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Abstract: Omni-wheeled mobile robots (Omni WMRs) are commonly used in indoor navigation
applications like surveillance, search and rescue, and autonomous transportation. They are always
characterized by their versatility, mobility and high payload. This paper presents the mechatronic de-
sign, low-level control and high-level control of an indoor 4 Omni-Wheeled Mobile Robot (4OWMR).
Since autonomy and path planning are research necessities for WMRs, four heuristic and probabilistic
path-planning techniques are chosen for experimental implementation. The selected techniques are
PRM (Probabilistic Roadmaps), RRT (Rapidly exploring Random Tree), RRTSTAR (RRT*), and ASTAR
(A*) algorithms. The proposed environments are static, expressed by maps with unknown nodes and
obstacles. Local path planning is implemented with simultaneous localization and mapping (SLAM).
Path planning techniques are programmed, and the obtained paths are optimized by a multi-objective
genetic algorithm technique to ensure the shortest path and its smoothness. The optimized paths are
deployed to the 4OWMR. The obtained results are compared in terms of travel time, travel distance,
average velocity and convergence error. A ranking technique is utilized to rank the obtained results
and show the most preferred technique in terms of energy consumption and convergence accuracy in
addition to the overall ranking. Experimental results showed that the Hybrid A* algorithm produced
the best-generated paths with respect to other techniques.

Keywords: mobile robots; Omni-wheels; path-planning; SLAM; PRM; RRT; RRT*; Hybrid A*

1. Introduction

Mobile robotics has become one of the most expansive points of research nowadays [1].
They are usually used to substitute humans in different life activities, either indoors or
outdoors. They are already widely used in inspection tasks, transportation, surveillance,
explorations, museum guides, medical services, and entertainment [2].

Generally, mobile robotics is one of the promising technologies in the global market.
Recent research in mobile robots is concerned with Autonomous wheeled mobile robots
(AWMRs). They are a vehicle that uses onboard sensors and processors to autonomously
move materials without the need for physical guides or markers. It learns its environment,
remembers its location, and dynamically plans its path from one waypoint (a location or
destination within the environment) to another [3]. Several technological fields of research
are involved in developing autonomous wheeled mobile robots like locomotion, navigation,
perception, and cognition.

The study of locomotion for AWMRs includes the study of the robot’s way of move-
ment and its mechanical design. Also, it relies but also on technical criteria such as
maneuverability, controllability, terrain conditions, stability, etc. The mobile robot may
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have different types of wheels. Their combined actuation makes different motion configu-
rations. The two main motion platforms are either holonomic or non-holonomic platforms.
Most AWMRs have Ackermann steering or skid steering configuration. They are indeed
non-holonomic platforms that provide simple mechanical motions. But they have limited
degrees of freedom (DoFs), and they are often constrained by the mechanical coupling
between the angular and the linear motions [4]. On the other hand, holonomic platforms
can move in any direction independent of their orientation.

An example of non-holonomic configurations is omnidirectional wheels. They allow
a robot to drive on a straight path from a given location to another without the need to
rotate first. Moreover, translation movement along any desired path can be combined
with a rotation so that a robot arrives at its destination at the correct angle faster than a
non-holonomic robot does. These capabilities make the robot highly maneuverable, which
is very helpful in both indoor and outdoor applications, in particular, in narrow spaces and
crowded environments [5]. Additionally, the number of robot wheels can greatly affect
omnidirectional platforms. The four-wheel configuration is generally preferred over the
three-wheel configuration due to the following reasons [6,7]:

1. Easier to control motors and implement path-tracking algorithms;
2. The body weight is distributed over four wheels. So, the robot can accelerate faster

and greater speed is achieved because slippage is minimum;
3. The robot body is more stable during turns and in slopes during rotations.

