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Abstract: Game user perception is of great significance for game developers and network operators
for improving service quality and operational efficiency. At present, the most common approach is to
use the linear model that considers only the impact of network factors evaluation on user perception.
The interpretation process is complex and useful, but invisible feature interaction data are not taken
into account. As a result, user perception evaluation can only be interpreted by experienced experts,
which is both time-consuming and laborious. In this paper, aiming at the shortcomings of existing
algorithms, a location–time-aware factorization machine model (LTFM) is proposed by exploiting
the location projection and time projection of users and services and fuzzy set theory. Our proposed
LTFM can be decomposed into two parts: first, an original game quality of experience (QoE) dataset
is extended. LTFM uses location and time information to map to latent vectors, which increases the
number of records in each game data, involving no additional information. Then, LTFM utilizes fuzzy
set theory to strengthen the positive feature interactions and reduce the negative feature interactions.
The factorization machine is used to mine a number of potential features in the user’s invoking service
behavior. The multiplayer online battle arena (MOBA) game perception dataset is obtained with
reference to the ITU-T standard to verify the advanced nature of the proposed model. Experimental
results show that LTFM outperforms existing algorithms in terms of prediction accuracy and model
interpretability. Not only can accurate user experience quality categories be produced, but also the
impact of individual characteristics and their feature interactions can be explained, which helps
operators to make better optimization decisions.

Keywords: machine learning; game perception; QoE; factorization machine

1. Introduction

Game user perception is a hot topic in user perception [1,2], which aims to predict the
difference in user perception evaluation under different game services and user character-
istics. In order to provide better game services to players, game developers and network
engineers strive to improve the quality of game software and network infrastructure, re-
spectively. Among the many tasks where perceptual data may be applied, it is particularly
important to capture hidden connections between game user perception evaluation data
from similar combinations of service and user characteristics. Therefore, we need to obtain
a model that can systematically, efficiently, and reliably measure game quality in a given
environment.

Game user perception assessment is essentially a classification problem. With the
help of an in-perception assessment model, user perception can be classified into different
perception levels. Operators can make different optimization decisions for different levels
based on the perception scoring results. The corresponding maintenance of network
equipment or broadband upgrade, etc., improves the user experience.

Realistic data characteristics are mostly sparse, and the performance fluctuations of
the model have to be taken into account. A new location–time-aware factorization machine
model (LTFM) model based on fuzzy set theory is proposed to overcome the problems of
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existing algorithms. First, LTFM uses location projections and time projections to increase
the number of records for services in each game without introducing additional informa-
tion, thus alleviating sparse data. Then, LTFM uses fuzzy set theory to reinforce the positive
feature interactions and reduce the negative feature interactions to overcome the chal-
lenge of performance fluctuations. The main contributions of this paper are summarized
as threefold:

1. We use location projection and time projection to extend a QoE dataset, which can
mitigate sparse data. The method increases the number of records of services by
projecting to the location vector and time vector directions of users and services.
There is no additional information introduced into the method while extending the
game QoE dataset.

2. We construct a similarity calculation based on fuzzy set theory to ensure the robust-
ness of LTFM. A membership module is introduced to enhance the positive feature
interactions and reduce the negative feature interactions, ensuring robustness.

3. We conduct several experiments on a real QoE dataset derived from experiments
set up according to the ITU-T standard to evaluate the performance of the LTFM.
The experimental results show that our proposed LTFM exhibits good performance,
which performs better than existing methods in the accuracy and robustness of game
QoE prediction.

The structure of this study is as follows: Section 2 summarizes the literature relevant
to this study. Section 3 proposes the framework of LTFM in detail. Section 4 reports the
method performance and makes our discussion. Section 5 concludes this study.

