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Abstract: The forward kinematics in parallel manipulators is a mathematically challenging issue,
unlike serial manipulators. Kinematic constraint equations are non-linear transcendental equations
that can be reduced to algebraic equations with appropriate transformations. For this reason, sophisti-
cated and time-consuming methods such as the Bezout method, the Groebner bases method, and the
like, are used. In this paper, we demonstrate that these equations can be solved by non-complicated
mathematical methods for some special types of manipulators such as the 3-3 and 6-3 types of Stewart
platforms, and the 3-RRR planar parallel manipulator. Our first method is an analytical approach that
exploits the special structure of kinematic constraint equations and yields polynomials of 32nd and
16th order, as mentioned in the previous works. In the second method, an error function is defined.
This error function is employed to find the most appropriate initial values for the non-linear equation
solver which is used for solving kinematic constraint equations. Determining the initial values in this
manner saves computation time and guarantees fast convergence to real solutions.

Keywords: Stewart platform; planar manipulators; forward kinematics; Bezout method; polynomials

1. Introduction

Parallel manipulators, either planar or spatial, have been used for the last three decades
due to their higher rigidity, accuracy, and payload capacity. However, they have smaller
workspaces than serial manipulators. The Stewart platform (SP henceforth) is a well-known
type of spatial manipulator. These manipulators have one fixed and one moving platform
connected to each other by actuators, as seen in Figure 1. For this type of manipulator,
various assembly modes are available, such as 6-6, 6-3, 3-3, etc. [1]. These numbers are
attributed to the number of joints on the fixed and moving platforms, respectively. Contrary
to serial manipulators, the forward kinematics of parallel manipulators are more complex
than the inverse kinematics, hence many authors have focused on the forward kinematics
of the SP, along with other parallel manipulators [2]. In the forward (direct) kinematics,
loop equations and rigidity conditions are utilized to transition from actuators’ kinematic
parameters to those of the moving platform, i.e., to the pose, velocity, and acceleration of
the moving platform.

Vast literature exists on parallel manipulators, especially on the Stewart platform.
However, here some early published and remarkable papers will be mentioned, as funda-
mental methods are developed and proposed in these works. For detailed literature on the
Stewart platform, the paper by Dasgupta et al. can be referred to [2]. Lee et al. studied a
3-dof spatial parallel platform in which linear actuators are connected to the fixed plate by
revolute joints [3]. Inspired by this work, Nanua et al. developed a solution procedure for
the 6-3 and 3-3 Stewart platforms [4]. Merlet demonstrated that a 6-dof Stewart platform
with a triangle-shaped moving platform leads to a 16th-degree polynomial [5]. In another
paper, Merlet used symbolic computation to determine the solution polynomial of mini-
mal degree and singular configurations of parallel manipulators [6]. Rouillier proposed a
method to count the real roots of the solution polynomial [7]. Wampler also studied the
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forward kinematics of a general Stewart platform using Soma coordinates [8]. These papers
differ from each other in the methods used or proposed.
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Figure 1. General view of the 3-3 Stewart platform.

Parallel planar manipulators (PPM) usually have three dof (degrees-of-freedom) unless
redundant freedom is desired. Several design variants are encountered in the relevant
literature, such as 3 RPR or 3 RRR. Gosselin et al. [9] proposed a new architecture for the
3-dof planar manipulator. Merlet studied the forward kinematics of different types of planar
parallel manipulators [10]. Gosselin and Merlet obtained the maximum number of solutions
for the forward kinematics of planar parallel manipulators using Sturm’s theorem [11].
They showed that even though the proposed polynomial has six roots, only four solutions
exist because the two left solutions are not feasible. Hamdoun et al. performed inverse
kinematic model of a 3RRR parallel robot and did workspace analysis [12]. Kinematic
and dynamic analysis of a 3-RRR parallel planar robot using four different neural network
algorithms was carried out [13]. Toz [14] dealt with the kinematic and singularity-free
workspace analysis of a 3-dof asymmetrical planar parallel robot (3-RPR) mechanism.

For both spatial and planar parallel manipulators, the forward kinematics analysis
leads to a set of non-linear equations based on satisfying kinematic constraint equations.
These equations can be converted into algebraic equations by appropriate transformations.
Researchers have tried to solve these equations using different methods, such as Bezout’s
method [15,16], the Groebner bases method [17–19], the interval analysis method [20,21],
the continuation approach [8], algebraic elimination method [22], and numerical methods
such as the Newton–Raphson method [16,23], or using the conformal geometric algebra
framework [24]. However, in some special cases, this set of equations can be solved with
simpler techniques [4]. Nanua showed in 1990 that the forward kinematics of a 6-3 SP can
be solved by finding the roots of a 16th-order polynomial, which Charentus [25] already
presented in 1989. This is the case in the 3-3 SP (also in the 6-3 SP).

As several papers about the forward kinematics of parallel manipulators have been
published lately, they focus on the issues such as the use of machine learning [26], trans-
forming the forward kinematics problem to a suitable inverse kinematics analysis [27],
or improving and optimizing the weighting factor of a neural network for the forward
kinematics of a Stewart platform [28] rather than proposing or developing new analytical
or analytical–numerical combined methods.

