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Abstract: In this paper, anomaly detection of wheel flats based on signal processing and deep learning
techniques is analyzed. Wheel flats mostly affect running stability and ride comfort. Currently,
domestic railway companies visually inspect wheel flats one by one with their eyes after railway
vehicles enter the railway depots for maintenance. Therefore, CBM (Condition-Based Maintenance)
is required for wheel flats resolution. Anomaly detection for wheel flat signals of railway vehicles
using Order analysis and STFT (Short Time Fourier Transform) is studied in this paper. In the case of
railway vehicles, it is not easy to obtain actual failure data through running vehicles in a university
laboratory due to safety and cost issues. Therefore, vibration-induced acceleration was obtained
using a multibody dynamics simulation software, SIMPACK. This method is also proved in the other
paper by rig tests. In addition, since the noise signal was not included in the simulated vibration, the
noise signal obtained from the Seoul Metro Subway Line 7 vehicle was overlapped with the simulated
one. Finally, to improve the performance of both detection rate and real-time of characteristics based
on existing LeNet-5 architectures, spectrogram images transformed from time domain data were
proceeded with the LeNet deep learning model modified with the pooling method and activation
function. As a result, it is validated that the method using the spectrogram with a deep learning
approach yields higher accuracy than the time domain data.

Keywords: anomaly detection; CBM; time domain; spectrogram; STFT; CNN; wheel flats; railway vehicles

1. Introduction

In the wheels of the railway vehicles, as shown in Figure 1, it is known that wheel flats
are caused both by fatigue of rolling contact and frictional wear between the wheel and
rail [1]. If wheel flat occurs, the bogie device may be damaged and the, running stability
and ride comfort of the vehicle may also deteriorate. Therefore, corrective maintenance
should be introduced in the event of a wheel flat.

Currently, in most cases, at the Seoul Metro in Korea, the wheel flats are visually
inspected one by one by the railway maintenance staff. However, based on the example of
a standard train composed of 10 units, the difficulty of checking 80 wheels is aggravated.
In addition, according to the safety standards for urban railway vehicles, wheel turning is
required in the case shown in Table 1, reprinted from ref. [2].

However, when a person visually checks the wheels one by one, cases happen in which
flats are missed, and wheel turning occurs frequently, even if it does not comply with the
regulations. Due to this problem, work efficiency is degraded, and the life of the wheelset
is also reduced. Therefore, it is necessary to develop CBM (Condition Based Maintenance)
in order to increase work efficiency and wheel life sustainability. In addition, maintenance
costs of over hundreds of millions of dollars ($) are being spent every year in the field
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of railway vehicles. Accordingly, if CBM is systematically applied, life cycle costs are
expected to be reduced [3]. Hyundai Rotem, a local company in Korea, started developing
CBM-related technology in 2018 and plans to complete the verification of availability and
maintainability through domestic and overseas projects until 2024. It is expected that CBM
adaptation will reduce the maintenance cost by up to 30% and increase the lifespan of the
device by 40% [4].
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deep learning models used in this work are ResNet and FCN [10]. Praneeth Chandra et al. 
performed defect detection of rail clamps using Unsupervised Machine Learning. At this 
time, missing detection utilized the DBSCAN (Density-based spatial clustering of appli-
cations with noise) algorithm [11]. Praneeth Chandra et al. diagnosed defects using super-
vised machine learning. At this time, the learning data was obtained using the Eddy cur-
rent sensor, and six machine learning models were used. As a result, it was confirmed that 
the result value was the best when the AdaBoost model was used [12]. K.Jahan et al. used 
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Table 1. Safety standards for domestic urban railway vehicles.