Several AWMRs have used omnidirectional wheels in industry and logistics. C. Röhrig et al.
have presented the design of OmniMan [8], which is a mobile manipulator for human-robot
collaboration. It consists of an omnidirectional mobile platform and a lightweight robotic
arm (Universal Robot UR5) which could help human workers efficiently. Y. Zhang et al.
have introduced a mecanum omnidirectional mobile platform for inspection in petroleum,
chemical, and other hazardous environments [9]. To verify the proposed design, the
geometrical modeling of the mecanum wheel roller and its finite element simulation
analysis was carried out. Also, a suspension structure was added to the robot to reduce
bumps and vibrations.

Another example of using Omni wheeled mobile robot was presented by M. Takahashi
et al. [10]. The MKR (Muratec Keio Robot) was developed, and it was used as a mobile
transfer robot system for hospital applications. It had a wagon truck to transfer luggage,
important specimens, and other materials. A. Sofwan et al. introduced the Mobile Col-
laborative Robotic Assistant (MOCA) [11]. It consisted of a lightweight manipulator arm,
an under-actuated hand, and a mobile platform driven by four Omni-directional wheels.
MOCA was considered for human-robot collaboration (HRC) applications, whereby robots
work alongside humans in close-in industrial environments.

Another important research aspect to be considered while developing AWMRs is the
robot’s autonomous features. An autonomous mobile robot requires the integration of
perception, localization, cognition, and motion control systems [3]. Hence, the environment
is perceived with sufficient details to allow the accomplishment of any task with acceptable
accuracy. Perception systems require the acquisition of knowledge of the work environment
and the robot itself through information extraction and interpretation of robot sensors.
Based on the information from the sensors and the robot’s objectives, the cognition system
will gather and integrate this information into a map. In addition, the cognition system will
include a localization technique that will estimate the position of the robot and generate
the path planning algorithm [12]. Additionally, localization is attained through the precise
position and configuration of the robot. Finally, a motion control system is added to
compute a collision-free trajectory from start to end.

Navigation in indoor environments is classified into two types: global navigation and
local navigation [13]. In global navigation, the robot acquires prior information about the
destination, obstacles, and environment. While in local navigation, the robot deals with
a partially or fully unknown environment. The problem of navigation in an unknown
environment requires constant updates of robot position and direction in addition to
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constant updates of obstacles and the environment. Such a case is called the Simultaneous
Localization and Mapping (SLAM) problem [14]. It is a process of the generation of a map
of an unknown environment and the continuous knowledge of its position and direction
relative to the generated map.

Research has been ongoing to try to solve the SLAM problem in mobile robots. One of
the most popular SLAM solutions is based on theoretical estimation or Kalman filter-based
approaches [15]. Also, there are two types of sensors used in SLAM navigation systems.
The first type is the onboard sensor which includes encoders and measuring inertial units
(IMUs). The mobile robot’s position and orientation can be detected by integrating the
sensor measurement. This method is known as dead-reckoning, which is not suitable
for long navigation due to integration error steps. The second type depends on external
absolute sensors that include lasers, cameras, and Global Positioning System (GPS) [16].

Jun Qian [17] presented a successful example of WMRs, which are used in indoor
autonomous navigation. He presented an omnidirectional mobile robot that is oriented to
intelligent manufacturing systems. Each of its wheels is a modular wheel installed on a
vertical suspension mechanism to ensure moving stability and keep the distances between the
four mecanum wheels invariable. The robot control system consists of two-level controllers
that implement motion control and multi-sensor data processing, respectively. In [18], an
unmanned ground vehicle (UGV) is presented. It consists of a four-wheeled skid-steer and is
equipped with a custom six-degrees of freedom (DOF) manipulator arm. For state estimation,
localization, and navigation in unknown environments, the UGV was equipped with wheel
encoders, an inertial measurement unit (IMU), light detection and ranging sensor (LIDAR).

In [19], the 2D laser scanning data is used in real-time to calculate the area of the whole
free space in a room. Then it selected the room center as its position for the omnidirectional
map building. Grid-based representation and least square algorithm are adopted to ac-
complish instant map building, which can reduce the redundant laser points effectively.
An EKF-based pose estimation approach is provided for a robot autonomous localization
system in a semi-structured indoor environment.

