
Citation: Wang, T.; Shen, Y.; Chen, T.;

Ji, B.; Zhu, T.; Lv, M. Language

Inclusion Checking of Timed

Automata Based on Property

Patterns. Appl. Sci. 2022, 12, 12946.

https://doi.org/10.3390/

app122412946

Academic Editor: Leandros

Maglaras

Received: 16 October 2022

Accepted: 21 November 2022

Published: 16 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Language Inclusion Checking of Timed Automata Based on
Property Patterns
Ting Wang , Yan Shen, Tieming Chen *, Baiyang Ji, Tiantian Zhu and Mingqi Lv

College of Computer Science, Zhejiang University of Technology, Hangzhou 310023, China
* Correspondence: tmchen@zjut.edu.cn; Tel.: +86-136-3410-2170

Abstract: The language inclusion checking of timed automata is described as the following: given
two timed automata M and N, where M is a system model and N is a specification model (which
represents the properties that the system needs to satisfy), check whether the language of M is
included in the language of N. The language inclusion checking of timed automata can detect
whether a system model satisfies a given property under the time constraints. There exist excellent
studies on verifying real-time systems using timed automata. However, there is no thorough method
of timed automata language inclusion checking for real-life systems. Therefore, this paper proposes
a language inclusion checking method of timed automata based on the property patterns. On the
one hand, we summarize commonly used property patterns described by timed automata, which
can guide people to model the properties with time constraints. On the other hand, the system
model M often contains a large number of events, but in general, the property N only needs to pay
attention to the sequences and time limits of a few events. Therefore, the timed automata language
inclusion checking algorithm is improved so that only the concerned events are required. Our
method is applied to a water disposal system and it is also evaluated using benchmark systems.
The determinization problem of timed automata is undecidable, which may lead to an infinite state
space. However, our method is still practical because the properties established according to property
patterns are often deterministic.

Keywords: timed automata; language inclusion; property pattern; verification

1. Introduction

Timed automata [1] have been one of the most popular formal models to specify
and verify real-time systems. The main purpose of timed automata language inclusion
checking [2] is to check whether the system model and the specification model (which
represents the properties that the system needs to satisfy) have the relation of language
inclusion. It can also be described as whether the system behaviors satisfy a certain property
under the time constraints. There are already some studies that apply the theories and
methods of timed automata to real-time systems, such as modeling and verification of
cyber physical systems [3,4], networked systems [5], the security of smart cities [6,7], etc.
However, most of them use verification based on reachability or temporal logics (such
as TLTL, TCTL). There is no thorough method for timed automata language inclusion
checking that can be applied to real-life systems.

Formal modeling of real-time systems is an error-prone job. Usually the developers or
testers are not familiar with formal modeling methods; therefore, they experience obstacles
in describing the properties that the system should satisfy using timed automata. On the
other hand, in order to verify the system correctness, the model checking tools must use the
system models and property models as inputs. The property patterns can be used to close
the gap between the users and the model checking tools [8]. Currently, there is a lack of
study on property patterns which can be applied in language inclusion checking of timed
automata. Current approaches often allow one to construct a system model which can be

Appl. Sci. 2022, 12, 12946. https://doi.org/10.3390/app122412946 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122412946
https://doi.org/10.3390/app122412946
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0121-5324
https://doi.org/10.3390/app122412946
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122412946?type=check_update&version=1

Appl. Sci. 2022, 12, 12946 2 of 15

automatically transformed from other high-level languages to the language supported by a
model checker. However, they do not illustrate how to specify the properties to be verified.
On this basis, we propose a set of commonly used property patterns described by timed
automata. It provides a guidance to users to model the properties for language inclusion
checking.

Due to the infinity of the time points, it is impossible to directly search the state space
for timed automata. Therefore, verification of timed automata (for instance, reachability)
can be solved by using the region graph [1]. However, verification based on region graphs
is inefficient. Reference [9] proposed the zone-based method to efficiently check the safety
and liveness properties. The verification tools for real-time systems often use zone graphs,
such as PAT [10] and UPPAAL [11]. Our previous work [2] first gave a method based on
zone abstraction to solve the language inclusion problem of timed automata. The method
constructs a synchronous product (which can be seen as the generation of the state space) of
two timed automata and then converts the language inclusion checking into a reachability
problem on the synchronous product. During this process, the timed automata need to be
determinized. In real-life systems, the system models are often complicated and contain
a large amount of events, while the property models only need to pay attention to the
sequences and time limits of a few events. If a property model must have the same set of
events as the system model due to the definition of language inclusion, it will bring great
difficulties to the property modeling. On the other hand, the algorithm will often not stop
because the determinization of the timed automata is undecidable. Therefore, we improve
the algorithm, so that it only needs to consider the concerned events in the property models
in critical steps. This improvement makes the algorithm feasible in reality.

The main contributions of this paper are as follows. Firstly, we summarize commonly
used property patterns of timed automata, including: Absence, Universality, Existence,
Response, Precedence, Chain and Occurrence times. Secondly, an improved language
inclusion checking algorithm of timed automata is given, which does not need to consider
the events not in the property models in critical steps. The determinization of the timed
automata is undecidable, which may lead to an infinite state space by the algorithm. How-
ever, our method is practical since the properties established according to property patterns
are often deterministic. Finally, our method is applied to a water disposal system [12] and
the algorithm is also evaluated using benchmark systems.

The chapters of this paper are organized as follows. Section 2 gives the background
of timed automata. Section 3 summarizes several commonly used property patterns for
the language inclusion checking. Section 4 gives a detailed description of our algorithm.
Section 5 takes the water disposal system as an example and uses our method to verify the
system using the property patterns. Section 6 is the related work. Finally, the summary of
this paper and future work are given.

2. Background of Timed Automata

Firstly, some related definitions for timed automata [1] are given. Let C be a set of
clocks, and Φ(C) be a set of clock constraints. A clock constraint is defined as follows:
δ := true | x ∼ n | δ1 ∧ δ2 | ¬δ1, where ∼ ∈ {=,≤,≥,<,>}, where x is a clock in C and n
is a non-negative integer. The set of downward constraints obtained with ∼ ∈ {≤,<} is
denoted as Φ≤,<(C). A clock valuation v for a set of clocks C is a function which assigns
a real value to each clock. If the clock valuation v makes the clock constraint δ true, then
v satisfies δ based on C(v |= δ). For any d ∈ R+, let v + d denote the clock valuation v′

such that v′(c) = v(c) + d for all c ∈ C. For a set of clocks X ⊆ C, let the clock resetting
notion [X 7→ 0]v denote the valuation v′ such that v′(c) = v(c) for any c ∈ C ∧ c /∈ X and
v′(x) = 0 for all x ∈ X.

