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According to the FAO, the production of global fisheries and aquaculture has reached
214 million tonnes, and the amount for human consumption reached 20.2 kg per capita
in 2020. Aquatic products are playing an increasingly important role in providing food
sources and nutrition, including in ensuring global food security in the future [1]. It is
well known that the processing and storage methods used affect the quality and safety of
aquatic products, which are important issues for scientists, consumers and the industry
as a whole. Research and development of new processing and preservation technologies,
investigations of quality change phenomena and their mechanisms, the application of new
quality evaluation methods as well as the establishment of risk assessment and control
technologies for aquatic products are the main research aspects in this field working to
ensure the supply of high-quality and safe aquatic products.

Unlike mammals, aquatic products are derived from cold-blooded animals. Their
protein structures are relatively soft so that they can perform physiological functions in
different environments [2,3]. This makes the storage of aquatic products are more difficult
than livestock and poultry meat because they need to be carried out under lower temper-
ature conditions to obtain a longer shelf life [4–7]. Undesirable changes such as protein
denaturation, lipid oxidation, the growth of ice crystals and loss of texture properties can
still occur in aquatic products during low-temperature storage [2,3,8,9]. These phenomena
negatively affect the products’ quality and consumer acceptability. Moreover, in industrial
production, contamination by micro-organisms also plays an important role in food quality
and shelf life [10–12]. With the extension of storage time, nutrients of food are used as
substrates for some psychrophile growth and reproduction, and the resulting metabolites
seriously threaten food safety [2,5,13].

There are some disadvantages of protein-based conventional food analysis: (1) when us-
ing highly processed and low-protein aquatic products, the analysis may yield false/negative
results [2,9]; (2) the content of the same protein can show different expression levels in differ-
ent tissues in aquatic animals, which affects determination using traditional methods [8,11];
and (3) there are many other substances in aquatic animals other than protein, such as lipids,
polysaccharides, phenols, etc.., and the changes in quality are also correlated with these
substances, which cannot be determined by traditional protein-based methods [10,11]. Fur-
thermore, metabolomics is another systematic analysis method which illustrate the species,
quantity and change regulation of metabolites in a given biological system. There have been
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related studies on aquatic products that mainly focused on environmental challenges [13]
and potential quality biomarkers [14,15].

Aquatic product producers are increasingly demanding effective quality control pro-
cedures to meet and regulate consumer demands, improving processing feasibility and
quality [16]. In addition, chemical and microbiological changes during processing and
storage can affect food quality and shelf life [17,18]. Therefore, understanding the impact of
each preservation technique and handling method on the production system is essential in
food processing to maintain food quality and ensure its safety [19,20]. However, traditional
analytical safety and quality monitoring methods take time and require well-trained opera-
tors, so there is a need to develop fast, sensitive and reliable methods to rapidly monitor
aquatic products’ safety and quality.

Biosensors can be a suitable alternative to traditional methods. Biosensor devices are
the most appropriate diagnostic methods for food analysis and environmental and clinical
inspections. This is because they are specific, fast, easy to manufacture and economically
applicable [21,22]. The specificity of these devices is achieved by bioconjugation reac-
tions involving antigens or antibodies, enzymes, cofactors/substrates, ligands/receptors,
nucleic acid hybridization and chemical reactions in combination with many sensors.
Biosensors are combinatorial receptor transducer systems that provide discriminatory semi-
quantitative or quantitative analytical descriptions via biometric recognition units [23].
Miniature biosensors can be incorporated into packaging materials and combined with
wireless tracking technologies to generate tracking information about the production sys-
tem and the supply chain [24]. In addition, biosensors are manufactured for various types
of analytes related to food safety. To improve food quality, these biosensors detect contami-
nants such as metal ions, gases, vapours, biomolecules, organic molecules and foodborne
micro-organisms. Most conventional methods take about a week to produce results when
identifying foodborne pathogens, while biosensors can yield results in just a few hours [25].
In recent years, there have also been some reports of biosensors in the detection of stress
response and disease resistance in aquatic animals such as fish [26,27]. Through these
biosensors, producers can better control the source and the process of aquatic products to
improve product quality and safety.

In conclusion, the establishment of novel aquatic product quality evaluation methods
with the advantages of being fast, accurate and non-destructive will be a prerequisite
for ensuring the quality and safety of aquatic products. The in-depth investigation of
molecular mechanisms of aquatic product quality changes based on foodomics can provide
a theoretical basis for the development of novel methods and technologies for aquatic
products processing and preserving. In addition, the identification and assessment of new
food safety risk factors will be an important aspect to ensure the safety of aquatic products.
In the future, research on the quality, processing and storage of aquatic products will also
focus on these aspects.
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