An additional recent research effort was done by Zhao et al. [20], in which they
presented a four-wheel robot with spring suspension. The robot was able to navigate
autonomously in complex and uneven terrains. In order to overcome the expected problems
of low mapping accuracy, the authors used the Karto SLAM algorithm. The A* algorithm
and DWA algorithm were used for global and local path planning, respectively. Another
recent research on indoor robot localization was presented by Ge et al. [21]. A new method
named Text-MCL is presented, and it depends on text information and data from laser
scanning. It is used mainly for repeated indoor geometric structures like long and narrow
corridors. Experimental results have shown a convergence rate of 92%.

Further investigation into accurate mapping for indoor mobile robots is presented by
Achour et al. [22]. The aim of this paper was to present a brief review of semantic mapping
techniques, which provide geometric information in addition to general information and
features about the objects of the indoor map. This technique raises the cognition of the
mobile robot system and facilitates interaction with humans in collaborative environments.

More examples of AWMRs with indoor navigation capabilities are further presented
in Table 1.

Table 1. Review of mobile robots and their path planning techniques, PPA: path planning algorithm,
P: practical testing, S: simulation testing, H: holonomic, NH: non-holonomic.

PPA P or S Sensors Environment Motion Obstacle

Miao [23] – S Pose, Velocity,
Current Indoor H Static

Federico Peralta [24] A*, PF, RRT*,
FMM, uFMS S – Outdoor – Dynamic
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Table 1. Cont.

PPA P or S Sensors Environment Motion Obstacle

Christof Röhrig [8] – – Encoders, Torque Outdoor H Dynamic

Xiaofeng Liu [25] HPF S – Indoor H –

Anh Vu Le [26] A* Based-
Zigzag P Encoders, LIDAR Indoor H Static

Chengcheng Wang [27] – S Velocity Indoor H –

Boris Crnokić [2] Line Tracking P Encoder, Camera,
IR sensor Indoor H Static

Jan Carius [18] – P
Encoders, IMU,
LIDAR, Camera,

GPS
Outdoor H Static

Jun Qian [19] Line Tracking P
Kinect sensor,
IMU, Encoder,

Ultrasonic
Indoor H Dynamic

Dang, C.V. [28] APF S – Indoor NH Dynamic

In this paper, the implementation of different path planning techniques is presented,
compared and discussed on an Omni Wheeled Mobile Robot (4OWMR). The new robot is
provided with indoor navigation capability in the form of global and local navigation [29].
This robot is intended to be used in indoor offices and libraries with the presence of fixed
obstacles or landmarks. The robot’s main parts, specifications and kinematics are shown
in Section 2. The robot control architecture is shown in Section 3. Several path-planning
algorithms are intended for testing on the developed robot. Three common algorithms
are chosen and explained in Section 4. Experimental implementation of the proposed
techniques and optimization of the generated paths are presented in Section 5. A discussion
of the obtained results is presented in Section 6. Finally, the conclusion and future work are
presented in Section 7.

2. Specifications of the 4OWMR

The 4OWMR is based on four Omni-wheels with 90 degrees between each other.
The wheels are located symmetrically at the corners of a square mobile platform base.
The main body is constructed from a 6 mm acrylic sheet. The robot length, width and
height are 360, 360, and 210 mm, respectively. The weight of the robot is approximately
3.5 kg. The robot’s wheel radius is 58 mm, and its wheel weight is 0.06 kg. It can reach a
maximum velocity of 0.3035 m/s. The robot is also equipped with a Lidar sensor with a
range of 12 m for navigation and creating occupancy maps. All components are shown
in Figure 1 with annotations. The design is characterized by simplicity in assembly and
disassembly, In addition to the robot’s modularity and the easiness of accommodation of
its internal components.
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3. Control System of the 4OWMR

The implemented control scheme of the omni-wheel mobile robot is divided into
two main stages (low-level and high-level stages). The schematic overview that describes
the control stages is shown in Figure 2. The main functions of each stage are stated in the
following subsections.
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Figure 2. Schematic overview of 4OWMR control stages.