Appl. Sci. 2022, 12, 12946 3 of 15

Definition 1 (Timed Automata). A Timed Automaton is a tuple A = (S, Init, Σ, C, L, T), where
S is a finite set of states; Init ⊆ S is a set of initial states; Σ is a set of events; C is a finite set of
clocks; L : S → Φ≤,<(C) is a function that gives a state invariant Φ≤,<(C) to each state; and
T ⊆ S× Σ×Φ(C)× 2C × S is a transition with a set of clock constraints Φ(C).

Based on the concrete semantics, the Timed Automaton A is a transition system. Each
node is a pair (s, v), where s ∈ S is a state and v is a clock valuation which satisfies v |= L(s). A
run of A is a finite sequence4 = 〈(s0, v0), (d0, e0), (s1, v1), (d1, e1), · · · , (si, vi), (di, ei), · · · 〉,
where s0 ∈ Init; v0 resets each clock to zero; for all i ≥ 0, there is a transition (si, ei, δ, X, si+1)
∈ T, such that vi + di |= L(si), vi + di |= δ, vi+1 = [X 7→ 0](vi + di) and vi+1 |= L(si+1).
Given a run 4, we can get its timed language 〈(d0, e0), (d1, e1), · · · , (di, ei), · · · 〉. We use
Lan(A) to denote all the languages of A. If the languages of two timed automata are the
same, they are equivalent.

Due to the infinity of time, the Timed Automaton A is essentially a transition system
with infinite nodes. To make the verification possible, it must be transformed into a
graph with finite transitions. The most commonly used abstraction technique is the zone
abstraction. We can obtain a zone graph with finite nodes after zone abstraction. A zone is
a linear inequality or a conjunction of linear inequalities defined on C, such as x− y ≤ 5,
y > 3∧ x < 7, etc., where x, y ∈ C. Given a zone δ, let δ↑ denote the zone obtained from δ
by delaying any time.

Definition 2 (Zone Graph). Given a Timed Automaton A = (S, Init, Σ, C, L, T), the zone
graph ZG(A) is a tuple (Sz, Initz, Σ, Tz), such that Sz denotes a set of nodes (s, δ) where s ∈
S and δ is a clock constraint; Initz = {(init, (∧c∈Cc = 0)↑ ∧ L(init)) | init ∈ Init} is a
set of initial nodes; Tz : Sz × Σ × Sz is a transition relation such that ((s1, δ1), e, (s2, δ2)) ∈
Tz iff (s1, e, δ, X, s2) ∈ T, δ1 ∧ δ is not empty, [X 7→ 0](δ1 ∧ δ) ∧ L(s2) is not empty and
δ2 = D(([X 7→ 0](δ1 ∧ δ))↑ ∧ L(s2)). (D is a normalization function [1]).

Figure 1 shows a Timed Automaton example which is a switch, where the initial state
is Off. When the event Press occurs, the system transits to the state On and resets the clock
x. Because of the state invariant x ≤ 2 on the state On, the system must transit to the state
Off in two time units.

Off
Press

Clockreset:{x}

On

/x≤2

Clock:<x≤2>

Figure 1. An example of a Timed Automaton.

In order to facilitate the modeling of the timed systems, we also use the following
expressions in addition to Definition 1. For more information on the modeling, please refer
to the paper [13] (the model checking tool PAT).

• Constants and variables: the constants will not be modified when the model is
running, e.g., the expression #define A 10, which defines the value of a constant A to
be 10; the variables can be modified, expressed as var B:{0..100} = 50, which defines
the variable B, where the initial value is 50 and the range of B is 0 to 100.

• Channel events: the channel events indicate the processes sending or accepting
messages. Assume c is the channel name, then c! represents that a message is sent and
c? represents the acceptance of a message.

• Transitions: the complete representation is ‘Clock: <clock constraint> [transition
condition] event {operations} Clockreset:{clocks}’. The event will be executed when
the clock constraint and the transition condition are satisfied. Some operations can
be performed at the same time, e.g., changing the values of the variables. Clockreset
means to reset the clocks in {} to zero.

Appl. Sci. 2022, 12, 12946 4 of 15

3. Property Patterns Based on Timed Automata

A pattern can give a general way of solving one kind of problem. Since modeling
properties that the system needs to satisfy is a necessary step, we need to explore the
patterns of the verification properties. Property patterns in previous works can infer the
occurrence and sequence of events (e.g., the occurrence of event a must follow event b) and
can also describe the logical behaviors of time-related events. On this basis, we propose
common property patterns represented by timed automata.

The property patterns are shown in the following figures. In the figures, a , b, c are all
the events, x is a clock and k is any non-negative integer. The property patterns only have
one clock. We can use a single pattern or a combination of multiple patterns to model a
property, which may have multiple clocks. The property patterns are described one by one
as follows.

• Name of property pattern: Absence
Problem to be solved: An event must not occur within a certain amount of time.
Solution: The patterns Absence-1 and Absence-2 are shown in Figure 2. For the self-
transition in Absence-1, there is a clock constraint x > k which means that event a
can only occur after k time units. The difference between Absence-2 and Absence-1 is
whether the clock x is reset on the self-transition, which means that the time between
two occurrences of event a must be larger than k time units. Event a may occur many
times and also may never occur because there is no state invariant on State1 or State2.

1)Absence-1

State1

2)Absence-2

State2

Clock:<x>k>,a
Clock:<x>k>,a

Clockreset:{x}

Figure 2. Property pattern of Absence.

• Name of property pattern: Existence
Problem to be solved: An event must occur within a certain amount of time.
Solution: The patterns Existence-1, Existence-2 and Existence-3 are shown in Figure 3. Due
to the state invariant x≤ k on the states and the clock constraint x≤ k on the transitions,
we can make sure that event a occurs within k time units. Existence-1 indicates that
event a can occur many times and the time between two successive occurrences must
be within k time units due to the resetting of the clock x. In the patterns Existence-2
and Existence-3, the first occurrence of event a must be within k time units. Event a
only occurs once within k time units in Existence-2, while it can happen many time in
Existence-3 after the first occurrence.

a

3)Existence-3

Clock:<x k>,a

1)Existence-1

State1\x k

Clock:<x k>,a

Clockreset:{x}

2)Existence-2

Clock:<x k>,a

State2\x k State4\x kState3 State5

Figure 3. Property pattern of Existence.

• Name of property pattern: Response
Problem to be solved: An event must always be followed by another event within a
certain amount of time.
Solution: The patterns Response-1 and Response-2 are shown in Figure 4. The state
invariant x ≤ k on the states and the clock constraint x ≤ k on the transitions denotes
the inevitability of the situation that event b follows event a within k time units. In
addition, Response-1 indicates that event b can only occur after event a, while the
self-transition on State3 in Response-2 indicates that even if the event a does not occur,
event b can occur separately.

Appl. Sci. 2022, 12, 12946 5 of 15

S0

State1

S0

State3

1)Response-1

State2\x k

b

2)Response-2

a,Clockreset:{x}

Clock:<x k>,b

a,Clockreset:{x}

Clock:<x k>,b
State4\x k

Figure 4. Property pattern of Response.

