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Abstract: The detection of bolt loosening using vibro-acoustic modulation (VAM) has been increas-

ingly investigated in the past decade. However, conventional nonlinear coefficients, derived from 

theoretical analysis, are usually based on the assumption of ideal wave–surface interactions at the 

joint interfaces. Such coefficients show a poor correlation with the tightening torque when the joint 

is under the combined influences of structural and material nonlinearities. A reliable inspection 

method of residual bolt torque is proposed in this study using support vector regression (SVR) with 

acoustic features from VAM. By considering the material intrinsic nonlinearity (MIN) and dissipa-

tive nonlinearity (DN), the responses of aluminum–aluminum and composite–composite bolted 

joints during the VAM test were accurately simulated. The SVRs were subsequently established 

based on the database built by combining simulated and experimental nonlinear spectral features 

when the joints were inspected at different scenarios. The results show that the evaluation of resid-

ual torque using the SVR models driven by the acoustic nonlinear responses had higher accuracy 

compared to the conventional nonlinear coefficients. Requiring limited experimental data, the pro-

posed method can achieve a reliable inspection of bolt torque by including the simulated data in 

the machine training. 

Keywords: bolted joint; residual torque; vibro-acoustic modulation; structural health monitoring; 

support vector regression; acoustic nonlinearity 

 

1. Introduction 

Bolted joints are widely used in engineering assets, transferring loads between con-

nected structures. However, an axial preload of the bolts will inevitably decrease during 

their long-term service, which would increase the possibility of structural failure. Hence, 

monitoring the residual preload of bolts is of great significance to ensure the mechanical 

performance of structures. 

Over the past decades, increasing efforts have been directed to develop non-destruc-

tive testing and evaluation (NDT＆E) and structural health monitoring (SHM) methods 

for damage characterization of bolted structures. Among them, ultrasonic testing (UT) is 

one of the most commonly used techniques for the evaluation of bolt loosening [1]. Con-

ventional UT is conducted to assess the stress conditions of bolts based on the changes in 

the linear ultrasonic features (e.g., energy attenuation [2], velocity [3]). However, the lin-

ear signal features, which are mainly affected by the global material properties, may not 

be remarkable when local damage or deterioration occurs [4,5]. 

Recently, some researchers [6,7] have found that nonlinear acoustic features, gener-

ated by the contact acoustic nonlinearity (CAN) at structural interfaces (e.g., cracks and 

contact surfaces) have higher sensitivity to structural damage compared to the linear ul-

trasonic features. The nonlinear signal components, such as second-order harmonics 
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(SOHs) [8] and subharmonics [9], induced by CAN are widely applied to detect bolt loos-

ening. However, the above-mentioned nonlinear features consist of a great proportion of 

nonlinear components (e.g., SOH) [10,11] generated by the inspection system, when a sin-

gle excitation is used in the inspection. Additionally, a single transducer can hardly pro-

vide enough information for the damage state in practical applications [12]. In order to 

enhance the inspection accuracy against the noises from instruments, vibro-acoustic mod-

ulation (VAM) has attracted increasing attention for SHM and NDT&E. The VAM tech-

nique adopts two excitation signals, namely a low-frequency (LF) pumping wave and a 

high-frequency (HF) probing wave. Nonlinear signal features are extracted at the frequen-

cies and are the difference and sum of the frequencies of the two excitations. Therefore, a 

relatively low level of measurement noise is involved in the VAM test and, consequently, 

the nonlinear responses in signal spectra [13] (i.e., sidebands (SBs)) can be quantitatively 

correlated to the health condition of the inspected structure. Zhang et al. [4] proposed a 

monitoring method of bolt loosening in both composites and metallic joints using nonlin-

ear sideband features, regardless of their working conditions. Considering the local ma-

terial characters at the contact surface, Zhang et al. [13] developed a finite element (FE) 

model consisting of two Euler–Bernoulli beam components with two degrees of freedom 

(DOFs) to accurately predict the VAM responses of the bolted joints. To further improve 

the practical applicability of this method, Wang et al. [14] applied a piezoceramic trans-

ducer, smaller than the conventional shaker, to excite the LF pumping wave and com-

bined the linear swept and time reversal technique in the bolted joint to enhance the signal 

intensity of nonlinear features. In addition, Wang and Song [15] proposed a novel method 

based on the Gnome entropy gEn and random forest to detect multi-bolt loosening. 