2. Related Work

In the field of user experience, most of the related work on game user perception
focuses on the impact of traditional service quality parameters on subjective user-perceived
quality [3–5]. Traditional data-driven models use linear models to generate user game
perception scores such as logistic regression and linear regression models [6]. In recent
years, most user perception prediction models have been predicted using machine learning
techniques. For example, research uses nonlinear support vector machines for QoE model-
ing, which uses random forests to build prediction models [7], etc. These methods offer
important advantages for effective user perception prediction. However, latent variable
models [8] have shown that these machine learning models have not learned the potential
but useful feature interactions well in the game QoE task dataset. Factorization machines
(FM) [9] provide a predictor which can model and take feature interactions into account
efficiently in linear time complexity.

At present, although FM has not been applied in the field of game perception, it has
carried out a lot of research in the quality of services (QoS) prediction of network services.
QoS prediction for network services only focuses on the impact of network parameters on
QoS. Different from the service quality prediction of network services, game user perception
not only pays attention to network parameters but also pays attention to the user’s personal
characteristics and the influence of service characteristics in the game on the end user’s
evaluation of experience quality. Their ultimate purpose is the same: to enhance the quality
of service to improve user perception.

Wu et al. [10] first introduced a factorization machine into the quality-of-service
prediction and proposed an EFMPred model by combining embedding techniques. Yang
et al. [11] proposed an LBFM model by converting location information to neighborhood
information in the factorization machine. Then Chen et al. [12] proposed the LANFM model,
which added the location information to the factorization machine by one-hot encoding.
Wang et al. [13] proposed an LDFM model which uses location projections to extend the
record of database and information entropy to enhance valid features. In the case of low
data volume as well as few features, these algorithms expand the dataset, adding features by
combining features and performing well in the case of sparse data. However, the weights for
different cross-features are the same, which will introduce noise and make the model choose
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a suboptimal solution. He et al. [14,15] proposed the AFM model, which used a neural
network modification of FM and added an attention mechanism to assign different weights
to the second-order combinations of different features. Subsequently, Hong et al. [16]
proposed an IFM model by introducing an interaction-aware mechanism consisting of
feature aspects and field aspects. While these algorithms improve the performance of the
model by introducing an attention mechanism to obtain the weights of feature interactions,
the training time increases significantly and consumes more computational cost.

In conclusion, game user perception based on machine learning is becoming an
increasing research hotspot. Some research exists on linear user perception evaluation
based on network parameters. However, there are some research gaps in the field of game
user perception models that consider the nonlinear effects of multiple factors. On the one
hand, linear models are restrictive. The factors in real life are not simply linear, and the
data are mostly sparsely distributed, which requires further research on machine learning
algorithms. On the other hand, existing research has only built models based on network
parameters. The effects of other factors and interactions between features on perception are
not considered. In summary, we refer to FM in the study. The existing FM has the same
weight for different feature interactions, and the performance is improved after adding
the attention mechanism, but it also consumes more resources. Thus, further research on
combining feature data with building game user perception models needs to be conducted.

3. Problem Formulation and Algorithm

In this section, we present a data-driven game user perception evaluation problem.
For this problem, a fuzzy set theory-based prediction is proposed to compute the similarity
between feature interactions and final evaluation results. We then design an LTFM as
the primary predictive model for game user perception valuation, where the fuzzy set
theory-based similarity calculation is used as a weighting module.

3.1. Problem Description

In this work, the game user perception evaluation problem is described as a supervised
machine learning model which aims to predict users’ future game perception ratings using
a diverse of real-valued features extracted from game-related dimensions. In our dataset,
each game record uses an identifier number to distinguish it uniquely. The identifier is used
to specify all relevant features in the data preprocessing step for each game and extract the
features contained therein, as shown in Table 2 of Section 4.1.