As is seen in the literature mentioned above, various methods have been proposed to
solve forward kinematics problem, which can be separated into two main groups: closed-
form solution (algebraic) methods and numerical methods. The details of the algebraic
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techniques proposed so far will not be given here because they are well-known in the
relevant community and are beyond the scope of the paper. Regarding numerical methods,
the Newton–Raphson method is the most common among these. In this method, once
the user assigns the initial values to the unknowns of the problem, this method gives just
one solution. The method is highly sensitive to initial values. Sometimes, it may converge
toward an uninterested solution far from the expected, or even it might diverge. Finding
only one solution at once is the weakness of this method.

Although the forward kinematics problem of parallel manipulators has been inten-
sively studied from various aspects, and the issue appears completed, it is still possible
to develop new approaches specific to some manipulator architectures but extendable to
more general assembly forms. Motivated by this fact, in the present paper, we propose two
new and easy to implement methods for the forward kinematics of parallel manipulators of
some specific types. Both methods can be used as a general solution procedure for 3-RRR
planar manipulators, whereas they are applicable to the 3-3 or 6-3 type Stewart platforms
only. The process in our both methods is the same as that in the present literature until kine-
matic constrain equations are obtained. The first of our methods is an analytical approach,
while the second one is a combined analytical–numerical method. We call these methods
“the Solve-and-Substitute-Method” (the SSM henceforth) and “the Error-Function-Method”
(the EFM in short). However, our methods (especially the SSM) differ from those existing
in the literature, in that they exploit the special structure of the constraint equations for the
manipulators considered.

In both the polynomial-based methods in the current literature and the method we
propose here (the SSM), the problem of finding the position parameters (coordinates) is
reduced to obtaining the roots of a polynomial that is a function of only one of these
coordinates. However, our method, the SSM and the EFM differ from those existing in the
literature, in that they exploit the special structure of the kinematic constraint equations
for the manipulators considered. The steps of the SSM can be explained as follows. We
have three constraint equations for both types of manipulators studied. These equations
have three unknowns, say λ, µ, and ν. Each of these equations includes just two of these
unknowns. The power of these unknowns in the equation is at most two. In this case, two
of these equations are considered, in which one unknown is common, say λ. Hence, if this
common unknown is considered as a parameter, these two equations can be viewed as
polynomials of second order in terms of the remaining unknowns µ and ν. The roots of
these polynomials can be found in λ. Afterwards, these roots are substituted in the third
equation in which only µ and ν appear, and a polynomial of 32nd order. The real roots of
this polynomial can correspond to possible poses of the manipulator. As is easily seen, our
method is based on basic mathematical operations and can be used as a general solution
method for 3-RRR planar manipulator, while it is restricted to the 3-3 and 6-3 types of
assembly modes of the Stewart manipulator.

The second method we propose, the EFM, can be explained as follows. Our starting
point is again the set of kinematic constraint equations. As usual, we construct an error
function. In the current literature, one usually tries to find the values of three unknowns,
which makes the kinematic constraint equations zero. To this end, any non-linear equation
solver can be used, such as the Newton–Raphson method assigning some initial values,
which are usually random. In solving this set of non-linear equations, our method differs
from the previous works, in that the search interval of λ (the unknown chosen as parameter)
is carefully determined. The values of λ are selected in such a way that the roots of the
equations in which λ is the assumed parameter take the real values. To this end, the
expressions of the discriminants in the root formulas are plotted in λ, and the common
interval of λ, in which discriminants are positive, is determined. The error function is
plotted using the values of λ within this interval, and the λ values corresponding to the
minima of this function are used as the initial values for the non-linear equation solver. Thus,
one avoids randomly searching for real solutions, which also reduces the solution time.
The details of both methods (the SSM and the EFM) will be given in the following section.
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To sum up, our methods are not based on the more sophisticated techniques of the
mathematical analysis. In the first method one needs just the theory of second-degree
polynomials, while the second method accelerates and guarantees the convergence when
the real poses of manipulator are to be found by numerical techniques, such as the Newton–
Raphson method.

The paper is organized as follows: Under the headline of Materials and Methods, each
method will be explained, and then its implementation in two manipulators will be shown
separately. Two numerical applications for each method will be given in the Numerical
Examples section.

2. Materials and Methods
2.1. The SSM

The implementation of this method will be explained first for the 3-3 type SP (also for
the 6-3 type SP) and later for the 3-RRR planar manipulator.

2.1.1. The Implementation of the SSM in the 3-3 Type SP

This type of SP is shown in Figure 1 schematically.
As seen in Figure 1, li ’s (i = 1,...,6) are the length of actuators, while hi’s (i = 1,2,3) are

the lengths of the mid-perpendiculars, which can be called instantly equivalent actuators.
Φ12, Φ34, and Φ56 are the angles which the perpendiculars make with the ground.

In the case of a 3-3 or 6-3 SP, the kinematic constraint equations are obtained in the
following form (to see in detail how these equations are derived, refer to [4,16]):(

G1λ
2 + G2

)
µ2 + (G3λ)µ+

(
G4λ

2 + G5

)
= 0 (1)(

H1µ
2 + H2

)
ν2 + (H3µ)ν+

(
H4µ

2 + H5

)
= 0 (2)(

I1ν
2 + I2

)
λ2 + (I3ν)λ+

(
I4ν

2 + I5

)
= 0 (3)

where λ, µ, and ν are unknowns that are tangents of half the angles Φ12, Φ34, and Φ56, Figure 1.
Gi, Hi, and Ii’s are constant coefficients, including some dimensions of the manipulator.