Even though many applications of nonlinear features in damage evaluation using the 

VAM technique have been conducted, the diverse nonlinear modulation mechanisms are 

still not clearly understood [16]. Some researchers [16–19] have reported that the genera-

tion of nonlinear structural acoustic features may be a combined result of several different 

mechanisms besides CAN, such as dissipative nonlinearity (DN) and material intrinsic 

nonlinearity (MIN). Hence, the existing evaluations of bolt loosening using the nonlinear 

coefficients established by the CAN model are confronted with the following obstacles: 

1. The nonlinear coefficients are defined using the amplitudes of the spectral linear and 

nonlinear components. Consequently, such coefficients may vary inconsistently with 

the theoretical trend for the CAN model when the amplitudes are affected by the 

other nonlinear sources. 

2. The above-mentioned potential nonlinearities and CAN are always affected by the 

same factors (e.g., contact, temperature, and friction). So, it is challenging to quanti-

tatively decouple the interferences of different mechanisms by controlling the exper-

imental conditions [20]. 

3. Proposing a new theoretical damage index by considering the combined influences 

of the diverse nonlinear mechanisms needs more effort for accurate modeling. 

In this paper, the combined influences of multi-nonlinearities in VAM are analyzed 

and an alternative method using machine learning is proposed to improve the prediction 

accuracy of bolt loosening of both metallic and composite bolted joints. In Section 2, the 

major nonlinear mechanisms existing in bolted joints are discussed. Then, the finite ele-

ment model and experimental setup are detailed in Section 3. As a result, the nonlinear 

responses of VAM in the bolted joint are shown in Section 4, and the combined influences 

of the different nonlinearities on the inspection efficiency are discussed in Section 5. Fi-

nally, in Section 6, the SVR method, driven by the FE and experimental data, is used to 

evaluate the preload of aluminum–aluminum and composite–composite bolted joints. 
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2. Theoretical Background 

In order to comprehensively understand the nonlinear responses of bolted joints un-

der different torques, the interfacial contact acoustic nonlinearity, material dissipative 

nonlinearity and material nonlinearity were considered in this work. 

2.1. Contact Acoustic Nonlinearity 

The nonlinear acoustic responses generated by CAN are always stronger than those 

resulting from the other nonlinearities [18], and thus, the nonlinear coefficients derived 

from the CAN model are widely used as the damage indices of SHM and NDT&E. 

In a bolted joint, the preload F induced by the applied torque T can be described by 

  /F T d , (1) 

where τ is the friction coefficient between the bolt and nut, and d is the diameter of the 

bolt. 

In the VAM-based method, the loose joint is subjected to mixed excitation from a 

low-frequency pumping vibration (with an equivalent force A1cosω1t) and a high-fre-

quency probing wave (with an equivalent force A2cosω2t), which are independent of each 

other, as exhibited in Figure 1. 

 

Figure 1. Simplified model of a joint subjected to two harmonic forces. 

When the motion of the bolted interfaces excited by the two waves conforms to the 

“opening–closing” behavior in the CAN model, the relationship between the contact stiff-

ness and the applied load is suggested to be [21]: 

1

m m mK Cp F T   , (2) 

2 2 1 2 1 2 1

2
0.5 m m mK mC p F T     , (3) 

where p is the contact pressure, K1 is the linear stiffness, and K2 is the nonlinear stiffness 

of the contact interface. C and m are associated with the surface properties of the material 

in contact. 