The feature representation of the game played i ∈ {1, 2, . . . , N} is denoted as the
real-valued feature vector xi =

{
x1, x2, . . . , xJ

}
∈ RJ , where the total number of unique

features is J. Each feature xj = (x1j, . . . , xNj)
T belongs to only one of two categories: service

or user features. Each game i has a label yi ∈ R that represents its future user perception
evaluation score. LetH = {h : X→ y} denote a hypothesis class, and L = (·, ·) denote a
loss function. The goal of the user game perception evaluation prediction problem is to find
the best hypothesis hbest ∈ H with a given training dataset {xi, yi}N

i=1, which minimizes the
expected empirical risk Pr(h) = E[L(h(X, y))]. The following empirical risk minimization
is a state-of-the-art approach, as shown in Equation (1).

hbest = argminPr(h)
h∈H

=
1
N

N

∑
i=1
L(h(xi), yi) (1)

3.2. Location Information and Time Information

A research article [17] showed that if two users located in the same region have similar
network conditions, then the experience which calls the same service in the same region
is also similar. Other research [11,18] found that it is common for individual users and
independent services to be located in two or more overlapping areas. Thus, user and
service information are projected into the potential space [19] in the direction of its location
vectors to generate new data. Figure 1 shows that User1, User2, and User3 are located in
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the same user region with similar location information, and the QoS values they invoke
are also similar. Both S3 and S4 are located in service region two with a similar quality
of service values. In practical scenarios, the environment and quality of the network are
usually similar in terms of neighboring geographic locations, which plays an important role
in the prediction of experience quality for different users. After the location projection, the
number of records of users calling services and the number of users and services increase
without introducing additional information. Thus, it is useful to take location information
from users and services into account for game user perception evaluation prediction.
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Figure 1. A real game service invocation scenario.

In real scenarios, the network is divided into idle time and busy time. These two
concepts are relative. For example, busy time means that the network will be slower during
the daytime when there are more people using or grabbing the network. The network
speed will be faster during idle time. Different regions have different network usage habits,
and the resulting idle time and busy time are also different. What we need to consider is
that the basic network parameters (for players to enter the game during busy hours) are
worse than those when they are idle, which will cause game users to perceive poorly. We
need to understand the changes in user perception in different time periods, predict the
user perception evaluation in different situations, and point out the direction for operators
to choose optimization decisions to improve user perception. Our experiments are based
on the Xinjiang University campus network. The time periods for teachers and students to
access the Internet can be divided into four time periods, as shown in Table 1.

Table 1. Internet time allocation for teachers and students.

Time Period Time Name

2:00–10:00 Idle time
10:00–14:00 Morning
14:00–20:00 Noon
20:00–2:00 Night

We chose to test in the latter three time periods, to be more instructive, and divided
into three time periods in chronological order: morning, midday, and evening. However,
the busy hours in these three time periods are 13:00–15:00, 19:00–21:00, and 24:00–2:00,
respectively. These three busy hours are the time periods when teachers and students
take their meals and breaks. They are two overlapping areas in the three time periods, so
using the idea of location projections, each busy time is divided into two, and two new
time periods are obtained for each. Combining user and time information to obtain new
features, we find two new pieces of game data after time projections. Our experiments
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are tested based on the Xinjiang University campus network, and the default user location
information is similar, so we integrate the projections of both the location information and
time information of the service into the new service matrix. The above two ideas expand
our dataset without introducing additional information. However, this aggravates the
challenge posed by data sparsity.

3.3. Similarity Calculation

Game user perception is a multidimensional nonlinear problem. In actual experiments,
we found that under similar network conditions, different players or other conditions may
lead to different final user perceptions. The features of each instance and its corresponding
label are represented as an association, which is considered a correlation [20,21], similarity,
or likelihood distribution [22]. The relationship between each sample and its corresponding
label can also be represented by the correlation. To address this issue, we introduce the
fuzzy set theory, which uses a membership function to determine the similarity between
data points and the centroid vector of each label.