• Name of property pattern: Precedence
Problem to be solved: An event must always be preceded by another event within a
certain amount of time.
Solution: The patterns Precedence-1, Precedence-2, Precedence-3 and Precedence-4 are
shown in Figure 5. Precedence-1 denotes that when event a occurs, the clock x is reset
to zero. After that, if event b occurs, it must not be within k clock units, during which
event a may continue to happen multiple times because of the self-transition on State2.
Precedence-2 denotes that after event a, if event b occurs, it must be within k time units,
during which event a can also occur many times. Precedence-3 and Precedence-4 are
similar to the above. The only difference is that the occurrence time point of event b is
related to the last occurrence of event a due to the clock resetting on the self-transitions
from State4 and State8.

S0

1)Precedence-1

a

State1

S0

2)Precedence-2

a

S0

3)Precedence-3

S0

4)Precedence-4

a,Clockreset:{x} a,Clockreset:{x}

a,Clockreset:{x} a,Clockreset:{x}
a,Clockreset:{x} a,Clockreset:{x}

Clock:<x≤k>,b

Clock:<x≤k>,bClock:<x>k>,b

Clock:<x>k>,b
State2 State3 State4

State5 State6 State7 State8

Figure 5. Property pattern of Precedence.

• Name of property pattern: Chain
Problem to be solved: A sequence of events must occur in order within a certain
amount of time.
Solution: The pattern Chain is shown in Figure 6. The state invariant x ≤ k on State1 ,
State2 and State3 and the clock constraint x≤ k on the transitions (together with events
a, b and c sequentially) ensure that the system will finally transit to State4 within k
time units. Before or after the sequence happens, events a, b and c can occur arbitrarily.

S0

Clock:<x k>,a
Clock:<x k>

a,b,c
a,b,c

State1 \x k

Clock:<x k>,b Clock:<x k>,c

State2 \x k State3 \x k State4

Figure 6. Property pattern of Chain.

• Name of property pattern: Occurrence times
Problem to be solved: An event must occur several times in a certain amount of time.
Solution: The pattern Occurrence times is shown in Figure 7. There are state invariants
x ≤ k on the states and clock constraint x ≤ k on the transitions, which indicates that
event a must occur three times within k clock units. After that, event a can happen
arbitrarily.

Appl. Sci. 2022, 12, 12946 6 of 15

S0

a

State1\x k

Clock:<x k>,a Clock:<x k>,a Clock:<x k>,a

State2\x k State3\x k State4

Figure 7. Property pattern of Occurrence times.

4. Language Inclusion Checking of Timed Automata

Timed automata language inclusion checking is defined as: given two timed automata
M and N, if Lan(M) ⊆ Lan(N), then the language inclusion is satisfied. The above
definition is based on the concrete semantics of timed automata. Due to the infinity of the
time points, it cannot be used in practice. The work in [2] gave a method based on the
zone abstraction, making it possible to apply this type of verification method to real-life
problems. Our method uses zone abstraction to establish synchronous product of two
timed automata (which is the state space) and the language inclusion checking is turned
into the reachability checking in the synchronous product. As stated in the introduction,
the method is improved so that it only needs to consider the concerned events during
the verification.

4.1. The Transformation before the Verification

There are state invariants on the states of timed automata. A Timed Automaton can be
converted into an equivalent automaton without state invariants and the language defined
in Section 2 is not changed [2]. The state invariant on a state is moved to the transitions
which lead to or leave the state. If there is a Timed Automaton A = (S, Init, Σ, C, L, T), for
any state s ∈ S and its state invariant L(s), we have the two operations:

• Convert the transition (s, e, δ, X, s′) to (s, e, δ ∧ L(s), X, s′);
• For any transition (s′, e, δ, X, s) and any clock constraint x ∼ n in L(s), if x /∈ X, then

x ∼ n is conjuncted with δ; otherwise, it is ignored.

We use two timed automata M = (Sm, Initm, Σm, Cm, Lm, Tm) and N = (Sn, Initn, Σn, Cn,
Ln, Tn) in the next section, where only N needs the above conversion.

4.2. Synchronous Product with Concerned Events

Firstly, some definitions are given. For a clock c, c∗ = {c0, c1, c2, · · · , ci, · · · } is an
infinite clock set, where any clock in c∗ is a copy of the clock c. For any c ∈ Cn, a function
λn(c) is defined to represent the mapping of the clock c to a unique clock ci from c∗(written
as λn(c) = ci). We use λn to indicate that every c ∈ Cn is mapped to a unique clock ci from
c∗ and λ0

n to indicate that every c ∈ Cn is written as c0. For instance, for the clocks x, y ∈ Cn,
λn(x) = x2 and λn(y) = y3 are both possible.

The synchronous product with concerned events is actually a zone graph Zone(M⊗
N) = (S, Init, Σ, T). Any s ∈ S is a node with the form (sm, Xn, δ), where sm ∈ Sm and Xn
is a set, in which each element is of the form (sn, λn) where sn ∈ Sn. For any (sn, λn) ∈ Xn,
λn denotes a set of all active clocks in sn, which will be further illustrated during the
construction of T. ActClock(Xn) is used to represent the set of all the active clocks in Xn,
i.e., {t | ∃(sn, λn) ∈ Xn, c ∈ Cn, t = λn(c)}. δ is the clock constraint of all the clocks in
ActClock(Xn) ∪ Cm. The Init in the zone graph is defined as {(sm, Xn, ((ActClock(Xn) ∪
Cm) = 0)↑) | sm ∈ Initm ∧ Xn = {(sn, λ0

n) | sn ∈ Initn}}. Σ is equal to Σm.
Next, given a node (sm, Xn, δ), T is defined by describing how to generate the succes-

sors with the following two steps.

1. For sm and the transition (sm, e, gm, Y, s′m) from sm, if e ∈ Σm ∧ e /∈ Σn, then its
successor is (s′m, Xn, δ′) such that δ′ = (D([Y 7→ 0](gm ∧ δ) ∧ L(s′m)))↑. In this case,
succ1(node, Zone(M⊗ N)) is used to represent the successors of node.

2. For sm and the transition (sm, e, gm, Y, s′m) from sm, if e ∈ Σm ∧ e ∈ Σn:

(a) A set of transitions is represented by Tran(e, Xn) as follows. For any (sn, λn) ∈ Xn
and any transition (sn, e, gn, Y, s′n) in Tran(e, Xn), the ((sn, λn), e, g′n, Y′, (s′n, λ′n))

Appl. Sci. 2022, 12, 12946 7 of 15

is added into Tran(e, Xn). For any c ∈ gn, the corresponding name of the clock
in g′n is λn(c); for any c ∈ Y, the corresponding one in Y′ is λn(c). For any
c ∈ C, if λn(c) /∈ Y′, then λ′n(c) = λn(c); otherwise, λ′n(c) = R. The pending
R will be explained in step c.