When Equations (1)–(3) are carefully considered, it is seen that each equation contains
only two unknowns of, at most, second degree; hence, each equation can be seen as a
second-degree polynomial in terms of both unknowns appearing in that equation. Any
two of these equations can be selected, provided that one of the unknowns is common in
both equations. Let this common unknown be λ. Then, this unknown can be viewed as
a parameter in both equations, in our case Equations (1) and (3). Thus, these equations
become the second-degree polynomials in terms of remaining unknowns µ and ν, as the
coefficients of these unknowns are viewed as functions of λ. One gets two roots for each
polynomial: (µ1,µ2) and (ν1,ν2). Note that these roots are again functions of λ. Hence, four
variants are obtained for four root pairs, i.e., (µ1,ν1), (µ1,ν2), (µ2,ν1), (µ2,ν2). The last step
is to substitute these root pairs in the remaining third equation, in Equation (2), in which
the unknown selected as a parameter does not appear. In this method, since we need two
equations in which the unknown selected as a parameter (here λ) is common, we slightly
modified Equation (3) and re-ordered Equations (1)–(3) as follows:(

G1λ
2 + G2

)
µ2 + (G3λ)µ+

(
G4λ

2 + G5

)
= 0 (4)(

H1µ
2 + H2

)
ν2 + (H3µ)ν+

(
H4µ

2 + H5

)
= 0 (5)(

I1λ
2 + I4

)
ν2 + (I3λ)ν+

(
I2λ

2 + I5

)
= 0 (6)
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where

λ = tan
(
φ12

2

)
µ = tan

(
φ34

2

)
(7)

ν = tan
(
φ56

2

)
From Equations (4) and (6), which can be considered second-degree polynomials in

terms of µ and ν, respectively, the roots of both polynomials are obtained as below:

µ1,2 =
p±√q

r
(8)

ν1,2 =
u±
√

v
w

(9)

where
p = −G3λ

q = (G3λ)
2 − 4

(
G1λ

2 + G2

)(
G4λ

2 + G5

)
r = 2

(
G1λ

2 + G2

)
u = −I3λ

v = (I3λ)
2 − 4

(
I1λ

2 + I4

)(
I2λ

2 + I5

)
w = 2

(
I1λ

2 + I4

)
(10)

Since Equations (4) and (6) have two roots (i.e., Equations (8) and (9)), pairing these
roots two by two gives four variants: (µ1,ν1), (µ1,ν2), (µ2,ν1), (µ2,ν2). One of these variants
is substituted in Equation (5), and a polynomial in λ is obtained. It is possible to show that
the same polynomial is obtained regardless of the variant chosen. (Negative or positive
sign in Equations (8) and (9) does not affect the final polynomial in Equation (16)). Here,
the variants µ1 =

p+
√

q
r and ν1 = u+

√
v

w are used. Consequently, if the roots are substituted
in Equation (5) and multiplied both sides by w2r2 yields:

H1p2u2 + H2r2u2 +H4p2w2 + H5r2w2 + H1qv + H1qu2 + H1p2v + H2r2v + H4qw2 + 2H1pv
√

q + 2H1qu
√

v
+2H1u2p

√
q + 2H4w2p

√
q + 2H1p2u

√
v + 2H2r2u

√
v + 4H1pu

√
vq + H3rw

√
qv + H3pruw

+H3prw
√

v + H3ruw
√

q = 0
(11)

Equation (11) can be rewritten in the following compact form:

A + B
√

q + C
√

v + D
√

qv = 0 (12)

where

A = H1p2u2 + H2r2u2 + H4p2w2 + H5r2w2 + H1qv + H1qu2 + H1p2v + H2r2v + H4qw2 + H3pruw
B = 2H1pv + 2H1pu2 + 2H4pw2 + H3ruw
C = 2H1qu + 2H1p2u + 2H2r2u + H3prw
D = 4H1pu + H3rw

(13)

However, Equation (12) still includes square root terms. To eliminate them, we write
Equation (12) as follows:

A + D
√

qv = −B
(√

q + C
√

v
)

(14)

If we take the square of both sides of Equation (14), we obtain the following:

2(AD− BC)
√

qv = −A2 −D2qv + B2q + C2v (15)

Now, taking the square of both sides of Equation (15) once more, one finds:
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B4q2 − 2A2B2q−
(

2A2D2 + 2B2C2 − 8ABCD
)

qv− 2B2D2q2v− 2C2D2qv2 − 2A2C2v + C4v2 + D4v2 + D4q2v2 + A4 = 0 (16)

Equation (16) will give us a polynomial of λ. The maximum order of λ in the expres-
sions given by (16) can be found by some consideration: The order of λ in the terms in
Equation (16) is obtained by inspection of their explicit expressions given by Equation (13)
as follows:

A = O
(
λ8
)

B = O
(
λ6
)

C = O
(
λ6
)

D = O
(
λ4
)

(17)

We can find the following:

B4q2 = O
(
λ28
)

2A2B2q = O
(
λ27
)(

2A2D2 + 2B2C2 − 8ABCD
)

qv = O
(
λ32
)

2B2D2q2v = O
(
λ21
)

2C2D2qv2 = O
(
λ24
)

2A2C2v = O
(
λ28
)

C4v2 = O
(
λ22
)

D4q2v2 = O
(
λ26
)

A4 = O
(
λ32
)

(18)

As Equation (18) implies, the expression given by Equation (16) is a polynomial of
maximum 32nd degree in λ. Since the order of all terms in λ in this polynomial is even, the
degree of the polynomial can be reduced to 16 via a simple variable transformation, for
instance, ζ = λ2. Note that the degree of the polynomial can also be obtained using the
symbolic toolbox of some engineering programs such as MATLAB or Maple. The explicit
expression of this polynomial is too long, and therefore it is not given here due to the space
limitation. However, the polynomial obtained here is exactly the same symbolic expression
found by Nanua et al. [4] using the Bezout method.