In our work, the membership function is based on the similarity point of view, by the
distance to the perfect sample-based similarity point of view [23]. We adopt a multidimen-
sional Gaussian function as the membership function [24], which is widely used in many
applications because of its simple form [25]. The multidimensional membership function
in our proposed method is defined as:

uij = exp

(
−
‖xij − cij‖2

2σ2

)
, i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , L} (2)

where uij is the membership value and 0 ≤ uij ≤ 1. Here σ is the dispersion of the radius,
xij is the inner product value of the feature interaction and cij is the center vector of the
corresponding label. The centroid vector cij is calculated as follows:

cij =
1∣∣qj
∣∣∑

qj

xi (3)

where qj =
{

xi
∣∣xi ∈ lj

}
, lj is the j-th label corresponding to the instance xi, and

∣∣qj
∣∣ is

denoted as the element number of the set qj. The membership function in Equation (2) is
used to measure the similarity between the feature interaction and the centroid vector. If
the sample value is close to the centroid vector, then its membership is higher. Conversely,
its membership is lower the farther it is from the centroid vector.

3.4. LTFM Based on Fuzzy Set Theory

In this section, an LTFM model under the FM framework is proposed as a solution
to the user game perception evaluation problem, as it has the advantage of capturing
nonlinear feature interactions efficiently for sparse data. Unlike the standard FM model,
LTFM takes the projection of location and time information into account. We construct an
LTFM model that can effectively capture the projection information of location and time
information as additional information without introducing additional information, and the
similarity between feature interactions and labels obtained based on fuzzy set theory to
improve the predictive strength of the model for user game perception valuation.

The structure of FM is shown in Equation (3). Inspired by this, our data will be
encoded as x = [xusers, xservices]. Each element of xusers represents a user, and each element of
xnew services is a game service after time and location projections. The projection information
of location and time information is integrated into the new service matrix, and the new data
is represented as x = [xusers, xnew services], which is presented into the FM model’s pairwise
feature interaction module, as shown below.
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yFM(x, Θ) = w0 +
N

∑
i=1

wixi+
N

∑
i=1

N

∑
j=1

〈
vi, vj

〉
· xixj (4)

ynew(x) =
N

∑
i=1

N

∑
j=1

〈
vi, vj

〉
· xusersxnew services (5)

At this point, the LTFM can be expressed as

yLTFM(x; Θ) = φLTFM(y|x, Θ)

= yFM(x; Θ) + ynew(x; Θ)

= w0 + wusers · xusers + wservices · xservices

+
N
∑

i=1

N
∑

j=1

〈
vi, vj

〉
· xusersxservices +

N
∑

i=1

N
∑

j=1

〈
vi, vj

〉
· xusersxnew services

(6)

where w0 is the weight of the global bias, and vi is the hidden vector of the i-th variable in
xuser. vj is the hidden vector of the j-th variable in xservices.

〈
vi, vj

〉
is the inner product of

the hidden vectors of the user matrix and the service matrix. The inner product value can
represent the pairwise interactions between the users and the services.

As introduced in the discussion in Section 3.3, feature interactions that are less pre-
dictable are given lower weights since they contribute less to the game perception evalua-
tion. The lack of ability to distinguish the predicted strength of pairwise feature interactions
may lead to additional computational resources and suboptimal predictions. It means that
embeddings of less important feature interactions are ignored. Thus, the similarity between
pairwise interaction features and labels is captured in the output weights to reformat the
pairwise part of FM as follows.

N

∑
i=1

N

∑
j=1

uij
〈
vi, vj

〉
· xusersxservices (7)

The calculation of uij is given in Equation (2), which considers the influence of the
correlation between pairwise interaction features and labels on the predicted strength of the
user’s game perception evaluation. The same can be applied to new feature interactions.

Combined with the above description, the final network architecture of our LTFM
algorithm is shown in Figure 2, which consists of three layers: the input layer, the middle
layer, and the output layer.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 14 
 

1 1
,

N N

ij i j users services
i j

u
= =

⋅ v v x x  (7)

The calculation of iju   is given in Eq. (2), which considers the influence of the cor-
relation between pairwise interaction features and labels on the predicted strength of the 
user's game perception evaluation. The same can be applied to new feature interactions. 