The equation of the motion of the joint can be described as: 

2

1 2 1 1 2 2
cos cosMx K x K x A t A t      , (4) 

where ω1 and ω2 are the frequencies of the pumping vibration and probing wave, respec-

tively, and  is a small quantity to scale the perturbation to be minute. 

To solve Equation (4), the analogous method based on perturbation theory is used, 

and the second-order nonlinearity of the solution is considered. The details of the deriva-

tion of this solution are presented in [4,22]. As a result, we can have x in the form of a 

combined wave, including the fundamental waves at ω1 and ω2, the SOHs at 2ω1 and 2ω2, 

the three-order harmonics (TOHs) at 3ω1 and 3ω2, and the SBs, viz., the right sideband 

(RS) at ω1 + ω2 and the left sideband (LS) at ω1 − ω2. The amplitudes of the signal compo-

nents satisfy the relations 
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Then, the nonlinear coefficients β can be defined in the unit of dB as 

2
SOH SOH LF

A A   , (8) 

3
TOH TOH LF

A A   , (9) 

( ) / 2M

VAM LS RS LF HF
A A A A     , (10) 

( ) / 2
VAM LS RS HF

A A A    . (11) 

By eliminating the linear terms (i.e., LF and HF), the nonlinear coefficients β only 

depend on the contact stiffness K1 and K2 and are related to the preload F and torque T. 

According to CAN theory, the nonlinear coefficients decrease with the increase in the pre-

load (i.e., the applied torque). 

2.2. Dissipative Nonlinearity 

The latest experiments have shown that nonlinear energy dissipation can be caused 

in the structure at the mesoscopic interfaces (such as cracks or contact surfaces) in the case 

of VAM [16,18,23,24]. The most significant phenomenon of such dissipation is the HF 

wave dampened by a stronger LF wave. 

Moreover, dissipative nonlinearity (DN) was indicated to occur either in a low-strain 

level crack surface perturbation (e.g., thermal [25]) or a relatively highly intense interac-

tion (e.g., friction [26] or hysteresis [27]). However, differentiation between the two dom-

inant dissipation mechanisms is usually difficult to obtain in practice [20]. Assuming that 

the structural nonlinear responses are dominated by thermo-elastic dissipation, the HF 

losses at the inner contact of the cracks can be described as [28] 

2 2

22dis

HF

L

E L
W L

H l

 
 

 

     
      

   

, 
(12) 

where η is the temperature, α is the temperature expansion coefficient of the solid, E is the 

bulk elastic modulus, ρ is the density, H is the specific heat, ε is the average strain, κ is the 

thermal conductivity, and ωL is the relaxation frequency for the defect scale L. Recently, 

Qin et al. [16] revealed that the dissipation based on the thermo-elastic coupling may be 

more efficient in the bolted joint; meanwhile, frictional and adhesional hysteretic dissipa-

tion may also exist. The contribution of the dissipation mechanism may cause continuous 

effects on the spectral amplitudes in VAM testing, which cannot be neglected. 

2.3. Material Intrinsic Nonlinearity 

In this article, material intrinsic nonlinearity specifically refers to the global material 

nonlinearity (i.e., classical nonlinearity), which differs from the instrumental nonlinearity 

and the local Hertzian nonlinearity. The MIN theory is based on a high-order expansion 

of the classical Hooke’s law, and the MIN is determined by the material atomic properties 

(e.g., Lame constants) and is able to introduce the nonlinear features without interfaces. 
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Hooke’s law is based on the second-order expansion of free energy in the power se-

ries as [18]: 

2 2

0 ii i

1

2 k
G G u u    , (13) 

where G0 is the initial value, λ and μ are the Lame constants and uik is the deformation 

tensor, which can be described as: 

1

2
i k

ik

k i

u u
u

x x

  
  

  

. (14) 

Considering a third-order series of uik, we have: 

1

2
i k

ik

i i

l

k

l

k

u u u u
u

x x x x

    
   

    

, (15) 

which can cause a nonlinear quadratic waveform (i.e., SOH) in the solution of the motion 

equation. The SB (at the frequencies of ω1 ± ω2) can be generated when LF and its SOH 

interact due to the intrinsic material nonlinearity. 