3.1. Low-Level Control

The first one, the low-level control stage, controls the velocity and position of each
wheel and sends essential feedback data to the master controller. The position and the
velocity of the mobile robot are determined using encoders and IMU sensor readings. The
kinematics of the robot is calculated to determine the velocity and direction of the robot
as a whole. The reference velocity and direction values are obtained using a non-linear
PID controller. This controller communicates with the master controller (PC) using serial
communication. This controller is considered responsible for the perception of the robot.

3.2. High-Level Control

The high-level controller is responsible for localization and planning the required path
of the robot. It is equipped with a GUI interface enabling the user to choose the intended
algorithm and follow the robot through the PC camera. The path planning algorithm is
chosen and implemented on the robot to reach its destination. An online map of the robot’s
environment is generated using LIDAR readings and updating the controller with the
current location of the robot. Also, the camera feed is used to visualize the routes of the
mobile robot. The robot kinematic model calculates the required angular velocities of the
wheels and sends them to the low-level control stage. The implementation path planning
algorithms are explained in detail in the following section. The main hardware components
of the system are shown in Table 2.
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Table 2. Main hardware components of the omni-wheeled mobile robot (4OWMR).

Component Name Specifications Number

Lidar sensor

2D laser scanner
Scan angle: 360 deg

Range: 12 m
Sampling points: 1450 points/scan

Frequency: 10 Hz

1

Magnetic encoder Resolution: 360 step/deg 4

Inertial Measurement Unit (IMU) MPU9250
9-axis IMU 1

Microcontroller Arduino Mega 2560 2

Master controller (PC) Processor: i5-9500 CPU
Ram: 8 GB 1

Wireless module APC 220 kit RF 1

Omni wheels
Diameter: 58 mm

Roller: 13 mm
Material: Nylon

4

4. Proposed Path Planning Techniques

Path planning is defined as a process of determining a path in configuration space
between the initial and target position of the robot [30]. The generated path should maintain
the kinematic constraints of the mobile robot.

Indeed, the robot should not collide with obstacles (static or dynamic). Path planning
can be classified into two types: Global path planning and local navigation path plan-
ning. In global path planning, prior knowledge of the environment (updated map and
static obstacles) should be available. Many methods have been developed for global path
planning, such as the A* algorithm [31], Cell decomposition method [32], RRT (Rapidly
exploring Random Tree) and RRT* [33], and PRM (Probabilistic Roadmaps) [34]. In local
navigation, the motion and direction of the robot are controlled autonomously by using
onboard sensors, like ultrasonic range finder sensors, LIDAR sensors, IMU sensors, infrared
range sensors, and vision (camera) sensors, etc.

A flowchart is shown in Figure 3, in which the implementation of the path planning
code is shown. The code is initialized by recording the start and end positions, and it scans
for the offline map. After that, the intended algorithm is calculated, and the desired path is
generated and sent to the 4OWMR. If the robot faces an obstacle, it sends the data to the
master controller, which stops the robot immediately while updating the map to generate a
new path. If there is no new obstacle, the robot goes to a second check that checks if the
robot has reached the target or not. If no obstacle is found, the robot continuously moves
according to generated path till it reaches the final destination.

Several algorithms are chosen for implementation on the 4OWMR. The PRM, RRT,
RRT*, and A* algorithms are described theoretically, applied, and compared experimentally,
and their results are enhanced by using the genetic algorithm optimization technique (GA),
as can be seen in the later sections. The theoretical explanation for the path planning
algorithms is explained in the following subsections.