Combined with the above description, the final network architecture of our LTFM 
algorithm is shown in Figure 2, which consists of three layers: the input layer, the mid-
dle layer, and the output layer. 

 
Figure 2. The network architecture of the proposed location-time-aware factorization machine 
(LTFM) based on fuzzy set theory. 

The input layer: LTFM performs feature embedding based on the embedding ma-
trix. Every feature is represented by dense vectors. It also can be seen as a fully connect-
ed layer, which implements array lookup. In the input layer, the key point is able to 
multiply the matrix fully. The inputs multiply with the weight matrix, which also takes 
the bias vector into consideration so that the spatial dimensionality and the projection of 
sparse to dense representations can be handled efficiently. 

The middle layer: The model is inspired by the FM model. LTFM also needs to find 
how to represent the latent relationship in pairwise features which can be solved by the 
inner product. The set of pairwise feature interactions is represented as 

' '
' '{( , ) | , 1,2,..., ; }j jj j

v v x x j j J j j= = ≠  depending only on the embedding matrix. The 

middle layer has listed the potential vectors in interactions. The input layer has given 
feature embedding vectors. Each latent vector is the product of previous embedding 
vectors. Therefore, we use the idea of using neural networks to design and build into 
this layer to roughly express the FM model. 

The output layer: We compress all feature interactions based on distinguishing their 
importance in the embedding space. Then, we project them onto the final perceptual 
prediction scores. The predicted similarity of a paired feature interaction is calculated 
based on Equation (2). In conclusion, the LTFM proposed in this paper can be expressed 
as follows. 

Figure 2. The network architecture of the proposed location-time-aware factorization machine (LTFM)
based on fuzzy set theory.



Appl. Sci. 2022, 12, 12819 7 of 13

The input layer: LTFM performs feature embedding based on the embedding matrix.
Every feature is represented by dense vectors. It also can be seen as a fully connected layer,
which implements array lookup. In the input layer, the key point is able to multiply the
matrix fully. The inputs multiply with the weight matrix, which also takes the bias vector
into consideration so that the spatial dimensionality and the projection of sparse to dense
representations can be handled efficiently.

The middle layer: The model is inspired by the FM model. LTFM also needs to
find how to represent the latent relationship in pairwise features which can be solved by
the inner product. The set of pairwise feature interactions is represented as
P =

{(
vj, vj′

)
xjxj′

∣∣∣j, j
′
= 1, 2, . . . J; j 6= j

′
}

depending only on the embedding matrix. The
middle layer has listed the potential vectors in interactions. The input layer has given fea-
ture embedding vectors. Each latent vector is the product of previous embedding vectors.
Therefore, we use the idea of using neural networks to design and build into this layer to
roughly express the FM model.

The output layer: We compress all feature interactions based on distinguishing their
importance in the embedding space. Then, we project them onto the final perceptual
prediction scores. The predicted similarity of a paired feature interaction is calculated
based on Equation (2). In conclusion, the LTFM proposed in this paper can be expressed
as follows.

yLTFM(x; Θ) = φLTFM(y|x, Θ)

= w0 + wusers · xusers + wservices · xservices

+
N
∑

i=1

N
∑

j=1
uij
〈
vi, vj

〉
· xusersxservices +

N
∑

i=1

N
∑

j=1
uij
〈
vi, vj

〉
· xusersxnew services

(8)

In order to evaluate the parameters in Equation (8), the main method is to minimize
the sum of losses on the observed dataset.

minRLTFM(Θ) =
N

∑
i=1
L(φLTFM(yi|xi, Θ), yi) + R(Θ) (9)

where L denotes the loss function and R denotes the regularization term on Θ, which
is usually used to avoid overfitting. The overfitting problem cannot be ignored when
optimizing machine learning models and FM models [26]. In this study, our regularization
term is R(Θ) = 1

2‖θ‖
2.