The Number of Wheel Flats [EA] Flat Size [mm]

1 75 < Flat size
2 50 ≤ Flat size < 75
4 25 ≤ Flat size < 50

K.Y.Kim used Cepstrum analysis to detect and diagnose wheel flats [5]. B.H. Park
et al. studied tool condition diagnosis using the AlexNet model [6]. R.B. Randall analyzed
vibration signals for rotating and reciprocating machines and defective defects using
abnormal signals found in the analysis results [7]. Run Gao et al. proposed a method to
detect the depth of a wheel flat according to vertical change due to a wheel flat by using
the Parallelogram Mechanism to diagnose the wheel flat defects of railway vehicles [8].
B.Liang and S.Iwnicki et al. applied the Time-Frequency method to wheel flat detection [9].
Chunsheng Yang et al. detected defects in rails through supervised learning methods.
Unlike in this paper, the features were extracted using the wavelet method. Moreover,
the deep learning models used in this work are ResNet and FCN [10]. Praneeth Chandra
et al. performed defect detection of rail clamps using Unsupervised Machine Learning.
At this time, missing detection utilized the DBSCAN (Density-based spatial clustering of
applications with noise) algorithm [11]. Praneeth Chandra et al. diagnosed defects using
supervised machine learning. At this time, the learning data was obtained using the Eddy
current sensor, and six machine learning models were used. As a result, it was confirmed
that the result value was the best when the AdaBoost model was used [12]. K.Jahan et al.
used semantic segmentation and supervised learning for anomaly detection in rail. At this
time, the data was obtained through the camera [13]. Toshihide Yokouchi et al. performed
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a defect detection method for railway vehicle air conditioning. In this case, data from
the Train Control and Monitoring System (TCMS) was used to detect defects, and they
evaluated the normalities of vehicle equipment using a neural network with Long Short
Term Memory (LSTM) [14]. N.Bosso et al. proposed a method to detect wheel flat defects
by measuring the vertical acceleration on the axle box, and this method was verified by
both simulation and test. At this time, the algorithm that the wheel flat index proposed
was able to detect small flats and estimate their severity [15]. J.Brizuela et al. proposed a
method to detect wheel flats using measurement by ultrasound. At this time, this paper
differs from other approaches, using ultrasonic pulses (Rayleigh waves) being sent over a
measuring rail; this method provides the loss of material and the length of the flat originally
formed by abrasion [16].

In this paper, firstly, two signal processing methods and CNN (Convolutional Neural
Networks) among the deep learning algorithms were used to study the anomaly detection
method for wheel flat parts in CBM. At this time, anomaly detection was applied by
classifying the normality and anomaly according to the safety standards of urban railway
vehicles. Finally, through the anomaly detection method, the data with signal processing
and the data without signal processing were compared using deep learning results. The
deep learning results were confirmed through accuracy and ROC curve, together with the
AUC value being confirmed through ROC curve.

2. Modeling of Railway Vehicles and Wheel Flat
2.1. Modeling of Railway Vehicles

The railway, which belongs to a public industry sector, is strongly linked to passenger
safety and service, and it is not easy to conduct failure tests on actual operating railways.
In other words, since an accident may occur while driving a broken-down vehicle on the
railway, it was not allowed to conduct such a test using a broken-down train to detect
anomalies for this study. Therefore, due to the difficulty of acquiring data through actual
tests, simulation studies are applied in many research works and development projects in
the field of railway vehicles.

In this study, SIMPACK, a multi-body dynamics software, was used to obtain wheel flat
signals under various conditions. SIMPACK software with rail module has an advantage
similar to the actual railway vehicle driving which considers the contact between the wheel
and rail. The railway vehicle model in this study was generated with the Seoul Metro’s
subway train in Korea.

Figure 2 shows a railway vehicle modeled by SIMPACK, a multi-body dynamics
software, and Figure 3 shows the bogie modeling of a railway vehicle. The specifications of
car body, bogie, and track information are shown in Tables 2–4 [17].
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Figure 3. Bogie modeling.

Table 2. Modeling values of length and mass.

Parameters Unit Value

Car Body Length (mm) 19,500
Car Body Width (mm) 3120
Car Body Height (mm) 3750
Car Body Mass (ton) 1.73

Wheelbase (mm) 2100
Bogie Mass (ton) 2.185

Wheelset Mass (ton) 1.647
Axle Box Mass (ton) 0.16

Table 3. Modeling values of inertia and stiffness.