4.1. Probabilistic Roadmaps (PRM) Algorithm

The PRM algorithm is primarily used for multi-query applications. It consists of two
main phases:

1. Preprocessing Phase: In this phase, a graph (road map) noted (G) is generated. It is
accessible from every point of the free configuration space C f ree;

2. Query Phase: The two points qs (start point) and qG (final point) are given. The
sequence of edges that forms the required path is obtained from qs to qG.
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In the preprocessing phase, the generation of a road map is the main task of the
preprocessing phase. The input is the number of iterations, and the number of nearest
neighbors and the output is PRM G. G (V, E) represents a topological graph in which V is a
set of vertices and E is the set of paths that map into C f ree.

The algorithm initializes the vertices set and edges set by the empty set. In each
iteration, while the absolute number of vertices is less than the number of samples, the
algorithm selects a random point q from configuration space. Then it checks whether
q ∈ C f ree or not (line 4). Once q ∈ C f ree, it is inserted as a vertex of G. The pseudocode for
this algorithm is shown in the following pseudocode.

Input: Number n of samples, number k of nearest neighbors
Output: PRM G = (V, E)

1: initialize V = ∅, E = ∅
2: while |V| < n do //find n collision-free points qi
3: q← random sample from C
4: if q ∈ Cfree then V← V ∪ {q}
5: end while
6: for all q ∈ V do //check if near points can be connected
7: Nq ← k nearest neighbors of q in V
8: for all q′ ∈ Nq do
9: if path (q, q′) ∈ Cfree then E← E ∪ {(q, q′)}
10: end for
11: end for
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The next step is to try to connect q to some nearby vertices G. The algorithm checks
the path from q to q’ to see if it can be constructed or not; if yes, the set of edges will be
increased by a new edge [35].

4.2. RRT (Rapidly exploring Random Tree) and RRT* Algorithms

The secondly implemented algorithm is the rapidly exploring random tree (RRT)
algorithm [36]. It is used for single-query applications. The algorithm builds a tree of
feasible trajectories rooted at the initial vertex. The algorithm is explained in pseudocode 2
and can be summarized as follows:

Input: qI , n of nodes, step size α

Output: Tree T = (V, E)
initialize V = {qS}, E = ∅

1: for i = 0: n do
2: qi ← random sample from C
3: qnear ← nearest neighbor of qi in C
4: qnew← qnear + α

|qi−qnear | (qi − qnear)

5: if qnew∈ C f reethen V← V ∪{ qnew},
E← E ∪ {( qnear , qnew)}

6: end for

Many derivatives of RRT algorithms are present and sought after. The most common
derivative is the RRT* [37], which will be implemented on the 4OWMR.

4.3. Hybrid A* Algorithm

This path-planning algorithm is one of the most efficient path-planners for mobile
robots or autonomous vehicles [38]. It consists of two parts; the first one is named the
forward search stage. The algorithm is guided by a cost function named g(n); it works from
the starting node to the current node (n). It has two more functions named h1(n) and h2(n)
respectively. h1(n) is a heuristic function that uses the obstacle map to compute the cost
of the distance from the current node to the goal in the discrete state. Another heuristic
function named h2(n) which considers the kinematics of the used mobile robot. The robot
kinematics is used to predict the path that considers the direction, steering angle and speed
of the mobile robot in the continuous state. Then, the algorithm selects the right successor
in continuous coordinate and lets the mobile robot follow it. The overall objective function
of the planner algorithm at each node n is shown in Equation (3).

F(n) = g(n) + h1(n) + h2(n) (1)

The second stage is called analytic expansion, which ensures that the algorithm
achieves the continuous coordinate of the goal state.

5. Experimental Implementation and Results

In order to examine the robot navigation experimentally, an indoor office room is
chosen. The dimensions of this room are 863 cm × 406 cm. The blue rectangle, which is
shown in Figure 4a, is the working area of the 4OWMR. The working area is divided into
small squares 10 cm × 10 cm for capturing the actual path. Different static obstacles are
added to this map in different configurations to test the robot’s maneuverability and the
applied path-planning technique.