Neurons in paired interaction layers can easily cooperate with each other to adapt,
which leads to overfitting. In this study, the LTFM model captures interactions that are
predictive and useful. We control the regularization strength by the L2 regularization
method and further prevent overfitting of the LTFM model by the dropout method on
paired interaction layers [27]. The dropout method prevents the complex cooperative
adaptation of neurons to the training data. The main idea is to randomly drop out some
neurons along the connections during the training process. The dropout module is applied
for model training when the entire network architecture is used for prediction and is
disabled for testing. Dropout has the additional side effect of using smaller neural networks
for averaging, which may improve performance. Therefore, the dropout method is used in
the middle-paired interaction layer of the LTFM model to deal with the overfitting problem.

The complexity analysis of our proposed LTFM model has the following two points.
First, the parameters of the feature embedding matrix v ∈ RK×J are K × J. Thus, the
entire spatial complexity of the LTFM model is O(KJ), which means it is comparable to the
standard FM model in terms of spatial complexity. The computational cost is O(C2

J K). For
model prediction, since the membership score is computed by fuzzy set theory techniques,
the computational effort of the middle layer is reflected by the complexity O(C2

J K) of
the inner product of the two vectors. The overall time complexity of the LTFM model is
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O(C2
J K). In conclusion, our proposed LTFM algorithm can be trained in linear time. This

complexity analysis shows that the LTFM model is very efficient.

4. Experiments and Results in Discussion
4.1. Research Data

We selected the most popular Chinese domestic mobile game, “Glory of Kings,” as the
game entity, which is based mainly on the UDP protocol for interaction in the game and has
extremely high requirements for real-time and user immersion. Since there is no existing
dataset on user perception of this MOBA game, we have determined the test process in
a controlled laboratory environment after consulting the relevant IUT-T literature [28,29]
and finally obtained 789 pieces of game data. Each piece of data represents the data of both
users and services in each game. Each data set has 21 dimensions, including 3 dimensions
of user data, 17 dimensions of service data, and the last dimension of data is the user’s
perception. The details of these data are shown in Table 2.

Table 2. Characteristic description.

Feature Data Type Description Factor Matrix

Player Id Categorical Participant number Users
Sex Binary Participant sex Users
Skill Categorical Skill level of participants Users
Time Numeric End time of each game Services

Game IP Numeric The IP address of the game server Services
IP Home Categorical Home of game server Services

Service Operator Categorical The operator of the game server Services
Game Result Binary The final result of the game Services
Game Mode Categorical Test the different game modes selected Services
Game Team Categorical Team of participants entering the game Services
Extra Delay Numeric Additional accumulated delay Services
Extra Jitter Numeric Additional accumulated jitter Services

Extra Packet Loss Numeric Additional accumulated packet loss Services
Delay Numeric Total delay per game Services
Jitter Numeric Total jitter per game Services

Packet Loss Numeric Total packet loss per game Services

Max-Min Numeric The difference between the best value of
the total delay per game Services

Kill Numeric Kill record in the game Services
Death Numeric Death record in the game Services

Assistant Numeric Assistant record in the game Services
Score Categorical Game perception evaluation score Label

4.2. Evaluation Metrics

For the game user perception problem, we choose the area of area under curve (AUC
curve), precision, recall, F-measure, and training time for evaluation. The metrics are listed
in Table 3. First, we should know that true positives (TP) is the number of users who are
predicted to be positive classes. False negative (FN) is the number of users who predict
the positive class as the negative class. True negative (TN) is the number of users whose
negative class is predicted as a negative class. False positive (FP) is the number of users
who predict negative classes as positive classes.



Appl. Sci. 2022, 12, 12819 9 of 13

Table 3. Performance metrics to compare prediction models.