Parameters Unit Value

Car Body Ixx (kg·m2) 25,757
Car Body Iyy (kg·m2) 320,790
Car Body Izz (kg·m2) 317,990

Bogie Ixx (kg·m2) 848.1
Bogie Iyy (kg·m2) 1376.3
Bogie Izz (kg·m2) 2112.2

Wheelset Ixx (kg·m2) 844
Wheelset Iyy (kg·m2) 107
Wheelset Izz (kg·m2) 844

Primary Suspension Stiffness (N/m) 836,338
Secondary Suspension Stiffness (N/m) 2,657,143

Table 4. Modeling values of track information.

Parameters Unit Value

Gauge (mm) 1435
Rail Type - UIC 60 rail

Wheel–Rail Interface Type - Kalker Contact
Friction coefficient - 0.4
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2.2. Modeling of Wheel Flats

As shown in Figure 4, one wheel was flattened and modeled considering the analysis
conditions of various sizes, numbers, and angular positions of flats.
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Figure 4. The location of the wheel flat.

In the simulation, the wheel of a domestic railway vehicle is 860 mm for a new wheel,
and the disposal limit is 790 mm. At that time, the diameter of the wheel used in the
analysis was divided by 5 mm units, the size of the wheel flat was divided by 2.5 mm and
5 mm units, as shown Table A1 (Appendix A). For wheel flat modeling, the coordinate
values were the input value using Acro Edit, as shown in Figure 5 in SIMPACK.
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Figure 5. Coordinate values using Acro Edit.

Coordinate values were obtained through the following process: First, the wheel was
configured as shown in Figure 6. Since the radius R and the wheel flat size L were known,
the α value was obtained through Equations (1)–(4). Then, the final coordinate values were
derived by calculating the positions of G and P using the α.

θ = cos−1 L/2
R

(1)

h =
L
2

tan θ (2)

cosα =
h
R

(3)

α = cos−1 h
R

(4)
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Finally, after the modeling of the final coordinate value using Acro Edit, as shown in
Figure 7, the ASCII file was input to the SIMPACK software [18]. The ASCII File inputs in
the right of green square are shown in Figure 7.
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Figure 7. Modeling manual for wheel flat in SIMPACK [18].

After completing the modeling of the wheel flat as above, the modeling result was
confirmed. As shown in Figure 8, it was confirmed that the wheel flat model was properly
input. The definition of Dz-wheel raise is the distance by which the wheel is raised from its
normal position on the rail [18].
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2.3. Signals of Wheel Flat

The movement of the wheel that has a wheel flat is represented in Figure 9. The wheel
flat signal is generated by the impact force between the wheel and the rail according to
Equation (5)–(8) reprinted from ref. [19].

ω

√
2 × h

g
= 2 × arcsin

L
2 × R

− arcos
(

1 − h
R

)
(5)

where h is the dropping distance of the wheelset, andω is the rotation speed of the wheel.
At this time, as shown in Figure 9, not only the dropping distance of the wheelset but also
the vertical speed generated by the rotation of the wheel should be considered, and the
vertical speed of the wheel is defined as follows;

vver. = ω × R × sin θ (6)

where, θ is the angle shown in Figure 9, derived from the dropping distance h, and is
defined as follows;

θ = arccos
(

h
R

)
(7)
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Here, Qw is the wheel load in the static state of the railway vehicle, and Kp and Kb
mean the rigidity of the rail pad and the railroad bed, respectively.

The acceleration of the x, y, and z axes generated by the impact force between the flat
wheel and the rail is shown in Figure 10. This acceleration signal was obtained from the
axle box point by simulation and proven by rig test [20]. In this paper, it is used as shown
in Figure 11 adapted from ref. [21].
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3. Signal Processing to Improve Deep Learning Results
3.1. Pre-Processing of Train, Validation, and Test Data Using the Signal Processing Method

Deep learning results of data with and without signal processing application were
compared. In this study, two signal processing methods, order analysis and STFT were used.