The roots of this polynomial can be obtained only numerically due to its higher order.
For each λ, Equations (8) and (9) give two values for each of µ and ν. It must be checked
which variant of (µ,ν) satisfies Equations (4)–(6) simultaneously. The values that we are
interested in for this problem are only real, positive ones.

2.1.2. The Implementation of the SSM in the 3-RRR Planar Manipulator

A general view of the 3-RRR planar manipulator and its dimensions and parameters
are given in Figure 2.

In Figure 2, θ2, θ4, and θ6 are called active joint angles because they are coordinates
defining the positions of driving links while θ3, θ5, and θ7 are passive joint angles. Mathe-
matical operations similar to what is done for the SP are also carried out for this manipulator.
Since the SSM is a general method for this type of planar manipulator, for the completeness
of the subject, it will be explained here in detail how to derive the kinematic constraint
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equations. From Figure 2, the coordinates of points C and F of the planar manipulator in
Figure 2 are easily written as follows:

XC = r2 cos θ2 + r3 cos θ3
YC = r2 sin θ2 + r3 sin θ3
XF = r4 cos θ4 + r5 cos θ5 + XD
YF = r4 sin θ4 + r5 sin θ5

(19)Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 17 
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The distance between C and F is:

(XF − XC)
2 + (YF − YC)

2 =
→
‖CF‖

2
(20)

Equation (20) can also be written as

→
‖CF‖

2
− a2 = A1 cos θ3 + B1 sin θ3 + C1 cos θ5 + D1 sin θ5

+E1 cos θ3 cos θ5 + E1 sin θ3 sin θ5 + F1 = 0
(21)

where the constant coefficients are:

A1 = (2r2r3 cos θ2 − 2r3XD − 2r3r4 cos θ4)
B1 = (2r2r3 sin θ2 − 2r3r4 sin θ4)
C1 = (2r4r5 cos θ4 + 2r5XD − 2r2r5 cos θ2)
D1 = (2r4r5 sin θ4 − 2r2r5 sin θ2)
E1 = −2r3r5
F1 = r2

2 + r2
3 + r2

4 + r2
5 + X2

D − a2 − 2r2XD cos θ2
+2r4XD cos θ4 − 2r2r4 cos(θ4 − θ2)

(22)

Similarly, the coordinates of J and C are:

XJ = r6 cos θ6 + r7 cos θ7 + XG
YJ = r6 sin θ6 + r7 sin θ7 + YG
XC = r2 cos θ2 + r3 cos θ3
YC = r2 sin θ2 + r3 sin θ3

(23)

The distance between J and C is:

(XC − XJ)
2 + (YC − YJ)

2 =
→
‖JC‖

2
(24)

Equation (24) can also be written as

→
‖JC‖

2
− a2 = A2 cos θ3 + B2 sin θ3 + C2 cos θ7 + D2 sin θ7

+E2 cos θ3 cos θ7 + E2 sin θ3 sin θ7 + F2 = 0
(25)
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where
A2 = (2r2r3 cos θ2 − 2r3XG − 2r3r6 cos θ6)
B2 = (2r2r3 sin θ3 − 2r3r4YG − 2r3r6 sin θ6)
C2 = (−2r2r7 cos θ2 + 2r7XG + 2r6r7 cos θ6)
D2 = (−2r2r7 sin θ2 + 2r7YG + 2r6r7 sin θ6)
E2 = −2r3r7
F2 = r2

2 + r2
3 + r2

6 + r2
7 + X2

G + Y2
G

−r2r6 cos(θ6 − θ2)− 2r2XG cos θ2
+2r6XG cos θ6 − 2r2YG sin θ2
+2r6YG sinθ6 − a2

(26)

Finally, the distance between J and F is:

(XJ − XF)
2 + (YJ − YF)

2 =
→
‖JF‖

2
(27)

Using the coordinates of points J and F given above in Equations (19) and (23), the
following equation is found:

→
‖FJ‖

2
− a2 = A3 cos θ5 + B3 sin θ5 + C3 cos θ7 + D3 sin θ7

+E3 cos θ5 cos θ7 + E3 sin θ3 sin θ7 + F3 = 0
(28)

where
A3 = (2r4r5 cos θ5 − 2r5XG/D − 2r5r6 cos θ6)
B3 = (2r4r5 sin θ4 − 2r5YG − 2r5r6 sin θ6)
C3 = (2r6r7 cos θ6 + 2r7XG/D + 2r4r7 cos θ4)
D3 = (2r6r7 sin θ6 + 2r7YG − 2r4r7 sin θ4)
E3 = −2r5r7
F3 = r2

4 + r2
5 + r2

6 + r2
7 + X2

G/D + Y2
G

−2r4XG/D cos(θ4) + 2r6XG/D cos θ6
−2r4YG sin θ4 + 2r6YG sin θ6
−2r4r6 cos(θ4 − θ2)