Even though MIN has been reported as a weaker contribution to structural nonlinear 

responses, compared to CAN [18,29] in a structure with imperfect interfaces, it is worth 

noting that MIN still can become a dominant nonlinear source when the CAN is relatively 

weak (e.g., strongly bonded or tightening interfaces). 

3. Finite Element Model and Experiment 

Considering the difficulties in separating the different nonlinearities in experiments, 

a finite element method (FEM) with flexible operability in properties (e.g., material and 

friction) was adopted to establish a more comprehensive analysis of the influences of non-

linearities on the nonlinear responses. 

3.1. Finite Element Model 

ABAQUS/standard was used to establish the finite element models of bolted joints. 

The simulation conditions (e.g., material parameters, sizes, boundaries, loads, and excita-

tions) were set to be the same as the experimental conditions. 

Each model consisted of two beams connected by an M6 bolt and two washers (Fig-

ure 2a). The interactions between the beam–beam pairs and washer–beam pairs were de-

fined as normal hard contact with penalty friction for contact, and the bolt–washer pairs 

were tied. Aluminum and composite beams were investigated in this work, whose con-

nect modes are denoted as Al–Al and C–C. The geometric and material parameters are 

shown in Table 1 and Figure 2b. 
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Figure 2. Finite element model of the bolted joints: (a) assembling, (b) geometric parameters, (c) load 

and boundary conditions, (d) mesh. 

Table 1. Material parameters of the bolted joints. 

Material Type 
Elasticity Modulus 

E(GPa) 
Poisson’s Ratio ν Density (kg/m3) ρ 

Friction  

Coefficient τ 

Aluminum 75.6 0.33 2700 0.1 

Composites 
E1/E2/E3 ν11/ν13/ν23 

1700 0.2 
130/7/7 0.32/0.32/0.45 

The simulation process consisted of two steps, viz., the bolt preload application and 

VAM propagation (Figure 2c). One end of the beam was clamped to make the whole struc-

ture a cantilever. The bolt preload was set as the axial compressive stress applied to the 

center of its cross-section, whose amount was equivalent to the applied torque in the ex-

periment (calculated by Equation (1)). After the preloading of the bolt, continuous LF and 

HF sine waves were simultaneously excited at the free beam, and the transmitted waves 

were detected by an output node at the clamped beam. The excitations were selected by 

the modal tests to ensure the measurable out-of-plane displacement of the joints. For the 

Al–Al joints, LF = 0.99 kHz and HF = 14.24 kHz. For the C–C joints, LF = 0.76 kHz and HF 

= 14.99 kHz. The minimum time step interval was 5μs, and the sampling frequency was 

200 kHz. In order to precisely capture the waveform, the grids were meshed to satisfy the 

minimum requirements, i.e., eight nodes per shortest wavelength [30]. 
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3.2. Experimental Setup 

The setup of the experiment is shown in Figure 3. The experimental procedure was 

as follows: firstly, the specimen was clamped by a holder, and the preload of the bolt was 

applied by a torque wrench. Next, the LF vibration was excited by a shaker (B&K®, Model 

type: 4809, Virum, Denmark). Meanwhile, the HF probing wave was generated by a signal 

generator (Tektronix®, AFG 31000, Beaverton, OR, USA) and amplified by an amplifier 

(Ritec®, GA-2500A, Warwick, RI, USA) before introducing on the specimen by an actuator 

(PI®, P-885.11, Karlsruhe, Germany). Lastly, the response signals of the bolted joints under 

the mixed excitations were captured with an accelerometer (B&K®, Model Type: 4393, 

Virum, Denmark). 

 

 

Figure 3. Experimental system. 