(b) Since N needs to be determinized, the clock constraints of all the transitions
in Tran(e, Xn) should be mutually exclusive. Exclusive(e, Xn) is a set of clock
constraints in which each element is a clock constraint. For every transition
in Tran(e, Xn), Exclusive(e, Xn) conjuncts either the transition guard or the
negation. As a result, the elements in Exclusive(e, Xn) are mutually exclusive.
If a clock constraint on a transition is negated, this transition is disabled;
otherwise, it is enabled.

(c) For each g ∈ Exclusive(e, Xn), the successors of (s′m, X′n, δ′) are generated as fol-
lows: (i) For any (sn, λn) ∈ Xn and any transition ((sn, λn), e, gn, Y′, (s′n, λ′n)) ∈
Tran(e, Xn), if δ ∧ gm ∧ g ∧ gn is true, then (s′n, λ′n) ∈ X′n. (ii) Two clock sets
are used here: Reset and Active. For any (s′n, λ′n) ∈ X′n and any clock c ∈ Cn,
if λ′n(c) 6= Active and λ′n(c) 6= R hold, add c into Active; if c /∈ Reset and
λn(c) = R hold, add c into Reset. (iii) For any clock c in Reset, a clock cx in
c∗ satisfying cx /∈ Reset is chosen. For any (s′n, λ′n) ∈ X′n, if λ′n(c) = R holds,
then λ′n(c) is modified to cx. (iv) Let δtemp = δ ∧ g[Active] ∧ gm, with which
δ′ = D(([Xm 7→ 0]((Reset = 0) ∧ δtemp)↑)).

The successors of a node in Zone(M⊗N) generated by the above step 2 are denoted as
succ2(node, Zone(M⊗N)). For (b) in step 2, one of the clock constraints in Exclusive(e, Xn)
takes all the clock constraints on the transitions in Tran(e, Xn) to be negative, which is
denoted as negAll. The successor generated by negAll is (s′m, X′n, δ′). Obviously X′n is
empty because all the transitions are disabled. However, if δ′ is not false, M can execute an
event at some time point, whereas N cannot in this situation. As a result, there is a trace
which is in M but not in N and the language inclusion relation is false.

Theorem 1. Lan(M) ⊆ Lan(N) iff there is no reachable state (sm, ∅, δ) in Zone(M⊗ N) where
δ is true.

Given two nodes (sm, Xn, δ) and (s′m, X′n, δ′) in Zone(M ⊗ N), because of different
clock names, we cannot examine the relation between them directly. For instance, the
nodes (m1, {(n1, y1), (n2, y4)}, x = y1 > 3∧ y4 < 7) and (m1, {(n1, y4), (n2, y1)}, x = y4 >
3∧ y1 < 7) are actually equivalent, since in the latter y1 and y4 can be exchanged. Therefore,
the names of clocks in ActClock(Xn) or ActClock(X′n) are not important, as long as the
mapping relationship is found. If sm = s′m and there exists a bijection between Xn and X′n,
such that for any (sn, λn) ∈ Xn, there is a unique (s′n, λ′n) ∈ X′n satisfying sn = s′n (and vice
versa), then we go to check the equivalence. That is, we need to find a bijective function
bij from ActClock(Xn) to ActClock(X′n): ActClock(Xn)→ ActClock(X′n). Let bij(δ) denote
the clock constraint with renamed clocks. Then bij(δ) = δ′ means that the two nodes are
equivalent.

It should be noted that, according to [2], the number of nodes in Zone(M⊗ N) may
be infinite, because it is possible to generate infinite clocks during the determinization of N.
As a result, the state space grows unboundedly and the search is unable to terminate. For-
tunately, all the property patterns summarized in Section 2 can be determinized. Therefore
the verification will not encounter the above situation with the properties built by property
patterns. When modeling and verifying real-life systems, most of the properties can be
established by using the property patterns or their mutations, which reflects the feasibility
of our method.

Appl. Sci. 2022, 12, 12946 8 of 15

Example 1. The example in Figure 8 illustrates how to generate the synchronous product with
concerned events. Above the dashed line, there are the time automata M and N, while the below one
is the zone graph Zone(M⊗ N). Let node0 = (m1, {(n1, y)}, 0 ≤ x = y0) be the initial node and
the other nodes are as shown in the figure.

Clock<y>3>,a,

Clockreset:{y}

a

Clock<x>3>,a,

Clockreset:{x}
Clock:<y>7>,a

NM

Clock:<x>2>,h m1 n1
n2

m1,{(n1,y0)},0 x=y0

node0

m1,{(n1,y0)},

2 x=y0

m1,{(n1,y0),(n2,y1)},

(0 x=y1)˄y0>7˄

y0-x>7˄ y0-y1>7

m1,{(n2,y0)},

0 x=y0

m1,{(n1,y0),(n2,y1)},

(0 x=y1)˄y0>7˄

y0-x>7˄ y0-y1>7

m1,{(n1,y0),(n2,y2),(n1,y1)},

(0 x=y2)˄y0>7˄ y1>3˄

 y0-x>7˄ y0-y1>7˄

y0-y2>7˄ y1-x>3˄y1-y2>3

m1,{(n1,y0)},

x 0 ˄y0>3˄

y0-x>3

m1,{(n2,y0)},

2 x=y0

node5 node1

node2

node6 node3

node4

node7

x>2,h

x>3˄ y0>7,

a,{x,y1}

x>3˄ y0>7,

a,{x,y1}

x>3˄ 3<y0 7,

a,{x,y0}

x>1˄ y0>3,

a,{x,y2}
x>3,a,{x}

x>2,h

Figure 8. Synchronous product based on zone abstraction.

The event h in M is an unconcerned event, and a is the concerned event. node5 is a
successor of node0 with the unconcerned event h, where m1 does not change after event h.
Since N does not need to run, (n1, y0) in node5 is the same as node0. The clock constraint is
2 ≤ x = y0 because of the clock condition x > 2. Similarly, node7 is the successor of node2
by event h. (Step 1).

For (n1, y0) in node0, there are two transitions from n1 with clock constraints y > 7
or y > 3, respectively. Because for the clock y, the initial active clock is y0, the transi-
tions ((n1, y0), a, y0 > 3, {y0}, (n2, R)) and ((n1, y0), a, y0 > 7, ∅, (n1, y0)) are added into
Tran(a, (n1, y0)). R in the former transition can be determined in the subsequent steps
(Step 2 a).

Four clock constraints y0 > 7 ∧ y0 > 3,y0 > 7 ∧ y0 ≤ 3,y0 ≤ 7 ∧ y0 > 3 and y0 ≤ 7 ∧
y0 ≤ 3 can be obtained from Tran(a, (n1, y0)), which constitutes the Exclusive(a, (n1, y0)).
Among them, y0 > 7 and 3 < y0 ≤ 7 are feasible. y0 ≤ 3 belongs to negAll and is used to
verify whether the language inclusion is satisfied or not, which will be explained later. For
y0 > 7, both transitions from n1 in N are enabled; therefore, there are two elements in the
set about N in node1. For 3 < y0 ≤ 7, only the transition from n1 to n2 is enabled, so that
there is only one element in the set about N in node2. (Step 2 b).