(29)

Now, let the following variables define:

tan
θ3

2
:= λtan

θ5

2
:= µtan

θ7

2
:= ν (30)

If the sine and cosine terms in Equations (21), (25), and (28) are written in the new
variables given in Equation (30), the following equations are found:(

P1λ
2 + P2λ+ P3

)
µ2 +

(
Q1λ

2 + Q2λ+ Q3

)
µ+

(
S1λ

2 + S2λ+ S3

)
= 0 (31)(

K1λ
2 + K2λ+ K3

)
ν2 +

(
L1λ

2 + L2λ+ L3

)
ν+

(
M1λ

2 + M2λ+ M3

)
= 0 (32)(

U1µ
2 + U2µ+ U3

)
ν2 +

(
V1µ

2 + V2µ+ V3

)
ν+

(
W1µ

2 + W2µ+ W3

)
= 0 (33)

where
P1 = −A1 −C1 + E1 + F1
P2 = 2B1
P3 = A1 −C1 − E1 + F1
Q1 = 2D1
Q2 = 4E1
Q3 = 2D1
S1 = −A1 + C1 − E1 + F1
S2 = 2B1
S3 = A1 + C1 + E1 + F1

(34)
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K1 = −A2 −C2 + E2 + F2
K2 = 2B2
K3 = A2 −C2 − E2 + F2
L1 = 2D2
L2 = 4E2
L3 = 2D2
M1 = −A2 + C2 − E2 + F2
M2 = 2B2
M3 = A2 + C2 + E2 + F2

(35)

U1 = −A3 − C3 + E3 + F3
U2 = 2B3
U3 = A3 − C3 − E3 + F3
V1 = 2D3
V2 = 4E3
V3 = 2D3
W1 = −A3 + C3 − E3 + F3
W2 = 2B3
W3 = A3 + C3 + E3 + F3

(36)

As readily seen, the equation set of Equations (31) to (33) for the 3-RRR planar manip-
ulator has the same form as in Equations (4)–(6). Here again, in Equations (31) and (32), λ
can be selected as a parameter. The roots of both polynomials in µ and ν, respectively, can
be obtained as functions of the parameter λ. The process after this stage is the same as is
done for the SP.

2.2. The EFM

In this method, we define an error function as follows:

ε = f2
2 (37)

where f2 is the left-hand side of Equation (5) for SP and Equation (32) for 3-RRR, respectively.
In fact, the error function could be defined as ε = f2

1 + f2
2 + f2

3. In this case, f1, f2, and f3
would be the left-hand sides of Equations (4)–(6) for SP, and Equations (31)–(33) for 3-RRR,
respectively. However, in our method, since µ and ν values will be calculated in λ, as is
given in Equations (8) and (9), f1 and f3 will automatically be zero, so it will be sufficient to
use only f2 in the error function. In addition, since the range of λ values will be selected in
such a manner that the discriminants q and v in Equations (8) and (9) are positive, there
will not be problems with extracting complex roots as in SSM. The only task of the error
expression we have defined above is to determine the appropriate initial values for the
Newton–Raphson method, which is used to solve three equations with three unknowns,
namely, constraint equations. These appropriate initial values are obtained from the λ

values corresponding to minima of the error function. This ensures that we do not miss
the solutions which could not be found if the Newton–Raphson method was directly used
with inaccurately determined initial conditions. Details will be given below.

2.2.1. Implementation of the Method in the SP

For the SP, the fi components in the error function given by Equation (37) are as follows:

f1 =
(

G1λ
2 + G2

)
µ2 + (G3λ)µ+

(
G4λ

2 + G5

)
(38)

f2 =
(

H1µ
2 + H2

)
ν2 + (H3µ)ν+

(
H4µ

2 + H5

)
(39)

f3 =
(

I1λ
2 + I4

)
ν2 + (I3λ)ν+

(
I2λ

2 + I5

)
(40)
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Note that Equations (38)–(40) are the left-hand sides of Equations (4)–(6). At this point,
our method distinguishes from the numerical methods mentioned in the previous works.
To seek the possible configurations of the manipulator more consciously, we control the
discriminants q and v in Equations (8) and (9) instead of trying to equate the error functions
to zero by assigning random initial values. The discriminants q and v must be positive to
guarantee real values for µ and ν. These discriminants are as follows:

q = (G3λ)
2 − 4

(
G1λ

2 + G2

)(
G4λ

2 + G5

)
(41)

v = (I3λ)
2 − 4

(
I1λ

2 + I4

)(
I2λ

2 + I5

)
(42)

It is easily seen that the discriminants are fourth-order polynomials in λ and include
only even-order terms. Hence, when these expressions are plotted versus λ, they are
represented by the curves symmetric with respect to the vertical axis, as seen in Figure 3. In
the region of λ ≥ 0, the base of the area, which is enclosed by positive parts of both curves,
gives us the interval of λ necessary for real µ and ν values (the shaded area in Figure 3).
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2.2.2. Implementation of the Method in the 3−RRR Planar Manipulator