Inflated maps are often used to apply a protection element to obstacles and build
buffer areas between the robot and the environment’s obstacles. It is built into the robot
software before path generation. An example of inflated maps that are used in the software
is shown in Figure 4b. Local path planning is utilized in the following experiments such
that the map obstacles placement is unknown. Three different maps (denoted Map1, Map2
and Map3) are used as examples for validation. These maps are shown in Figure 5.
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The generated paths are additionally optimized by using a multi-objective genetic
algorithm [39] to minimize the path length and the number of turns of the 4OWMR. The
multi-objective optimization problem is converted to a single-objective optimization process
by using a weighted sum, as shown in Equation (2).

f itness = (A× f1) + (B× f2) (2)

where A + B = 1, f1 = 1/path and f2 = C/S
f itness is the total fitness function, f1 is the fitness function of the path length, f2 is

the fitness function of path smoothness, and A and B are the weights of the two fitness
functions. C is the precision coefficient, and S is the smoothness of the path. f1, f2, and C
are controlled to maintain the same magnitude order.

The fitness function’s responsibility is to rank the chromosomes for the motion problem.
Any specific path would be composed of n waypoints. Hence, the path length is expressed
as path, as shown in Equation (3).

path =
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Additionally, other optimization parameters are as follows; the initial population size
is 800. The stopping criteria are when the first acceptable solution is sought, continues for a
predetermined number of iterations, and then stops. The maximum number of generations
is the maximum number of successful iterations, which is 50 generations.

5.1. Experimental Hybrid A* Results for Map1

The velocity of each wheel is shown in Figure 6a, and then inverse kinematics is
computed for generating the total mobile robot speed, as shown in Figure 6b. Then,
Figure 7 presents the planned path (blue path) generated from algorithms and the actual
path (red Path) traveled by the mobile robot. The experimental path of the mobile robot in
Map1 can be presented as a series of images, as shown in Figure 8.
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for Map1. (b) The velocity of the 4OWMR during Hybrid A* implementation for Map1. (c) The
acceleration of the 4OWMR during Hybrid A* implementation for Map1.
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Figure 7. The experimental path that is generated by using Hybrid A* in Map1. The blue line is the
planned path, while the red line is the actual robot’s path.

The generated path has a travel distance = 1.31 × 102 cm, an average velocity of
0.1189 m/s, a travel time of 13.621 s and a maximum acceleration of 0.141 m/s2. The real
final point is varied from the planned as the absolute error point on the X- and Y-axes and
is 0.3 cm and 2.1 cm, respectively.

5.2. Experimental PRM, RRT and RRT* Results for Map1

PRM, RRT and RRT* algorithms are also applied on this map, and the generated paths
are shown in Figure 9. The measured experimental values like traveled distance, average
velocity, travel time, and absolute error (x, y) are shown in Figure 10.
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Figure 9. The experimental paths that are generated by using different path planning techniques in 
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by using the PRM technique. (b) The path planned by using the RRT technique. (c) The path planned 
by using the RRT* technique. 

Figure 9. The experimental paths that are generated by using different path planning techniques in
Map1. The blue line is the planned path, while the red line is the actual path. (a) The path planned by
using the PRM technique. (b) The path planned by using the RRT technique. (c) The path planned by
using the RRT* technique.

5.3. Experimental Hybrid A* Results for Map2

The velocity of each wheel is shown in Figure 11a, and then inverse kinematics is
computed for generating the total mobile robot speed, as shown in Figure 11b. Then,
Figure 12 presents the planned path (blue path) generated from algorithms and the actual



Appl. Sci. 2022, 12, 12951 14 of 27

path (red Path) traveled by the mobile robot. The experimental path of the mobile robot in
Map2 can be presented as a series of images, as shown in Figure 13.
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Figure 10. The experimental results that are generated by using different path-planning techniques
in Map1. (a) The resultant traveled distance for different path planning techniques (b) The resultant
average velocity for different path planning techniques (c) The resultant travel time for different path
planning techniques (d) The resultant absolute error for different path planning techniques.