From node0 to node1, the clock y0 is not reset in the self-transition of n1; thus, (n1, y0)
does not change in node1 and y0 is still in use. For the transition from n1 to n2, the clock y0 is
reset but is active in (n1, y0); thus, a new clock y1 (notice that now R = y1) is enabled in node1.
From node0 to node2, only the transition from n1 to n2 is enabled; then, the clock y0 can be
reused in node2. The clock constraints in node1 and node2 are calculated from the initial zone,
the clock conditions on the transitions and the reset clocks. Thus, the synchronous product
with concerned events is constructed step by step (Step 2 c).

For the judgment concerning the language inclusion, the negAll in Exclusive(a, (n1, y0))
of node0 is y0 ≤ 3. The result of the conjunction of 0 ≤ x = y0 (in node0), x > 3 (the transition
guard in M) and negAll is false, so (sm, ∅, δ) cannot be generated from node0. Other nodes
can also be handled in this manner (in Figure 8, the language inclusion checking of M and N
is true).

Appl. Sci. 2022, 12, 12946 9 of 15

4.3. Timed Automata Language Inclusion Checking Algorithm with Concerned Events

Algorithm 1 is the language inclusion checking algorithm of timed automata. There
are two data structures in the algorithm, i.e., the visiting stores for the nodes to be searched
in the zone graph Zone(M⊗ N) and visited stores for the nodes which have been searched.
The initial element in visiting is the initial node of Zone(M⊗ N), while visited is an empty
set. For the loop from line 3 to line 18, in each loop the current node is deleted from
visiting and then added into visited; if this node is the target one in the form of (sm, ∅, δ),
then the algorithm returns f alse at line 7. Lines 9 to 17 check whether event e on the
transition from the current node is an unconcerned event. If event e only belongs to the
event set Σm but not Σn, which means that e is an unconcerned event, then the nodes in
succ1(node, Zone(M⊗ N)) are added into visiting. If event e belongs to both Σm and Σn,
then all the nodes in succ2(node, Zone(M⊗ N)) are added into visiting. Finally, if all the
nodes have been visited without any node in the form of (sm, ∅, δ), then the algorithm
returns true at line 19.

Algorithm 1 Timed Automata Language Inclusion Checking Algorithm with Concerned
Events
Input: timed automata M and N
Output: verification result (true or f alse)

1: let visiting := Init;
2: let visited := ∅;
3: while visiting 6= ∅ do
4: remove node := (sm, Xn, δ) from visiting;
5: add node into visited;
6: if Xn = ∅ then
7: return false;
8: end if
9: for all (sm, e, gm, Y, s′m) do

10: if e ∈ Σm ∧ e /∈ Σn then
11: add succ1(node, Zone(M⊗ N)) into visiting;
12: else if e ∈ Σm ∧ e ∈ Σn then
13: for all (s′m, X′n, δ′) ∈ succ2(node, Zone(M⊗ N)) do
14: add (s′m, X′n, δ′) into visiting;
15: end for
16: end if
17: end for
18: end while
19: return true;

5. Case Study

In this section, we use the water disposal system [12] as an example to show the
application of our proposed algorithm. The algorithm is based on the model checking tool
PAT [10]. Firstly, the system is modeled by timed automata. Then we use property patterns
to model the properties and give the verification results. We use a PC (Intel(R) Core(TM)
i7-12700 CPU at 2.10 GHz and 32.0 GB RAM) to obtain the experimental results.

5.1. Modeling of the Water Disposal System

Figure 9 gives the architecture and models of the water disposal system. In the figure,
(1) is the architecture of the system and (2)∼(7) are the timed automata for each component
of the system. The system consists of five components: Actuator, Controller (CtrlWithAct
and CtrlWithCon), Heater, Sensor and Configuration. In addition, we add an Attacker
which executes command injection attacks to the system. The Attacker (Figure 9(8)) can
simulate a message (a malicious command) sending to the Controller like the Configuration.
The maximal water level is set as 100. The Configuration can set the range of the water level:

Appl. Sci. 2022, 12, 12946 10 of 15

in order to ensure safety, the highest water level is 90 (i.e., SH = 90) and the lowest water
level is 10 (i.e., SL = 10). If this range is exceeded, the system is not safe. The Controller
checks up on the real-time water level to make sure that the water level is within the normal
range (i.e., L = 40 < water level < H = 60) and sometimes sends controlling messages
to the Actuator. The Actuator opens or closes the valve according to the messages from
the Controller and gives the current water level to the Sensor periodically. If the valve is
opened, the water level can increase by 4 every time unit. The water level always drops
by 1 every time unit regardless of the valve status. The Sensor receives the data from the
Actuator and then sends them to the Controller at once. The components of the system operate
independently and communicate with each other if necessary. We use the interleaving [10] to
combine the components as a whole system model: System = Heater ||| Sensor ||| CtrlWithAct
||| Actuator.

Wait

WLToSen?｛WL_Sen = WL;｝
Clockreset:{x}

Send

\x 1

Clock:<x 1>WLToCtrl!

Wait
OffToAct?

{C=0;}

OnToAct?

{C=1;}

Send

Clock:<x 5>

FalseHL!

{H=95;L=5;}

Clockreset:{x}

5)Actuator

8)Attacker

Wait

\x 6

FalseHL?
Clock:<x==6>

[H>SH || L<SL]

ObtainHL!

Clockreset:{x}

CorrectHL?

Idle

\x 1

Clock:<x==1>[C==1]

WLToSen!{WL=WL+3;}

Clockreset:{x}

Clock:<x==1>[C==1]

WLToSen!{WL=WL+3;}

Clockreset:{x}

Clock:<x==1>[C==0]

WLToSen!{WL=WL-1;}

Clockreset:{x}

Clock:<x==1>[C==1]

WLToSen!{WL=WL+3;}

Clockreset:{x}

Clock:<x==1>[C==0]

WLToSen!{WL=WL-1;}

Clockreset:{x}

PumpOn

\x 1

PumpOff

\x 1

Controller

Actuator

Heater

Sensor

Configuration

CAN

POWERLINK

Valve

Internet Gateway

1)Architecture of water level control system 2)Heater

3)Sensor

6)CtrlWithCon

Idel

ObtainHL?

Clockreset:{x}

Send

\x 1

Clock:<x 1>CorrectHL!

{H=60;L=40;}

7)Configuration

WLToCtrl?｛WL_Ctrl= WL_Sen;｝
Clockreset:{x}

Clock:<x 1>[WL_Ctrl<L]OnToAct!