First, order analysis was used in the time domain. In this paper, order analysis is
defined as the number of events occurring per unit rotation. Order analysis requires chang-
ing the signal to the angular domain before performing FFT of the time domain data [22].
For this reason, order analysis is used to prevent changes in frequency components in a
rotating device with varying rotational speeds [23]. Since railway vehicles have various
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speed changes while driving, it is more useful to convert from the time domain to the
angular domain. The tachometer in railway vehicles is always attached to the axle box
to measure the rotational speed of the wheelset, which has the advantage of eliminating
the need for additional device configuration to convert to the angular domain. Figure 12.
shows the conversion of the flat signal from the time domain to an angular domain.
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Second, STFT was used since the deep learning algorithm used in this paper is CNN,
and CNN is an algorithm suitable for image and video processing, the spectrogram image
obtained by STFT was used as learning data.

STFT, along with FFT, is one of the most popular analysis methods in the field of
noise and vibration analysis [24]. Although the FFT cannot make the frequency change
information over time, the STFT can confirm the frequency change information over time
by supplementing the disadvantage of the FFT. Figure 13 shows the difference between the
STFT and the FFT, where the frequency components of 10 Hz, 20 Hz, and 30 Hz reprinted
from ref. [17]. However, as described above, the frequency change according to time elapse
could not be visualized through the FFT. This is the second reason for choosing STFT in
this paper.
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However, there are additional variables to be considered in order to prepare pre-
process data that is suitable for deep learning in STFT analysis. First of all, we should
consider that the result is different depending on the window function. The analysis
results according to the window function were compared. Before comparison, only the
frequency band due to wheel flats was set using the Y-Limit function in Matlab, as shown
in Figure 14 [25].
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For the window function, both the Rectangular function and Hanning function were
compared. At this time, the comparison was made using the data of one flat per wheel.
The result is shown in Figure 15. This result shows that the Hanning window is more
appropriate because of precise resolution.
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As a second consideration, it is shown that both the frequency and the time resolution
vary according to the window length. For example, if the window length is increased, the
frequency resolution is improved, but the time resolution degrades. Thus, it should be
properly adjusted for the purpose of analysis. However, there is a way to adjust the overlap
to alleviate these shortcomings using the concept of overlap shown in Figure 16 [26]. It
means that when windows are applied, the windows overlap each other.
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In order to find the window length suitable for this study, the window length was
incrementally changed and compared. The data of four wheel flats with window lengths of
128 and 64, respectively, were compared, and the results are shown in Figure 17. As a result
of the analysis, it was judged that it was more appropriate to set the window length to 64.
For this reason, as shown in Figure 17a, it was not possible to clearly confirm that there were
four flat signals in the red and blue circles when compared to (b). Therefore, it was found
that as the number of wheel flats increased, the time resolution became more important.
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Finally, Figure 18 shows the result of the difference in overlap when the window
length is the same as 64. At this time, the cases of overlap 50% and 80% were compared. In
addition, the motivation for the comparison with 80% overlap is as follows. First of all, an
increase of 10% overlap each from 50% were reviewed. It was confirmed that the case of
four wheel flats from 80% overlap is better. Therefore, the cases with 50% and 80% were
compared. As a result, it was decided that it is appropriate to set it to 80% as shown in (b)
of Figure 18. The reason is that it shows more clearly in four wheel flats in (b) than in (a).
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The following parameter values were selected through comparative analysis; First, the
window length of 64, the overlap of 80%, and Hanning were used for window function.
The final parameter values are summarized in Table 5, and the final results of applying
both order analysis and STFT are shown in Figure 19.

Table 5. Parameter values of STFT.