4. VAM Responses of Bolted Joints 

The VAM responses of the two types of joints are similar in contour and time domain, 

and hence, only those of the Al–Al bolted joints are presented in this section. 

4.1. Acceleration Contour 

The steady global wave field is formed during the propagation and interaction of the 

LF and HF. Figure 4 shows the process of the VAM behavior of the Al–Al bolted joint, 

which presents an early propagation and a steady stage. Initially, the LF vibration and the 

HF probing wave appeared at the two excited nodes on the free beam (t = 5 μs), transmit-

ting to the clamped beam along the central contact region near the preloaded bolt before 

covering the whole structure (t = 600 μs). Next, a steady acceleration contour was formed 

after a millisecond of reciprocating propagation of the combined waves in the structure. 

Then, the contours for every 0.5 ms (per half period) were similar to each other due to the 

energy dominant of the LF pumping vibration (period = 1 ms), and the micro variation 

was caused by the HF contribution (period = 0.07 ms). 
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Figure 4. Acceleration contour of VAM progress. 

The contours of the out-of-plane acceleration (A3) of the bolted joint at the same time 

under different preloads are shown in Figure 5. It can be seen clearly that nonlinear waves 

were generated in the contact region (Figure 5a). The nonlinear responses in the contact 

region consisted of multiple components with different wavelengths (i.e., different fre-

quencies) and modal shapes. However, the nonlinear responses in the joint diminished 

with the increase in the preload (Figure 5a–d), because the “opening–closing” motion was 

obstructed by the enhancement of the contact constraint, while the LF pumping excitation 

was maintained at the same level. Actually, the nonlinear features can barely be observed 

from 9 N·m to 13 N·m in the contours. 

 

Figure 5. Acceleration contours of interface under different preloads: (a) 1 N·m, (b) 3 N·m, (c) 9 N·m, 

(d) 13 N·m. 
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4.2. Collected Signals 

The normalized time-domain signals of the FEM and experiment (Figure 6) only 

showed the two linear frequencies, viz., the LF and HF excitations. The signal characters 

collected from the FEM and experiment are in a good agreement. 

  

Figure 6. Waveforms of the Al–Al bolted joint in time domain: (a) experiment, (b) FEM. 

The nonlinear features can be seen in the typical frequency spectra for both the ex-

periment and FEM (Figure 7). The main energy was focused on the linear components 

(i.e., 0.99 kHz LF and 14.24 kHz HF). The HOHs (i.e., 1.98 kHz SOH and 2.97 kHz TOH) 

and SBs (13.25 kHz LS and 15.23 kHz RS) also had distinct amplitude peaks. 

 

Figure 7. Typical frequency spectra of the Al–Al bolted joint: (a) experiment, (b) FEM. 

5. Nonlinear Coefficients of Joints under Different Preloads 

The investigation into the nonlinear signals from the joints under different preloads 

was divided into three aspects. Firstly, the influences of the different nonlinearity contri-

butions, except for CAN (i.e., DN and MIN), were investigated (Figure 8a–d). Next, the 

signal amplitudes of the joints under different preloads were detected, as shown in Figure 

8e–g. Finally, the amplitudes were used to calculate the nonlinear coefficients according 

to the CAN theory (Equations (8)–(11)). The evaluation results of the bolt preloads using 

the nonlinear coefficients are shown in Figure 8h,i. 
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Figure 8. Simulated and experimental nonlinear coefficients and their influence factors. 

5.1. Influence of Dissipative Nonlinearity 

The FEM results in Figure 8a,b indicate that measurable energy dissipation on HF 

excitation can be caused by the LF vibration in the VAM process. Interface friction is one 

of the major factors affecting the DN phenomenon [31]. Therefore, interface friction was 

the focus of this work, considering the actual interface friction may be significantly differ-

ent due to the manufacturing deviation between different joints. The amplitude at 1 N·m 

declined with the increase in the friction coefficient τ (Figure 8a). Additionally, a non-

monotonic variation in the HF amplitude under different preloads can be seen in Figure 

8b, in contrast to the ideal monotonic trend conforming to the CAN model when the 
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friction = 0. This means the HF amplitude can decrease due to individual differences in 

the joint friction, and the amount of dissipation is different under different preloads. 