Clock:<x 1>[WL_Ctrl>H]OffToAct!
Idle Send

\x 1

Clock:<x 1>[WL_Ctrl L && WL_Ctrl H]NoSignal

4)CtrlWithAct

Figure 9. Architecture and timed automata models of water disposal system.

The Attacker sends error messages to the Controller periodically. It changes the values
of the normal range of the water level (i.e., change H to 95 and L to 5) such that the values
exceed the safe water line. There will be an accident if the system does not find it in
time. In order to solve this problem, the Controller detects whether the values of H and
L are abnormal periodically: if so, it sends a request to the Configuration to obtain the
correct values. Then the Configuration sends the right values to the Controller (with the
assumption that the values in the Configuration are unmodifiable). The complete system
is shown as follows: SystemWithAttacker=Attacker ||| Configuration ||| CtrlWithAct |||

Appl. Sci. 2022, 12, 12946 11 of 15

CtrlWithCon ||| Actuator ||| Heater ||| Sensor. In addition, the variables, the constants and
the channel declarations of the system are shown in Figure 10.

Declarations of constant and variables：
#define SH 90; // safety range of high water level
#define SL 10; // safety range of low water level
var WL:{0..100}=50; // water level in the heater
var WL_Sen:{0..100}=0; // water level in the sensor
var WL_Ctrl:{0..100}=0; // water level in the controller
var H = 60; // normal range of high water level
var L = 40; // normal range of low water level
var C=1; // initial value of C is 1,indicates that open the valve

Declarations of channel：
channel WLToSen; // water level to sensor
channel ObtainHL; // obtain safety water level
channel FalseHL; // false water level
channel CorrectHL; // correct water level
channel OffToAct; // close the valve
channel OnToAct; // open the valve
channel WLToCtrl; // water level to controller

Figure 10. Declarations of the system.

5.2. Models and Verification of System Properties

In this section, we first give the verification without time requirements, such as the
deadlock checking and the checking with Linear Temporal Logic (LTL). Next, we model
some properties with time requirements based on proposed property patterns and verify
them with our algorithm embedded in the tool PAT.

The verification results of deadlock and LTL checking are shown as follows:

• The verification results of the assertions #assert System deadlockfree and #assert Sys-
temWithAttacker deadlockfree are both true (through 184 states and 230 transitions and
91,146 states and 178,546 transitions, respectively), indicating that the deadlocks never
occur in System and SystemWithAttacker.

• The verification result of the assertion #assert System |=[](WLToSen-><>WLToCtrl) is
true (through 184 states and 230 transitions), indicating that the event WLToCtrl always
happens after WLToSen, which means that the occurrence of WLToCtrl is inevitable
after the event WLToSen.

• If an attack with the event FalseHL happens, the values of H or L will exceed the
warning water levels. Then the event CorrectHL in the Configuration will recover the
H and L. The verification result of the assertion #assert SystemWithAttacker|=[](FalseHL-
><> CorrectHL) is true (through 81,544 states and 206,839 transitions). This indicates
that the event CorrectHL always happens after the event FalseHL, which means that
the values of H and L can be recovered after an attack.

• If the attacks always happen, the CtrlWithCon will often send a message to the
Configuration with the event ObtainHL to obtain the correct values of H and L. The
verification result of the assertion #assert SystemWithAttacker |=[]<>ObtainHL is true
(through 81,770 states and 183,929 transitions). This indicates that the event ObtainHL
can always happen, which means that CtrlWithCon can detect the attacks.

Next, we model three properties (Figure 11) using the property patterns and obtain
the verification results.

Wait

WLToSen Clockreset:{x}

Send\x 1Clock:<x 1>WLToCtrl Attack

FalseHL Clockreset:{x}

Recover\x 7
Clock:<x 7>

CorrectHL

FalseHL

1)Resp 3)Pre2)Existence

Clock:<x 6>

ObtainHL

Clockreset:{x}
Send \x 6

Figure 11. Property models of the system.

• The property Resp is modeled by using the property pattern Resp-1, which detects
whether the Sensor can send the messages to the Controller in time. The assertion in the
PAT is: #assert System refines<T> Resp. The verification result is true (through 184 states

Appl. Sci. 2022, 12, 12946 12 of 15

and 230 transitions), indicating that when the Sensor receives the message WLToSen
sent from the Heater, it can send the message WLToCtrl to the Controller in one time
unit. If the clock constraint x ≤ 1 is changed to x < 1, the verification result is false.
The above verification with LTL (#assert System |=[](WLToSen-><>WLToCtrl)) gives
the result that the event WLToCtrl always happens after WLToSen. This verification
further shows that the event WLToCtrl always happens after WLToSen in one time unit.

• The property Pre is modeled based on the property pattern Precedence-2. In Figure 9,
we set the attack interval to be at least five time units and the detecting interval of
the CtrlWithCon to be six time units. As the CtrlWithCon shown in Figure 9, if the
conditions H > SH or L < SL are met, the Configuration will receive a message from
CtrlWithCon to obtain the correct values of H and L and reply with the event CorrectHL.
The property Pre verifies whether the controller could receive the messages with correct
values of H and L, after the Attacker sends error messages, i.e., the event FalseHL.
FalseHL can occur many times before CtrlWithCon notices it (i.e., the event ObtainHL),
because the attacker can launch the attacks continuously (see the self-transition on the
state Recover). The clock x is ticking after the first occurrence of FalseHL. The assertion
is: #assert SystemWithAttacker refines<T> Pre. The verification result is true (through
36,094 states and 71,836). If the number in the clock constraint x ≤ 7 is changed to a
smaller one, then the verification result is false. This means that the system is able to
recover within seven time units after being attacked. The above verification with LTL
(#assert SystemWithAttacker|=[](FalseHL-><> CorrectHL)) gives the result that the event
CorrectHL always happens after the event FalseHL. This verification further shows that
the event CorrectHL always happens after the event FalseHL in seven time units.

• The property Existence is modeled based on the property pattern Existence-1. The
assertion is: #assert SystemWithAttacker refines<T> Existence. The verification result of
the property Existence is true (through 33,889 states and 67,375 transitions). This means
that the system is able to examine whether the system is under attack within six time
units, which shows that the system can automatically recover after being attacked.
The above verification with LTL (#assert SystemWithAttacker |=[]<>ObtainHL) gives
the result that the event ObtainHL can always happen if the attacker exists. This
verification further shows that the time between two successive occurrences of the
event ObtainHL is at most six time units.

5.3. Evaluation of the Algorithm

We use some timed benchmark systems to evaluate our algorithm. The benchmark
systems [2] include FIS (Fischer’s mutual exclusion protocol), RW (railway control system),
LYN (Lynch–Shavit’s mutual exclusion protocol), FDDI (fiber distributed data interface)
and CSMA (CSMA/CD protocol).