The generated path has a travel distance = 2.47 × 102 cm, an average velocity of
0.1106 m/s, a travel time of 23.62 s and a maximum acceleration of 0.192 m/s2. The real
final point is varied from the planned as the absolute error point on the X- and Y-axes and
is 4.2 cm and 0.9 cm, respectively.

5.4. Experimental PRM, RRT and RRT* Results for Map2

PRM, RRT and RRT* algorithms are also applied on this map, and the generated paths
are shown in Figure 14. The measured experimental values like traveled distance, average
velocity, travel time, and absolute error (X, Y) are shown in Figure 15.

5.5. Experimental Hybrid A* Results for Map3

The velocity of each wheel is shown in Figure 16a, and then inverse kinematics is
computed for generating the total mobile robot speed, as shown in Figure 16b. Then,
Figure 17 presents the planned path (blue path) generated from algorithms and the actual
path (red path) traveled by the mobile robot. The experimental path of the mobile robot in
Map3 can be presented as a series of images, as shown in Figure 18.
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Figure 14. The experimental paths that are generated by using different path planning techniques 
in Map2. The blue line is the planned path, while the red line is the actual path. (a) The path planned 
by using the PRM technique. (b) The path planned by using the RRT technique. (c) The path planned 
by using the RRT* technique. 

Figure 14. The experimental paths that are generated by using different path planning techniques in
Map2. The blue line is the planned path, while the red line is the actual path. (a) The path planned by
using the PRM technique. (b) The path planned by using the RRT technique. (c) The path planned by
using the RRT* technique.
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Figure 16. (a) The velocity reading of each wheel of the 4OWMR during Hybrid A* implementation
for Map3. (b) The velocity of the 4OWMR during Hybrid A* implementation for Map3. (c) The
acceleration of the 4OWMR during Hybrid A* implementation for Map3.
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Figure 18. Screenshots for the experimental implementation of the Hybrid A* algorithm on the
4OWMR for Map3.

The generated path has a travel distance = 2.51 × 102 cm, an average velocity of 0.1321
m/s, a travel time of 20.44 s and a maximum acceleration of 0.325 m/s2. The real final point
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is varied from the planned as the absolute error point on the X- and Y-axes and is 0.8 cm
and 4 cm, respectively.

5.6. Experimental PRM, RRT and RRT* Results for Map3

PRM, RRT and RRT* algorithms are also applied on this map, and the generated paths
are shown in Figure 19. The measured experimental values like traveled distance, average
velocity, travel time, and absolute error (X, Y) are shown in Figure 20.
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Figure 19. The experimental paths that are generated by using different path planning techniques in
Map3. The blue line is the planned path, while the red line is the actual path. (a) The path planned by
using the PRM technique. (b) The path planned by using the RRT technique. (c) The path planned by
using the RRT* technique.
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Figure 20. The experimental results that are generated by using different path-planning techniques
in Map3. (a) The resultant traveled distance for different path planning techniques. (b) The resultant
average velocity for different path planning techniques. (c) The resultant travel time for different
path planning techniques. (d) The resultant absolute error for different path planning techniques.
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6. Discussion

Based on the previous results, the applied algorithms are compared to select the most
convenient path-planning technique for the 4OWMR. A multi-criteria decision-making
method named weighted sum [40] is chosen. The general formula for the weighted sum is
shown in Equation (4).

A∗WSM−score = max
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where i = 1, 2, 3..., m
A∗WSM−score is the best choice score, n is the number of decision criteria, aij is the actual

value of the ith alternative in terms of the jth criterion, and wj is the ranking weight of the
jth criterion. The ranking is done on all results of all algorithms of all of the three available
maps. The parameters that are ranked are the travel distance, average velocity, travel time,
and absolute error in (x, y) coordinates. These parameters were given equal weights, and
their ranking results for the three maps are displayed in Table 3.