Parameter Value

Window Length 64
Window Function Hanning

Overlap 80%
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3.2. A Flat Signal Overlapped with a Noise Signal

Since it is difficult to obtain data from the driving rail vehicles with wheel flats, the
noise signals of normal wheels obtained in past research [17] were overlapped with the
simulation flat signals. The noise signals of normal wheels were obtained on the axle
box using the Seoul Metro Line 7 vehicle. Figure 20 shows the location of the measuring
equipment mounted on the axle box.
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Among the overlapped data section, the data of the most severe noise section was
applied, and the overlapped result is shown in Figure 21. If the wheel flat size is small,
the flat signal (Time-domain) is fully covered by the noise signal. It was found that it is
difficult to determine the presence or absence of any small flat signal.
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Figure 21. Overlap result (Time domain).

Figures 22 and 23 show the FFT and STFT of the signal overlapped on the noise
signal. As a result of the analysis, it was found that the frequency band by the flat signal
was relatively low compared to the frequency band by the noise signal, and thus, it was
confirmed that the frequency bands are separate from each other.
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Therefore, as a result of minimizing the influence of the noise signal by cropping only
the frequency band indicated by the flats, it was confirmed that only a slight difference
appears in the red square shown in Figure 24.
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4. Comparison of Deep Learning Results between Signal-Processed Data and No
Signal-Processed Data
4.1. CNN (Convolution Neural Network) Algorithm

During deep learning, raw data (Time-domain) was compared with the pre-processed
data through signal processing using the CNN algorithm. CNN is a convolution neural
network, an algorithm first proposed by Yann LeCun in 1989. The biggest feature is the
convolution layer as indicated in the name, and the second feature is the pooling layer,
which is also called sub-sampling [27]. Figure 25 shows the basic structure of CNN.
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Figure 25. Architecture of CNN.

In this paper, the LeNet model was used among CNN algorithms. It was modified to
improve performance and speed in the existing architecture, applying modified pooling
and activation function. First, the pooling method was changed from the existing average
pooling to max pooling. Second, the activation function was changed from the existing
Tanh to Leaky ReLu. Finally, Batch Normalization was added. The existing architecture of
LeNet-5 is shown in Figure 26 adapted from ref. [28]. In the application of learning, the
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dataset is usually composed of the ratio of training data, validation data, and test data as
6:2:2 [29]. Therefore, the dataset used in this paper was organized as shown in Table 6, and
the test data was composed of 648 normal data and 504 anomaly data.
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Table 6. Dataset is of Training data, Validation data, and Test Data.

Data Type EA Ratio [%]

Train Data 2988 60
Validation Data 837 17

Test Data 1152 23

Next, a sample of the spectrogram image of normal and anomaly data used for deep
learning is shown in Figure 27. The levels of learning were classified into normal and
abnormal according to the safety standards for domestic urban railroad vehicles.
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As shown in the diagram in Figure 28, the spectrogram image used for learning was
resized to 32 × 32 so that it could be fitted in the LeNet model after cropping the image in
units of one wheel.
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4.2. Deep Learning Results Using the LeNet

When learning the signal processing results, 34 out of 1152 test data could not be
accurately determined. Moreover, when learning the raw data results, 308 out of 1152 test
data could not be accurately determined. Through this result, the acuity was calculated as
shown in Equation (9). The learning time was about 3249 s.

Accuracy =
Number o f correct predictions
Total number o f predictions

(9)

As a result of using the LeNet model, signal-processed data had an accuracy of about
97%, whereas raw data without signal processing had an accuracy of about 73.26%. In the
case of raw data without signal processing, the reason for the low accuracy was that the flat
signal was buried due to the overlap of the raw data (Time-domain) with the noise signal,
and thus, the size of the flat was small and the anomaly could not be accurately diagnosed.

In addition to the accuracy, the results of the true positive rate were compared and
analyzed through ROC. The ROC curve is frequently used in binary classification models,
through which the AUC (Area Under the Curve) value is obtained, and the closer this value
is to 1, the higher the reliability is regarded [30]. The result is shown in Figure 29.
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Finally, the deep learning results of the preprocessed data through signal processing
and the raw data that were not preprocessed are shown in Table 7. It was confirmed that
the result of deep learning with preprocessed data using the signal processing method was
about 24% higher in Accuracy and 0.21 in AUC than the result of deep learning based on
the Raw data (Time-domain) approach.