Table 1 shows the tests with benchmark systems. A1 is the algorithm from [2] and A2
is the algorithm in this paper. The system models and the property models are represented
with a set of processes. For example, LYN×5(2) indicates that there are five processes in the
system model and two clocks in the property model. The properties are modeled using the
patterns in this paper. All of them are deterministic or can be determinized. As a result, the
algorithms can terminate. Algorithm A2 can improve the performance a little, because the
property models are simplified (only need to pay attention to the concerned events) which
reduces some calculations in the algorithm. The performance cannot be improved a lot,
since the amount of visited states of A2 are the same as A1. However, we emphasise that
the main contribution of A2 is to make the property models easy to understand and model,
as indicated in the introduction.

Appl. Sci. 2022, 12, 12946 13 of 15

Table 1. Tests on the algorithms with benchmark systems.

System Time (in s) (A1) Visited States
(A1) Time (in s) (A2) Visited States

(A2)

FIS×7(1) 3.7 20.0 K 3.3 20.0 K
FIS×8(1) 23.8 91.6 K 20.5 91.6 K
RW×6(6) 5.6 23.3 K 4.9 23.3 K
RW×7(1) 10.3 99.5 K 9.1 99.5 K
LYN×5(2) 1.8 8.1 K 1.7 8.1 K
LYN×6(1) 3.2 16.8 K 2.8 16.8 K
FDDI×7(7) 6.3 1.2 K 5.7 1.2 K

CSMA×5(1) 0.2 0.9 K 0.2 0.9 K

6. Related Work

Alur and Dill [1] first proposed the timed automata language inclusion problem, where
the determinization of timed automata is a core issue. Later, some works on special time
automata emerged, e.g., event-clock timed automata [14,15], Timed Automaton with single
clock [16–18], integer resets timed automata [19] and they all can be determinized. The
paper [20] introduces a new form of automata and gives the conditions that the timed
automata can be determinized without changing the zones. The work in [21] first proposes
a method for bounded determination of single timed automata, which expands the timed
automata into a bounded tree and bounds the states to an observable depth k. The bounded
determination of timed automata network [22] is also realized, with an on-the-fly algorithm
which only needs to traverse the state space once. The paper [23,24] discusses the decision
and computation problems for parametric timed automata. The work in [2] gives a zone
based determinization and language inclusion checking method which can be applied
to any timed automata. Based on [2], this paper improves the method, making it more
applicable.

We also notice the works on handling the uncertainties about timing constants, i.e.,
they are represented as parameters in a parametric Timed Automaton. Then the parameter
synthesis methods [24,25] are used to find suitable values to obtain a resultant Timed
Automaton which meets the specification. The robustness of timed automata [26,27] is
explored considering non-ideal implementations, e.g., measuring errors, imprecise clocks,
etc. In recent works, repair of timed automata [28,29] has been studied, with the goal of
modifying a given Timed Automaton to satisfy the specification.

The paper [30] collects more than 500 property models and establishes a pattern
system for the representation, coding and reuse of properties for finite state verification.
The work in [31] gives a set of property patterns with time requirements. It constructs
observer automata for every pattern, which can be applied in some timed model checking
tools directly. Based on three commonly used real-time temporal logics, the paper [32]
creates real-time specification patterns, with an analysis of timed requirements of several
industrial embedded systems. Based on a hierarchical framework in time-enriched process
algebras, the work in [33] defines several compositional timed automata patterns for
complex systems. The work in [34] proposes a set of specification patterns which can be
used to describe real-time requirements in reactive systems. The work in [35] defines a
set of atomic property patterns for qualitative and quantitative real-time requirements.
Our work describes a set of property patterns to facilitate the timed automata language
inclusion checking.

7. Conclusions

In this paper, a complete timed automata language inclusion checking method based
on property patterns is proposed. We describe commonly used property patterns of timed
automata in detail. The patterns provide guidance for specifying the properties, which is
not mentioned much in the previous work. Furthermore, an improved language inclusion
algorithm of timed automata is given, with which we only need to consider the sequences
and time requirements of concerned events, so that the modeling of the property model

Appl. Sci. 2022, 12, 12946 14 of 15

is simplified. Finally, we use the water disposal system to illustrate our method. Three
different properties are modeled based on the patterns and the system is verified using the
model checker PAT. The verification results show a potential attack and the effectiveness of
recovery mechanism. Although the determinization of timed automata is undecidable, our
algorithm is still practical because the properties established according to property patterns
are often deterministic.

As for future work, we will study the optimization of the proposed algorithm, for
example, the method of handing diagonal constraints in timed automata to reduce the state
space. On the other hand, we will continue to explore how a language inclusion algorithm
can better solve real-life problems, e.g., the robustness of timed automata.

Author Contributions: Methodology, T.W.; software, T.W. and Y.S.; writing—original draft prepara-
tion, T.W. and Y.S.; writing—review and editing, T.Z. and M.L.; supervision, T.C. and B.J. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by Zhejiang Provincial Natural Science Foundation of China
(No. LY20F020027), Major Program of Natural Science Foundation of Zhejiang Province (No. LD22F020002),
National Natural Science Foundation of China (Nos. U22B2028, 62002324, U1936215), Zhejiang
Provincial Natural Science Foundation of China (No. LQ21F020016), Zhejiang Key R&D Projects (No.
2021C01117) and “Ten Thousand People Program” Technology Innovation Leading Talent Project in
Zhejiang Province (No. 2020R52011).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alur, R.; Dill, D.L. A theory of timed automata. Theor. Comput. Sci. 1994, 126, 183–235. [CrossRef]
2. Wang, T.; Sun, J.; Liu, Y.; Wang, X.Y.; Li, S.P. Are timed automata bad for a specification language? language inclusion checking

for timed automata. Notes Comput. Sci. 2014, 156, 310–325.
3. Jiang, K.; Guan, C.; Wang, J. Model checking coordination of CPS using timed automata. In Proceedings of the IEEE Computer

Software and Applications Conference, Tokyo, Japan, 23–27 July 2018.
4. Chen, G.; Jiang, Z. Environment Modeling During Model Checking of Cyber-Physical Systems. J. Comput. 2021, 54, 49–58.
5. Kunz, G.; Machado, J.; Perondi, E. Using timed automata for modeling, simulating and verifying networked systems controllers

specifications. Neural Comput. Appl. 2017, 28, 1031–1041. [CrossRef]
6. Arcile, J.; André, É. Timed automata as a formalism for expressing security: A survey on theory and practice. ACM Comput. Surv.

2022, accepted. [CrossRef]
7. Krichen, M.; Alroobaea, R. A new model-based framework for testing security of IOT systems in smart cities using attack trees

and price timed automata. In Proceedings of the International Conference on Evaluation of Novel Approaches to Software
Engineering, Heraklion, Greece, 4–5 May 2019.

8. Christoph, C.; Uwe, Z. On the understandability of temporal properties formalized in linear temporal logic, property specification
patterns and event processing language. IEEE Trans. Softw. Eng. 2020, 46, 100–112.