Evaluation Metric Formula

Precision TP
TP+FP

Recall TP
TP+FN

F-measure 2×precision×recall
precision+recall

The AUC curve represents the area under the receiver operating characteristic curve
(ROC curve). The larger the AUC, the better the model performance. Precision is used to
calculate the proportion of correct predictions among all samples with a positive prediction
class. The recall is the proportion of positive class samples correctly determined by the
classifier to the total number of positive class samples. In general, the higher the accuracy
rate, the lower the recall rate. In order to balance the effects of precision and recall and to
evaluate a classifier more comprehensively, a comprehensive metric, the F-measure, was
introduced. The value of the F-measure will be high when both accuracy and recall are high.
The training time is used to compare the running speed of each algorithm. The shorter the
time, the faster the algorithm runs.

4.3. Comparison Algorithm

In our experiments, we consider the diversity of influencing factors and want the
model to find out the rules from the data as much as possible, so we randomly divide the
dataset into 80% as the training set and 20% as the test set. We demonstrate the predictive
performance of LTFM and baseline models for game user perception prediction. In view
of the fact that there are few types of research on game perception (most of them are to
explore network factors and finally obtain relevant formulas) when choosing the baseline
model, we chose the algorithm that is homogeneous with FM and the comparison of
popular classification algorithms on our dataset, including random forest (RF), decision
tree (DTree), multilayer perceptron (MLP), light gradient-boosting machine (Lightgbm),
Extreme Gradient Boosting (Xgboost), Catboost, FM [9], NFM [14], AFM [15], IFM [16], and
LDFM [13]. In our experiments, we design three kinds of LTFM, import the projections of
location and time information, and add the membership calculation to finally obtain the
best performance of LTFM.

4.4. Experimental Analysis

We consider training time and convergence speed to choose the batch size. A larger
batch size will speed up training per epoch time, but convergence is relatively slow. To
cope with this problem, L2 regularization, discarding, and early stopping are introduced.
The early stopping strategy for training is executed when the F1 score increases for five
consecutive epochs on the test set. The convergence speed of the model is examined
through experiments, as shown in Figure 3a. We summarize the loss convergence of each
model under the same epoch, and we find that the convergence speed of the proposed
LTFM is the fastest and most stable among FM and its variants. We can also see LTFM has
been higher than others in ROC curves, which means LTFM is more stable.
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In addition, we verify the effect of learning rate on the prediction performance of
perceptual evaluation of LTFM games through extensive experiments in this paper, and the
results are shown in Table 4. For trade-off considerations, we chose lr = 10−2 in LTFM. The
experimental results of the model performance comparison are shown in Table 5.

Table 4. Learning rate effect.

Lr AUC Precision Recall F-Measure Time (s)

0.1 0.7572 0.7901 0.7975 0.776 16.225
0.3 0.7862 0.7842 0.7595 0.7867 14.15
0.5 0.7493 0.7903 0.7835 0.7848 14.4

0.01 0.8093 0.8328 0.8228 0.8178 16.4
0.03 0.7796 0.8235 0.7848 0.7867 15.025
0.05 0.7862 0.8089 0.7848 0.7837 15.025
0.001 0.7843 0.8256 0.7342 0.753 15.4
0.003 0.7777 0.8213 0.7468 0.7595 14.825
0.005 0.7701 0.827 0.7848 0.7735 15.25

Table 5. Model performance comparison.

Model AUC Precision Recall F-Measure Time (s)

RF 0.7302 0.7385 0.7595 0.7444 —
DTree 0.722 0.7087 0.7215 0.7133 —
MLP 0.7422 0.7526 0.7608 0.7538 —

Lightgbm 0.7164 0.7197 0.7595 0.7283 —
Xgboost 0.7258 0.7324 0.7646 0.7428 —
Catboost 0.7319 0.7259 0.7722 0.7174 —

Standard FM 0.7549 0.7189 0.7215 0.7008 16.91
NFM 0.7721 0.7789 0.7595 0.7778 14.6
AFM 0.7862 0.8052 0.7848 0.7972 184.82
IFM 0.7908 0.8158 0.7975 0.801 56.31

LDFM 0.7288 0.796 0.7975 0.7802 18.24
LTFM (time) 0.8014 0.8207 0.7975 0.8010 —

LTFM (time + location) 0.8017 0.8259 0.8101 0.8069 —
Proposed 0.8093 0.8328 0.8228 0.8178 16.4