For this manipulator, the fi components in the error function similar to Equations (38)–(40)
are as follows:

f1 =
(

P1λ
2 + P2λ+ P3

)
µ2 +

(
Q1λ

2 + Q2λ+ Q3

)
µ+

(
S1λ

2 + S2λ+ S3

)
(43)

f2 =
(

K1λ
2 + K2λ+ K3

)
ν2 +

(
L1λ

2 + L2λ+ L3

)
ν+

(
M1λ

2 + M2λ+ M3

)
(44)

f3 =
(

U1µ
2 + U2µ+ U3

)
ν2 +

(
V1µ

2 + V2µ+ V3

)
ν+

(
W1µ

2 + W2µ+ W3

)
(45)

Here, Equations (43)−(45) are the left-hand sides of Equations (31)−(33). For the
planar manipulator, the graphics of discriminants are shown in Figure 4. Different from
Figure 3, here, the sought interval of λ is determined only by the curve related to q because
these curves do not intersect, as seen in Figure 4.
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3. Numeric Examples

In this section, two numerical examples for each method will be given to show the
implementation of both methods. Firstly, the examples related to the use of the SSM will
be treated.

3.1. Numerical Examples for the SSM
3.1.1. Numerical Application of the SSM to the Stewart Platform

The physical parameters of the Stewart platform manipulator are seen in Figure 1, and
the coefficients in Equations (4)–(6) are given in Tables 1 and 2, respectively.

Table 1. The physical parameters of the SP.

a = 600 mm l3 = 792.13 mm h1 = 895.68 mm
b = 200 mm l4 = 836.39 mm h2 = 754.92 mm

l1 = 1030.29 mm l5 = 713.19 mm h3 = 712.2 mm
l2 = 900.27 mm l6 = 908.13 mm h = 519.6 mm

Table 2. Coefficients of the Equations (4)–(6) for the SP.

G1 = 2, 543, 309.32 H1 = 2, 211, 400.81 I1 = 3, 699, 427.32
G2 = 446, 541.81 H2 = 1, 040, 240.96 I2 = 1, 167, 240.32

G3 = −5, 409, 318.49 H3 = −4, 301, 537.69 I3 = −5, 103, 577.62
G4 = 953, 461.98 H4 = 194, 392.77 I4 = 675, 534.86

G5 = 1, 561, 353.72 H5 = 1, 174, 001.77 I5 = 695, 136.68

From Equations (8) and (9), one finds:

µ =
54× 105λ+

√
−9.7× 1012λ4 + 1.17× 1013λ2 − 2.79× 1012

5.09× 106λ2 + 8.93× 105

ν =
5.1× 106λ+

√
−1.73× 1013λ4 + 1.26× 1013λ2 − 1.88× 1012

7.4× 106λ2 + 1.35× 106
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Substituting these expressions in Equation (5) and carefully rearranging yields the
following polynomial:

f(λ) = 7.65× 109λ32 − 9.95× 109λ30 + 1.06× 109λ28 + 2.77× 109λ26 − 5.63× 108λ24

−3.46× 108λ22 + 7.1× 107λ20 + 2.19× 107λ18 − 5.99× 106λ16 − 9.64× 105λ14

+3.99× 105λ12 + 8.05× 104λ10 − 2240λ8 − 1020λ6 + 67.4λ4 + 20.7λ2 + 1

This polynomial is the explicit form of Equation (16). The roots of this 32nd-degree
polynomial are given in Table 3.

Table 3. Roots of the polynomial in Equation (33).

1-) 0.78 + 0.017i 17-) −10−39 − 0.4i
2-) 0.78 − 0.017i 18-) −10−39 + 0.4i
3-) 0.718 19-) −10−39 + 0.4i
4-) 0.660 20-) −10−39 − 0.4i
5-) 0.48 + 0.24i 21-) −0.001 + 0.4i
6-) 0.48 − 0.24i 22-) −0.001 − 0.4i
7-) 0.35 − 0.11i 23-) −0.001 + 0.4i
8-) 0.35 + 0.11i 24-) −0.001 − 0.4i
9-) 0.002 − 0.4i 25-) −0.35 + 0.1i
10-) 0.002 + 0.4i 26-) −0.35 − 0.1i
11-) 0.001 − 0.4i 27-) −0.49 + 0.2i
12-) 0.001 + 0.4i 28-) −0.49 − 0.2i
13-) 7 × 10−46 + 0.41i 29-) −0.660
14-) 7 × 10−46 − 0.4i 30-) −0.718
15-) −2 × 10−39 + 0.4i 31-) −0.78 + 0.017i
16-) −10−40 − 0.4i 32-) −0.78 − 0.017i

To guarantee the physically possible poses of the SP, only the positive and real roots in
Table 3 must be considered (solution 3 and solution 4 in Table 3). For each λ value, one can
calculate two roots for µ using Equation (8) and two roots for ν using Equation (9). One
must check which variants satisfy all the Equations (4)–(6). The feasible (λ, µ, ν) variants
are shown in Table 4.

Table 4. Physically meaningful solutions (first method).

1-) λ = 0.71839 µ = 1.3341 ν = 0.74104
2-) λ = 0.66026 µ = 0.93092 ν = 0.6099

3.1.2. Numerical Application of the SSM to the 3-RRR Planar Manipulator

The physical parameters of the 3-RRR planar manipulator in Figure 2 and the coeffi-
cients in Equations (31)–(33) are given in Tables 5 and 6, respectively.