Table 3. The ranking table of the applied algorithms on three indoor maps.

Map Number Method of Path
Planning

Convergence
Ranking

Energy
Consumption

Ranking

Overall
Ranking

Map1

PRM
Hybrid A*

RRT
RRT*

2
1
4
3

4
1
3
2

4
1
2
3

Map2

PRM
Hybrid A*

RRT
RRT*

1
4
3
2

2
1
3
4

1
2
3
4

Map3

PRM
Hybrid A*

RRT
RRT*

4
2
1
3

2
1
4
3

2
1
3
4

The main aim of this research is to present an experimental comparative study of
different path-planning techniques for an indoor mobile robot. The results are ranked
according to convergence rate, energy consumption and overall ranking. The convergence
is represented by the absolute error in the x and y coordinates at the endpoint.

This error is calculated using Middle Difference in Distance Driven (MDDD) as shown
in equation 5, which is the total distance of the planned path generated from the algorithms.
Time is the total time for driving the mobile robot from the start point to the goal point
in the real environment, and Maximum Deviation is the maximum absolute difference
between the real and the actual path. MDDD is calculated in all maps for all techniques and
its results are ranked and presented in Table 3. The highest-ranking results in convergence
are the RRT* technique followed by the Hybrid A*.

MDDD =

∑i
n(distactual−distplanned)

distplanned

n
(5)

where the distactual is the distance between two consecutive points in the actual path,
distplanned is the distance between two consecutive points in the real path, and n is the
number of distances in the real path.

The energy consumption ranking is based on travel distance, average velocity and
travel time. In the three maps, the Hybrid A* is ranked first in energy consumption
parameters. Consequently, Hybrid A* has the lowest cost among the other techniques and
relatively high convergence in the three maps (but not the best). In other words, if average
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velocity, travel time and travel distance are given higher weights in the ranking process,
the Hybrid A* would be the best choice for the 4OWM in indoor environments.

Moreover, the Hybrid A* avoids complexity in computation during real-time deploy-
ment. Another observation is that Hybrid A* considers the robot’s kinematics and geometry,
so it doesn’t require the addition of inflated maps during path planning generation.

7. Conclusions and Future Work

In this paper, research efforts in this thesis have concentrated on the path planning of
a mobile robot against unknown static obstacles. The work is presented experimentally
in order to produce reliable results. A four omni-wheeled mobile robot (4OWMR) is used
as the mobile platform to give simultaneous rotating and sideways motions, particularly
in small spaces. To manage the robot during navigation and enable localization in indoor
maps, low-level position and velocity control loops are used. To recognize the surrounding
obstructions, a LIDAR sensor is included. During indoor navigation, a user interface (GUI)
is designed to monitor the robot and use path-planning algorithms.

Local path planning is implemented with four path planning algorithms: PRM, hybrid
A*, RRT, and RRT*. Optimization using a genetic algorithm is applied to the generated
paths to improve the generated paths. Based on these trials, comparison research evaluating
the performance of the 4OWMR in various environments is done in terms of success rate,
velocity, travel distance, duration, and convergence absolute error. Hybrid A* is proven
to be relatively better than the other algorithms while using the weighted sum ranking
technique. In convergence ranking, the Hybrid A* is generally second in all maps (only
behind RRT*). Also, it is ranked first in energy optimization rankings. The overall ranking
results of the Hybrid A*, when compared to other techniques, are 81.67% against RRT, 80%
(PRM), and 71.67% (RRT*).

For future work, more complicated and complex maps would be tested experimentally.
Further optimization techniques would be implemented to obtain more optimized paths.
In addition, the implementation of machine learning techniques would be sought after to
provide smoother paths, lower energy consumption and higher accuracy in convergence.
Several hardware modifications will be sought after to get smoother paths and avoid
possible discontinuities in path generation and slow sampling rates. The utilization of
faster programming languages like python will be investigated for future implementation.
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