The proposed LTFM model performs better than all baseline models in the experi-
mental results, which indicates the projection (considering both the location information
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and time information) is very beneficial for the overall performance improvement. We
experimentally confirm that LTFM, considering projection information, obtains better per-
formance than the baseline and improves performance than models that do not consider
feature interactions (RF, MLP, etc.). These results demonstrate the importance of modeling
feature interactions for perception prediction. Compared with AFM, IFM, etc., which con-
sider the importance of feature interactions, LTFM shows better performance improvement
and trains faster. LTFM effectively considers the similarity information between feature
interactions and labels through fuzzy set theory, which enhances the ability of LTFM to
capture positive feature interaction information. We can observe that the projection of
location and time information and the use of similarity information bring about a 5% and
11% performance improvement with respect to FM.

4.5. Discussion

The proposed user game perception valuation method combines relevant features of
multiple information domains as much as possible. It has advantages over existing models
based on network factors only. The ability of the model to interpret the obtained evaluation
results with high precision at the level of label and feature interaction is another advantage
of our approach.

There are two main reasons why the LTFM model shows better performance than the
standard FM model. First, FM optimizes the learning objective using stochastic gradient
descent and uses a fixed learning rate for all parameters. In comparison, we use the Adam
optimization factor module in the LTFM model to adjust the learning rate according to the
frequency of each parameter. Smaller updates are used for the frequent parameters, and
larger updates are used for the infrequent parameters. Then, while L2 regularization is
used to prevent FM from overfitting, the LTFM model uses the dropout method, which can
be more effective due to the average effect of the model. Finally, the additional improved
contribution of membership to the LTFM model for user game perception evaluation is
considered.

5. Conclusions

The LTFM model has the key advantage that FM models efficiently capture nonlinear
feature interactions between single features in sparse datasets. It utilizes the idea of projec-
tion of location and time information to enhance the predictive performance of standard
FM models while using fuzzy set theory to consider enhancing the correlation between
feature interaction and labels. The membership module can directly compute correlations
between categorical features and continuous features (or feature sets) and be used to weigh
and purify interactions between individual features from different data domains. Then, we
apply the proposed LTFM to the user game perception prediction problem with a dataset
that records the user and service factors and the final user perception ratings for each
game. Experiments show that the proposed LTFM outperforms the benchmark model in
prediction results, proving the effectiveness of the algorithm. Our proposed LTFM model
can be used for decision analysis on how operators can optimize user perception as an
integral part of a decision support system, which can help to better describe, predict, and
provide effective guidelines for the prevention of poor user perception. The implementation
of predictive user game perception analysis can provide operators and game developers
with an easy-to-use evaluation management tool, thus reducing operational costs and
improving efficiency.

There are still some limitations of our study and potential research worth exploring
further. First, external macro conditions and contextual features of playing games (e.g., at
home, subway, etc.) may have important effects on user game QoE evaluation. Considering
these features, which are not well structured in the game database, in subsequent studies
will further improve the plausibility of the overall prediction model performance. Second,
different cognitive criteria among different users may result in sample statistical bias to
accumulate rich valuation prediction features. One way to overcome this feature deficit
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problem is to include domain knowledge from experts of these companies as additional
predictive features in future work.
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LTFM Location-Time-Aware Factorization Machine
QoE Quality of Experience
MOBA Multiplayer Online Battle Arena
IUT-T ITU-T for ITU Telecommunication Standardization Sector
QoS Quality of Services
FM Factorization Machine
NFM Neural Factorization Machine
AFM Attention Factorization Machine
EFMPred embedding based factorization machine
LBFM Location-based Factorization Machine
LANFM leveraging location information Factorization Machine
IFM Interaction Factorization Machine
LDFM Location-based Deep Factorization Machine
xusers User matrix
xservices Service matrix
xnew services New service matrix after time and location projections
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