for
all masked images at once (lines 9–11 of Algorithm 1).

In Table 5, we show the runtime to create an input attribution map with and without
our TFT. The measurements are conducted on a load-free Linux machine with an Intel CPU
Xeon Silver 4214 CPU, an NVIDIA RTX 2080 Ti GPU, and 128 GB of RAM. The results
show that our method takes less than 0.03 seconds across all cases in our experimental
environment, which we believe allowable considering the runtime of attribution map
creation themselves and the expected quality improvement due to TFT.

Table 5. Average runtime (in seconds) of generating an attribution map with and without our
uncovering procedure using VGG-16. The ∆ indicates the difference between the two cases.

Grad-CAM Grad-CAM++ Ablation-CAM Layer-CAM

Without 0.017 0.017 1.691 0.018
With 0.045 0.046 1.719 0.047

∆ 0.028 0.029 0.028 0.029

6. Conclusions

In this paper, we proposed novel ways to replace the ad-hoc thresholding of attribu-
tion scores in activation-based input attribution approaches, which can cause the quality
degradation of input attribution maps. First, we proposed the threshold fine-tuning (TFT)
procedure to optimize the cut-off thresholds of attribution scores, showing that applying
fine-tuned thresholds can significantly improve the quality of attribution. Secondly, we
provided the activation fine-tuning (AFT) strategy using a tuner network trained by the
output of TFT as auxiliary training data to regulate the activations of a CNN. As a result,
AFT-tuned CNN produces activations that do not require further per-input attribution
thresholding to generate activation-based input attribution. Furthermore, we have shown
that AFT does not sacrifice the prediction accuracy of the target CNN. Therefore, AFT can
make activation-based input attribution methods more plausible whenever providing input
attribution is necessary to get more information about decision-making by CNN models.

The effectiveness of our method indicates that the activation-based attribution methods
may assign nonzero relevance scores to some class-irrelevant features. We think that several
factors could be involved and deserve further investigation. First, gradient computation
can be noisy. The non-differentiability of activation functions such as ReLU may have
introduced noise in gradient computation. Second, the inaccuracy of the underlying CNN
classifier may have resulted in an incorrect evaluation of activation values. Since the effect
of these factors can be combined, further research will be needed to determine the exact
causes and find proper remedies to improve attribution methods.

Several aspects of this study can be improved in future works. First, our TFT and AFT
methods consider only a single activation layer of a CNN—the last convolutional layer
in particular. The reason is that most activation-based input attribution methods use the
output of the last convolutional layer to generate input attribution maps. However, a few
recent techniques, such as Layer-CAM [9], suggest that information from multiple convolu-
tional layers helps improve input attribution. Therefore, extending our AFT approach to
tune multiple convolutional layers together will be a worthwhile research direction. Second,
there are a few hyperparameters in our approach, such as the number of threshold values T
in Algorithm 1, the number of training examples to be used for activation fine-tuning nAFT,
and the balancing parameter λ in (8). Although these hyperparameters have not been very
sensitive in our experiment, it would require further investigation into other datasets and
neural networks than those we have tried in this study.
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