Table 5. Physical dimensions for the planar manipulator.

a = 30 mm XG = 50 mm θ2 = 12.16470◦

r2 = r4 = r6 = 30 mm XD = 100 mm θ4 = 167.8353◦

r3 = r5 = r7 = 15 mm YG = 86.60 mm θ6 = 287.8353◦

Table 6. Coefficients of the Equations (4)–(6) for the planar manipulator.

A1 = −1240.41 A2 = −895.86 A3 = 344.55
B1 = −3.69 × 10−13 B2 = −1551.67 B3 = −1551.67
C1 = 1240.41 C2 = 895.86 C3 = −344.55
D1 = −3.69 × 10−13 D2 = 1551.67 D3 = 1551.67
E1 = −450 E2 = −450 E3 = −450
F1 = 1259.59 F2 = 3116.97 F3 = 2357.14
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Using the expressions, the following 32nd degree polynomial is found:

f(λ) =306.8λ32 −2985.2λ31 + 13625.2λ30 − 38493.7λ29 + 73618.6λ28 − 93686.7λ27 + 58287.6λ26

+55911.05λ25 − 216742.8λ24 + 332487.6λ23 − 304685.9λ22 + 107439.7λ21

+174373.6λ20 − 390571.6λ19 + 425937.7λ18 − 276127.5λ17 + 40976.04λ16

+152053.9λ15 − 228415.8λ14 + 194143.3λ13 − 106190.6λ12 + 23181.7λ11

+25090.4λ10 − 38706.1λ9 + 32255.2λ8 − 20103.04λ7 + 10088.5λ6 − 4164.1λ5

+1412.02λ4 − 386.5λ3 + 82.1λ2 − 12.35λ+ 1

The roots of the expression above are given in Table 7.

Table 7. Roots of the polynomial.

λ1 = 0.58 − 0.57i λ9 = −0.97 λ17 = 0.003 − 0.4i λ25 = 0.35 − 0.82i
λ2 = 0.58 − 0.57i λ10 = −0.97 λ18 = 0.003 + 0.4i λ26 = 0.35 + 0.82i
λ3 = 0.58 − 0.57i λ11 = −0.97 λ19 = 0.498 λ27 = 10−8 − 1.1i
λ4 = 0.58 − 0.57i λ12 = −0.97 λ20 = −0.08 − 0.53i λ28 = 10−8 + 1.1i
λ5 = 0.58 + 0.57i λ13 = 0.97 λ21 = −0.08 + 0.53i λ29 = −10−8 − 1.1i
λ6 = 0.58 + 0.57i λ14 = 0.97 λ22 = 0.671 λ30 = −10−8 + 1.1i
λ7 = 0.58 + 0.57i λ15 = 0.97 λ23 = 0.1 − 0.7i λ31 = 1.57 − 0.51i
λ8 = 0.58 + 0.57i λ16 = 0.97 λ24 = 0.1 + 0.7i λ32 = 1.57 + 0.51i

As seen from Table 7, there are ten real number solutions of λ. Complex ones are
rejected. The polynomial has multiple roots. In short, there are four different real roots of
the polynomial: λ1 = −0.97, λ2 = 0.97, λ3 = 0.498, and λ4 = 0.67.

For each λ, two roots are obtained for each of µ and ν, as seen in Table 8.

Table 8. (λ, µ, ν) solutions.

Sol. No. λ µ ν

1-) −0.97 −2 −0.53 + 1.08i
2-) −0.97 −2 −0.53 − 1.08i
3-) −0.97 1.89 × 1016 −0.53 + 1.08i
4-) −0.97 1.89 × 1016 −0.53 − 1.08i
5-) 0.498 −2.75 −1.47
6-) 0.498 −2.75 −1.87
7-) 0.498 1.18 −1.47
8-) 0.498 1.18 −1.87
9-) 0.671 −4.46 −1.64
10-) 0.671 −4.46 −2.04
11-) 0.671 1.49 −1.64
12-) 0.671 1.49 −2.04
13-) 0.976 −1.33 × 1016 −1.67 + 0.94i
14-) 0.976 −1.33 × 1016 −1.67 − 0.94i
15-) 0.976 3 −1.67 + 0.94i
16-) 0.976 3 −1.67 − 0.94i

Table 8 shows that eight roots (rows 1–4 and 13–16) are complex numbers. They are re-
jected. Eight of the roots are real numbers; eight possible solutions exist. However, it should
be checked if the rigidity conditions satisfy each solution set of λ, µ, ν. After this control, it
is seen that only the λ, µ, ν triplets given in Table 9 correspond to feasible solutions.

Table 9. Possible (λ, µ, ν) solutions.

1-) λ = 0.498 (θ3 = 53.031◦) µ = 1.18 (θ5 = 99.434◦) ν = −1.87 (θ7 = 236.21◦)
2-) λ = 0.671 (θ3 = 67.776◦) µ = 1.48 (θ5 = 112.23◦) ν = −2.04 (θ7 = 232.22◦)
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3.2. Numerical Examples for the EFM
3.2.1. The Numerical Application of the EFM to the 3-3 Type SP

From Figure 3, the interval of λ values that lead to real roots for µ and ν are found as
0.573 ≤ λ ≤ 0.722. λ is altered within the obtained interval, and the error function is plotted
versus λ, Figure 5. From this figure, the minima of the error function are obtained.
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Figure 5. The graphics of ε versus λ.