5.2. Influence of Intrinsic Nonlinearity 

In order to reveal the influence of MIN, all of the interfaces of the FE model were tied 

to make the bolted joint an intact structure (Figure 8c) without any interface. The signal 

energy was normalized to 0 dB in Figure 8c, and the nonlinear responses (i.e., SOH, LS, 

and RS) of the intact structure were still measurable, which means the generations of non-

linear responses could be caused not only by the CAN mechanism but also the material 

intrinsic material nonlinearity. By enhancing the LF pumping vibration to 400 N to enlarge 

the effect of MIN, the amplitudes of the nonlinear components were much higher than 

that when LF = 40 N. The dependence of the MIN generations on the vibration amplitude 

was also reported by Dao et al. [32]. 

Furthermore, in Figure 8d, the LS amplitudes of the intact and contact models for 

different preloads are compared. The nonlinear amplitudes (i.e., LS) caused by MIN in the 

intact model were not sensitive to the changes in the preloads (Figure 8d), while the LS 

declined with increasing preloads when both the CAN and MIN were considered in the 

contact model. In other words, the nonlinear amplitudes at the high-stress stages were 

mainly caused by MIN, while at low-stresses stages, CAN dominated the nonlinear re-

sponses. 

5.3. Combined Results of Nonlinearities 

The dependence of the experimental and simulated amplitudes on the preloads was 

consistent. In terms of the linear components (Figure 8e), the LF amplitudes stayed at the 

same level for all stress stages. The HF amplitudes, affected by the nonlinear dissipation, 

increased slightly under the preload from 1 N·m to 2 N·m and subsequently decreased 

with the increase in the load. Additionally, the amplitudes of nonlinear components, viz., 

SOH, TOH, LS, and RS in Figure 8f show measurable reductions with the increase in the 

preload initially and then stay steady for the high loads (about 9 N·m − 13 N·m). As a 

result (Figure 8h,i), the experimental and FEM nonlinear coefficients generally decreased 

with the increase in the preload, as predicted by CAN theory. However, the influences of 

MIN and DN on the nonlinear coefficients were unneglectable. The coefficients related to 

the HF amplitude took a dive at 2 N·m and were affected by DN. Meanwhile, all the coef-

ficients dominated by MIN remained at a steady stage over 9 N·m, leading to difficulties 

in the early-stage warning for bolt loosening. 

From the above analysis, it is still challenging to quantitatively measure the influ-

ences of these combined contributions on the nonlinear responses of a loose bolted joint, 

even though many efforts have been made by researchers. Hence, a new intelligent 

method that considers the local influences caused by multi-mechanisms on acoustic non-

linearity generation is needed to make full use of the nonlinear features. 

6. Intelligent Evaluation of Bolt Preload Using SVR 

The SVR model driven by the spectral amplitudes was chosen to implement the AI-

based evaluation of bolt preload in this work for the following reasons: 

1. A mapping relation can be established between the amplitude and preload according 

to the results in Section 5. The sample consisting of multiple features (i.e., LF, HF, 

SOH, TOH, and SBs) can improve the accuracy of the load evaluation even when the 

joint is under the influences of different nonlinearities. 

2. SVR is a classical machine learning method and has been well tested in long-term 

applications. Moreover, a fairly simple model without extensive trials and errors can 

certify the feasibility of the AI evaluation using the nonlinear features. 
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6.1. Algorithm 

The model between the amplitude vector xi and preload yi was established by SVR. 

The Gaussian radial basis function (RBF) is used as the kernel function y = f(x) to map the 

vector to a high-dimensional space, and then the regression function y = f(x) is solved to 

minimize the structural risk. 