Table 7. Comparison of deep learning results of STFT and raw data.

Data Type Accuracy AUC

STFT 97 0.9688
Raw Data (Time-domain) 73.26 0.7544

5. Conclusions

In this study, an anomaly detection method on the wheel flat problem is proposed. In
previous studies, wheel flat is diagnosed using only signal processing techniques without
a deep learning approach. This could only detect the presence or absence of a wheel flat.
However, in this paper, a deep learning approach is applied to anomaly detection with
varying conditions of size and number of wheel flats. At first, the data was pre-processed
to be suitable for deep learning through signal processing. Then, anomaly detection was
performed using the deep learning technique. The normality and anomaly were classified
according to the safety standards of urban railway vehicles. The deep learning model of the
LeNet-5 was applied and elaborately modified to observe the performance in a supervised
manner for anomaly detection. Different pooling methods and activation functions were
applied to improve both the performance and the speed of this domain data.

First, a vibration signal data according to the presence or absence of a wheel flat was
obtained using SIMPACK, a multi-body dynamic software. The noise signals measured
from Seoul Metro Line 7 were overlapped with the flat signals obtained from the simulations.
Then, two signal processing methods were used to create data suitable for deep learning.
The wheel of railway vehicles is a rotating device, and its running speed changes frequently
during actual operation. Accordingly, as the frequency changes according to the rotation
speed, order analysis was performed to compensate for this point. Then, in order to utilize
the CNN algorithm during deep learning, a Spectrogram image was created through STFT.

Second, deep learning was performed after changing the LeNet-5 model in the CNN
algorithms to improve performance. For the data used in the LeNet model, the size of the
spectrogram image was changed to 32 × 32. The deep learning results showed an accuracy
of 97%. In addition, the AUC value obtained through the ROC curve, which is often used in
the binary classification model, was confirmed. The AUC value was 0.9688, which was also
high. Therefore, the anomaly detection technique of wheel flat defects through the LeNet
model generated an excellent performance. This study also checked whether the deep
learning result was excellent when pre-processing was additionally performed. For this
purpose, the raw data (Time domain) was compared with the pre-processing data using the
signal processing method. As a result of deep learning, the case with pre-processing was
about 24% higher in accuracy, and the AUC value was also about 0.21 higher. The reason is
because of noise signal overlapping in the flat signal in the raw data (time-domain) when
the wheel flat size was small.

It was well postulated that a study of the anomaly detection for wheel flats with a
modified LeNet model would be very meaningful to cultivate further research with deep
learning. In addition, it is expected that the following effects will be achieved. First, it is
possible to secure the passenger safety and ride comfort of railway vehicles. Second, it is
possible to reduce maintenance costs. Third, railway maintenance staff can focus on more
important parts of maintenance. This is expected to increase the efficiency of maintenance.

Finally, conducting the tests in real conditions, in the case of rail vehicles, is not so easy
in a university laboratory due to safety and cost issues. Because of these reasons, the real
flat signal data could not be applied to deep learning. This has been left for future study.
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Nevertheless, this study would become a useful reference for anomaly detection research
on rail vehicles using deep learning. However, this paper first considered the effect of
signal processing on the learning sensitivity for anomaly detection of wheel flats. Therefore,
for the development of future research, the results will be analyzed through various deep
learning models. In addition to the supervised learning method, the semi-supervised
method will be used to encourage further research.
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Appendix A

Table A1. Example of wheel flats modeling configuration (2 wheel flats).

Diameter Wheel Flat Size [mm] 90◦ Interval 180◦ Interval

810

50
50 O O

62.5 O O
75 O O

62.5
50 O X

62.5 O O
75 O O

75
50 O X

62.5 O X
75 O O

805

50
50 O O

62.5 O O
75 O O

62.5
50 O X

62.5 O O
75 O O

75
50 O X

62.5 O X
75 O O

790

50
50 O O

62.5 O O
75 O O

62.5
50 O X

62.5 O O
75 O O

75
50 O O

62.5 O O
75 O O
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