The error function has two minima about λ = 0.66 and λ = 0.72. In this case, µ and
ν are calculated from Equations (8) and (9), corresponding to these values of λ. Given
these triplets of (λ, µ, ν), the real solution set is searched using a suitable algorithm (for
example, the Newton–Raphson iteration method or fsolve, a built-in function in MATLAB)).
The results obtained are given in Table 10. From the comparison of Tables 4 and 10, it is
immediately noticeable that both methods provide the same results.

Table 10. Physically meaningful solutions (the EFM).

1-) λ = 0.660 µ = 0.931 ν = 0.609
2-) λ = 0.718 µ = 1.334 ν = 0.741

3.2.2. Implementation of the EFM in the 3-RRR Manipulator

Following the steps for the 3-RRR planar manipulator, one can find the determinants
q and v as:

q = −1.35× 107λ4 + 1.2× 10−8λ3 + 1.35× 107λ2 − 2.54× 10−9λ+ 2.49× 106

v = −4.75× 107λ4 + 8.84× 107λ3 − 8.252× 107λ2 + 4.39× 107λ− 9.30× 106

As seen in Figure 4, the value of λ has to be between 0.47–0.69.
By changing the λ value in that interval and finding two roots of µ and ν values, the

resulting figure is given in Figure 6. The error function in Equation (37) is plotted for
four variants.



Appl. Sci. 2022, 12, 12811 15 of 17

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 17 
 

Table 10. Physically meaningful solutions (the EFM). 

1-) λ = 0.660 µ = 0.931 ν = 0.609 

2-) λ = 0.718 µ = 1.334 ν = 0.741 

3.2.2. Implementation of the EFM in the 3-RRR Manipulator 

Following the steps for the 3-RRR planar manipulator, one can find the determinants 

q and v as:  

q = −1.35 × 107λ4 + 1.2 × 10−8λ3 + 1.35 × 107λ2 − 2.54 × 10−9λ + 2.49 × 106 

v = −4.75 × 107λ4 + 8.84 × 107λ3 − 8.252 × 107λ2 + 4.39 × 107λ − 9.30 × 106 
 

As seen in Figure 4, the value of λ has to be between 0.47–0.69. 

By changing the λ value in that interval and finding two roots of µ and ν values, the 

resulting figure is given in Figure 6. The error function in Equation (37) is plotted for four 

variants. 

 

Figure 6. The variation of the error function over λ. 

As seen in Figure 6, the error function has two minima. The λ values belonging to 

these minimum points are used as the initial values for the non-linear equation solver 

used. It is observed that this method also gives the same solutions as those shown in Table 

9. 

4. Conclusions 

The forward kinematic analysis of parallel manipulators leads to transcendental 

equations which can be converted into algebraic ones. Researchers have tried to develop 

more general solution methods using mathematical analysis techniques, such as the Be-

zout method, the Groebner bases, and interval analysis. The Bezout method defines addi-

tional variables and equations using the constraint equations and original unknowns. In 

this method the problem is reduced to solving a homogeneous system of linear equations. 

The elements of the coefficient matrix of this system depend on only one of the original 

unknowns. Setting the determinant of the coefficient matrix equal to zero yields a poly-

nomial. Although this technique can be applied in manipulators of any assembly mode, it 

Figure 6. The variation of the error function over λ.

As seen in Figure 6, the error function has two minima. The λ values belonging to
these minimum points are used as the initial values for the non-linear equation solver used.
It is observed that this method also gives the same solutions as those shown in Table 9.

4. Conclusions

The forward kinematic analysis of parallel manipulators leads to transcendental equa-
tions which can be converted into algebraic ones. Researchers have tried to develop more
general solution methods using mathematical analysis techniques, such as the Bezout
method, the Groebner bases, and interval analysis. The Bezout method defines additional
variables and equations using the constraint equations and original unknowns. In this
method the problem is reduced to solving a homogeneous system of linear equations.
The elements of the coefficient matrix of this system depend on only one of the original
unknowns. Setting the determinant of the coefficient matrix equal to zero yields a polyno-
mial. Although this technique can be applied in manipulators of any assembly mode, it is
time-consuming. Similarly, the Groebner bases technique defines new variables and yields
new equations using this transformation. The structure of these new equations is similar to
the form of a system of linear equations after the Gauss Elimination procedure is applied.

In this paper, however, we have demonstrated that these equations can be solved
more directly using simple mathematical operations for certain assembly forms of manip-
ulators. Our first method, the Solve-and-Substitute method (the SSM), consists of three
steps: Choose one of the unknowns as the parameter. Solve the equations, including this
parameter for the remaining unknowns (This operation corresponds to finding the roots of
the equations in terms of the chosen parameter). Finally, substitute these expressions in the
third equation to obtain the polynomial needed. This method is easy to implement because
it is based on the theory of second-degree polynomials. From a mathematical point of
view, our approach is suitable for other types of mechanisms in which kinematic constraint
equations can be reduced to three non-linear equations provided that each includes only
two unknowns of second degree at most. The examples given here clearly demonstrate the
applicability of the SSM. Our second method (the EFM) allows the more accurate deter-
mination of the initial values for the non-linear equation solver, saves computation time
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significantly, and guarantees the fast convergence of the non-linear equation solver to the
solution. Both methods are based on a simple and understandable theoretical background
and yield the same results as those obtained from different methods in the literature. The
authors continue to extend their methodology to equations in other forms for manipulators
of various assembly types.
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