The regression function f(x) for a training sample  ( , ), 1, 2, ,
i i

x y i n   is 

( ) ( )f x w x b   , (16) 

where w is the weight coefficient, b is the bias term, and (x) is the nonlinear mapping. 

The v-SVR model is used to minimize loss coefficient ε. In this model, the minimizing 

equation is equivalent to the optimization problem: 

2

, , , 1

1 1
min ( )

2

s.t.     ( ( ) )

          ( ( ) )

         , 0, 0

i i
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i i
w b i

i i i
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, (17) 

where ,
i i
    are the relaxation variables, and v is a model parameter used to control the 

number of support vectors or the number of error samples. 

The dual equation of the original optimization problem is derived as Equation (18) 

on the basis of the Karush–Kuhn–Tucker condition by introducing the Lagrangian multi-

plier ,
i i

 
. 

1 1 1
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1

1
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The regression function is derived by eliminating the insensitive loss coefficient. 

1

( ) ( ) ( , )
n

i i i
i

f x K x x b 



   , (19) 

where K(xi,x) is the kernel function. 

6.2. Arrangement for SVR Modeling and Prediction 

The data set of each group was a 6 × 10 matrix, whose 10 columns corresponded to 

the preload levels (i.e., yi{1,2,3,4,5,6,7,9,11,13}) and the 6 rows consisted of the amplitudes 

of linear and nonlinear features (i.e., xi = {ALF,ASOH,ATOH,ALS,AHF,ARS}T). The data in each row 

(i.e., the amplitudes of each feature for different preloads) were normalized within a range 

of 0~1 before being input to the model. 

Figure 9 shows the flow of the tests and the source of data. Data groups 1~3 and 4 

were all collected from the experiment with joints of the same size and material parame-

ters. The difference was that groups 1~3 were the repeated VAM results from specimen 1, 

while group 4 was collected from a new specimen, which may have possessed some slight 

manufacture deviations (e.g., interface friction or clamping boundary) compared to spec-

imen 1. Groups 5 and 6 were collected from the same numerical model with different fric-

tion coefficients τ. The friction coefficients τ of group 5 were 0.1 for the Al–Al joints and 
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0.2 for the C–C joints, respectively. The coefficients of group 6 were 0 for the Al–Al joints 

and 0.4 for the C–C joints. 

 

Figure 9. Flow of SVR modeling and evaluation. 

A total of eight tests were conducted using the SVR method for the Al–Al joints (four 

tests) and C–C joints (four tests), the test flows for the two materials were the same. In test 

1, groups 1 and 2 were input to the SVR model as training samples, and group 3 was used 

to validate the predicted results. The evaluation of test 1 was carried out under ideal con-

ditions without deviation between the specimens. In test 2, the SVR model was trained by 

groups 1~3 and validated by group 4 in order to reveal the variation int he evaluation 

accuracy due to manufacturing deviations between the different specimens. In tests 3 and 

4, FEM samples 5 and 6 were adding to the training data to improve the applicability and 

accuracy of the SVR prediction by simulating the deviation of the frictional conditions. 

The parameter v for the v-SVR model was 0.5 and the optimization based on grid 

search (GS) was used to choose the penalty parameter c and the kernel parameter σ. The 

parameters are shown in Table 2. 

Table 2. SVR parameters c and σ. 

  Test 1 Test 2 Test 3 Test 4 

Al–Al 
c 11.3137 181 256 1.414 

σ 0.0884 0.0221 0.02 0.25 

C–C 
c 181 5.657 2.828 4 

σ 0.1768 0.125 0.5 0.354 

6.3. Results of Intelligent Prediction 

The results of the preload prediction of SVR are shown in Figure 10. In test 1 (Figure 

10a,b), the predictions on the experimental data using the SVR model trained by the sam-

ples from the same source were the most accurate (R2 = 0.95 for the Al–Al joints and R2 = 

0.99 for the C–C joints). Compared to the C–C model, the Al–Al model saw bigger errors 

in the prediction at the beginning of the loading (2~5 N·m). This may be because the Al–

Al interface was harder than the C–C one, so the early-stage deformation of the Al–Al 
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interfaces of different specimens was not simultaneous. When the Al–Al joints were sub-

jected to the high-tightening torque (6~14 N·m), the error decreased. 