9. Tripakis, S. Verifying progress in timed systems. In Proceedings of the International Amast Workshop on Formal Methods for
Real-Time and Probabilistic Systems, Bamberg, Germany, 26–28 May 1999.

10. Sun, J.; Yang, L.; Dong, J.S. Model checking CSP revisited: Introducing a process analysis toolkit. In Proceedings of the Leveraging
Applications of Formal Methods, Verification and Validation, Porto Sani, Greece, 13–15 October 2008.

11. Larsen, K.G.; Pettersson, P.; Wang, Y. Uppaal in a nutshell. Int. J. Softw. Tools Technol. Transf. 1997, 1, 134–152. [CrossRef]
12. Huang, S.; Zhou, C.J.; Yang, S.H.; Qin, Y.Q. Cyber-physical system security for networked industrial processes. Int. J. Autom.

Comput. 2015, 12, 567–578. [CrossRef]
13. Lin, S.W.; Liu, Y.; Sun, J.; Dong, J.S. Automatic compositional verification of timed systems. In Proceedings of the International

Symposium on Formal Methods, Heraklion, Greece, 15–18 October 2012.
14. Alur, R.; Fix, L.; Henzinger, T.A. Event-clock automata: A determinizable class of timed automata. Theor. Comput. Sci. 1999, 211,

253–273. [CrossRef]
15. Geeraerts, G.; Raskin, J.F.; Sznajder, N. On regions and zones for event-clock automata. Form. Methods Syst. Des. 2014, 34, 330–380.

[CrossRef]

http://doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1007/s00521-015-2115-5
http://dx.doi.org/10.1145/3534967
http://dx.doi.org/10.1007/s100090050010
http://dx.doi.org/10.1007/s11633-015-0923-9
http://dx.doi.org/10.1016/S0304-3975(97)00173-4
http://dx.doi.org/10.1007/s10703-014-0212-1

Appl. Sci. 2022, 12, 12946 15 of 15

16. Ouaknine, J.; Worrell, J. On the language inclusion problem for timed automata: Closing a decidability gap. In Proceedings of the
Symposium on Logic in Computer Science, Turku, Finland, 17 July 2004.

17. Clemente, L.; Lasota, S.; Piórkowski, R. Determinisability of one-clock timed automata. In Proceedings of the International
Conference on Concurrency Theory, Dagstuhl, Germany, 1–4 September 2020.

18. An, J.; Chen, M.; Zhan, B.; Zhan, N.; Zhang, M. Learning one-clock timed automata. In Proceedings of the International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, Dublin, Ireland, 25–30 April 2020.

19. Suman, P.V.; Pandya, P.K.; Krishna, S.N.; Manasa, L. Timed automata with integer resets: Language inclusion and expressiveness.
In Proceedings of the Formal Modeling and Analysis of Timed Systems, Saint Malo, France, 5 September 2008.

20. Bouyer, P.; Fahrenberg, U.; Larsen, K.G.; Markey, N.; Quaknine, J.; Worrell, J. Model checking real-Time systems. In Handbook of
Model Checking; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1001–1046.

21. Lorber, F.; Rosenmann, A.; Nickovia, D.; Aichernig, B.K. Bounded determinization of timed automata with silent transitions. In
Proceedings of the Formal Modeling and Analysis of Timed Systems, Madrid, Spain, 2–4 September 2015.

22. Aichernig, B.K.; Lorber, F. On-the-Fly determinization of bounded networks of timed automata. In Proceedings of the International
Symposium on Theoretical Aspects of Software Engineering, Shanghai, China, 17–19 July 2016.

23. André, É. What’s decidable about parametric timed automata? Int. J. Softw. Tools Technol. Transf. 2019, 21, 203–219. [CrossRef]
24. André, É.; Kryukov, A. Parametric non-interference in timed automata. In Proceedings of the International Conference on

Engineering of Complex Computer Systems, Singapore, 28–31 October 2020.
25. Bezdek, P.; Benes, N.; Cerna, I.; Barnat, J. On clock-aware LTL parameter synthesis of timed automata. J. Log. Algebr. Methods

Program. 2018, 99, 114–142. [CrossRef]
26. Bouyer, P.; Markey, N.; Sankur, O. Robustness in timed automata. In Proceedings of the 7th International Workshop on

Reachability Problems, Uppsala, Sweden, 24–26 September 2013.
27. Bendik, J.; Sencan, A.; Gol, E.A.; Cerna, I. Timed Automata Robustness Analysis via Model Checking. arXiv 2021, arXiv:2108.08018.
28. Kolbl, M.; Leue, S.; Wies, T. Clock bound repair for timed systems. In Proceedings of the International Conference on Computer

Aided Verification, New York, NY, USA, 15–18 July 2019.
29. Ergurtuna, M.; Yalcinkaya, B.; Gol, E.A. An automated system repair framework with signal temporal logic. Acta Inform. 2022, 59,

183–209. [CrossRef]
30. Dwyer, M.B.; Avrunin, G.S.; Corbett, J.C. Patterns in property specifications for finite-state verification. In Proceedings of the

International Conference on Software Engineering, Los Angeles, CA, USA, 16–22 May 1999.
31. Gruhn, V.; Laue, R. Patterns for timed property specifications. Electron. Notes Theor. Comput. Sci. 2006, 153, 117–133. [CrossRef]
32. Konrad, S.; Cheng, B.H.C. Real-time specification patterns. In Proceedings of the International Conference on Software Engineer-

ing, St. Louis, MI, USA, 15–21 May 2005.
33. Dong, J.S.; Hao, P.; Qin, S.; Sun, J.; Wang, Y. Timed automata patterns. IEEE Trans. Softw. Eng. 2008, 34, 844–859. [CrossRef]
34. Abid, N.; Zilio, S.D.; Botlan, D.L. Real-Time specification patterns and tools. In Proceedings of the International Workshop on

Formal Methods for Industrial Critical Systems, Paris, France, 27–28 August 2012.
35. Ge, N.; Pantel, M.; Zilio, S.D. Formal verification of user-level real-time property patterns. In Proceedings of the International

Symposium on Theoretical Aspects of Software Engineering, Guangzhou, China, 29–31 August 2018.

http://dx.doi.org/10.1007/s10009-017-0467-0
http://dx.doi.org/10.1016/j.jlamp.2018.05.004
http://dx.doi.org/10.1007/s00236-021-00403-z
http://dx.doi.org/10.1016/j.entcs.2005.10.035
http://dx.doi.org/10.1109/TSE.2008.52

	Introduction
	Background of Timed Automata
	Property Patterns Based on Timed Automata
	Language Inclusion Checking of Timed Automata
	The Transformation before the Verification
	Synchronous Product with Concerned Events
	Timed Automata Language Inclusion Checking Algorithm with Concerned Events

	Case Study
	Modeling of the Water Disposal System
	Models and Verification of System Properties
	Evaluation of the Algorithm

	Related Work
	Conclusions
	References