 

Figure 10. SVR prediction results. (a) results of test 1 for Al-Al joints, (b) results of test 1 for C-C 

joints, (c) variation of correlation coefficient from test 1 to test 4 for Al-Al joints, (d) variation of 

correlation coefficient from test 1 to test 4 for C-C joints. 

Generally, the SVR model, driven by the amplitudes of the nonlinear features col-

lected from the VAM experiment, was an effective method for the evaluation of bolt loos-

ening. Compared to the nonlinear coefficients, the SVR model efficiently identified the 

differences among the data sets in the high-stress states, and the prediction curve was 

more linear, which allowed for the efficient early-stage warning of bolt loosening and the 

long-term SHM under the combined influences of the nonlinearities. 

Comparatively, in Figure 10c,d, the predictions of the preloads of specimen 2 trained 

by the samples from specimen 1 show the lowest accuracy (R2 = 0.71 for the Al–Al joints 

and R2 = 0.73 for the C–C joints). Based on the assumption that the decrease in accuracy 

from test 1 to test 2 was partially because of the deviation in the interface friction, the FE 

data for different friction coefficients τ were added to the machine training. The bar chart 

shows that the accuracy of the prediction rose gradually due to the aid from the FE data. 

6.4. Discussion 

Simulation data have rarely been applied to machine training before this study, 

which may be because the FEM has its limitations in simulating all of the actual experi-

mental conditions. However, the increasing trends in Figure 10c,d show a possible im-

provement in machine training by expanding the sample abundance using the FEM to 

simulate the potential deviations. 

The method that trains the AI model using data from a combination of simulation 

and experiments shows some advantages and limitations, as follows: 

1. The simulated data have good applicability for considering deviations in the experi-

mental specimens. This method is cost-efficient by avoiding collecting many 
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experimental samples, which are not accessible in certain circumstances (e.g., small-

sample applications). 

2. However, the simulated results can change remarkably with changes in the FE pa-

rameters. This is due to the error accumulation during the iterative calculation of FE 

software. So, it would be better if FE modeling was based on adequate advanced 

knowledge of the potential influence factors (such as their types and values). 

3. Despite Point 2, the prediction robustness can still be guaranteed when inputting 

enough experimental results as training data, which enables the simulated samples 

to fully consider the different conditions. 

7. Conclusions 

The bolt preload evaluation for C–C and Al–Al joints was investigated using a VAM 

experiment and finite element simulation. 

The combined influences of CAN, MIN, and DN on the signal amplitudes and non-

linear coefficients in the VAM test were investigated. As a result, measurable dissipation 

occurred on the HF amplitudes and was affected by the interface friction, leading to the 

deviation of the nonlinear coefficient when measuring the preload. In addition, the varia-

tion in the nonlinear coefficients at high-stress states became slight under the dominance 

of MIN, which made the early-stage warning of bolt loosening more difficult. 

The SVR method, making full use of the amplitudes of the spectral linear and non-

linear responses, was developed to solve the inherent deficiency of the nonlinear coeffi-

cients when evaluating bolt loosening at the early stage. The SVR evaluation of bolt pre-

loads showed better accuracy and applicability than conventional nonlinear coefficients 

for all stress stages. The SVR prediction, whose training and testing data were from dif-

ferent specimens, had lower accuracy than that from the same specimens due to manu-

facturing deviations. By adding the simulation data from the FE model with different fric-

tion coefficients and simulating the manufacturing deviations, the lowest prediction ac-

curacy increased. The usage of FE data shows good potential to improve the AI prediction 

of bolt loosening in actual engineering structures. 
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