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Abstract: In the quest for higher acquisition rates of ultrasound images, the simultaneous emission
of encoded waves has the potential to overcome the trade-off between acquisition time and image
quality. However, the lack of fully orthogonal codes has led to the use of forward models and
inverse problem approaches to estimate the imaged medium. Nonetheless, due to some simplify-
ing assumptions on which these models rely, the previously stated trade-off still appears in these
acquisition/reconstruction schemes. In this paper, a forward model for ultrasound wave propagation
inside a scattering medium is developed for the simultaneous coded emission of plane waves. The
tissue reflectivity function of the imaged medium is estimated by solving an `1-regularized version
of the corresponding inverse problem. The proposed method is evaluated in silico and in vitro. We
demonstrate that this method outperforms the conventional technique that consists of successive
emissions of plane waves, reconstruction using delay and sum (DAS), and coherent compounding.
In silico, the ability to separate close scatterers is improved by a factor of four in the axial direction
and by a factor of 2.5 in the lateral direction. In vitro, the spatial resolution at −6 dB is decreased by a
factor of seven. These results suggest that the proposed method could be a valuable tool, particularly
for ultrasound imaging of sparse mediums such as in ultrasound localization microscopy.

Keywords: coded emission; plane-wave imaging; high frame rate ultrasound; forward model

1. Introduction

High frame rate ultrasound imaging has the potential to broaden the already vast ap-
plication field of medical ultrasonography [1]. Thus, since the introduction of conventional
focused ultrasound imaging, researchers have been working on acquisition schemes that
allow for increases in frame rates. Studies of multiline acquisition [2–5] and wide-beam
insonification [6–8] have converged into three main acquisition schemes that are currently
being translated from research to clinical applications: synthetic transmit aperture [9–11],
plane-wave (PW) [12–14], and diverging-wave (DW) methods [15]. By emitting either
PWs or DWs and then reconstructing the full images of the medium, these techniques
can increase the frame rate of conventional ultrasound by a factor of hundreds, with the
only remaining limiting factor being the pulse-echo propagation time. However, the lack
of beam focusing in emission considerably impairs the signal-to-noise ratio (SNR) of the
recorded data, and results in decreased quality of the reconstructed images. Thus, spatial
compounding has been proposed for each of these techniques [9,15–19]. After a succession
of insonifications/image reconstructions, a final improved image is obtained by coherently
compounding the low-quality images. However, successive emission and reception events
result in a drop in the frame rate, which once again yields a trade-off between image quality
and frame rate [20].

Parallel with the development of acquisition schemes, the impact of coded excitations
on image quality has been studied. It was shown in [21–24] that excitation signals with
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higher time bandwidth products increase penetration depth and SNR, which results in
images with better overall quality. In these studies, frequency-modulated signals (i.e.,
chirps) were emitted and backscattered echoes were pulse compressed using a variety of
compression filters. Other studies proposed the use of phase-modulated pseudo-random
sequences as excitation signals [21,25]. Autocorrelation-based filters were then used to
compress the echoes. However, all of these techniques consist of modification of the
excitation signals and use of post-processing filters to compress the echoes. The frame
acquisition rate remains the same, while the image quality is improved.

Later, the concept of simultaneous emission of ultrasonic waves by several sources
was introduced [26–28]. The inherent problem of echo separation was solved through
the complementarity property of the emission signals (i.e., phase-modulated Golay and
Hadamard sequences). As the binary encoded excitation signals carry more energy than
classic pulses, the SNR is improved, which again results in better image quality. Simul-
taneous emission of waves was also addressed by [29], where the total bandwidth of the
ultrasound probe was split, with each source emitting in a separate sub-band. However,
this technique results in increased SNR without increasing the frame acquisition rate.

One of the first coded schemes to increase the frame rate was proposed by [30]. Based
on simultaneous emission of phase-modulated pseudo-random sequences, Ref. [30] built a
forward model that associated the received signals with the echoes that would be received
if each source was emitting alone. By solving the inverse problem, they reconstructed
images of the medium at a higher frame rate than for conventional synthetic transmit
aperture. However, due to the lack of orthogonal codes, the method is limited to the use of
only two simultaneous transmitters, which limits the gain in frame rate. Later, a similar
approach was applied to PWs [31,32]. Once again, the bottleneck was the lack of fully
orthogonal codes. The image quality was decreased and the method was limited to two
simultaneous PWs. Given that the unknowns in the forward model are the echoes received
after each individual source emission, the inverse problem is ill-posed, which leads to
decreased image quality without regularization.

Several advanced forward models for ultrasound wave propagation in soft tissues have
been proposed [33–37]. In these studies, kernels were built that linked the backscattered
echoes to the tissue reflectivity function (TRF) of the imaged medium in the context of PW
imaging [33–37] and DW imaging [35–37]. Because for one emission/reception the forward
models are heavily underdetermined, the data provided by successive emissions/receptions
of PWs (or DWs) are used. In this way, the size of the observation space is increased, while
the number of unknowns remains constant. These methods make it possible to reduce the
number of data needed for reconstruction of high-quality images. However, as previously
mentioned, the use of successive emissions decreases the frame acquisition rate.

In this article, we propose to combine the advantages of kernel-based methods and
simultaneous emission of coded ultrasound waves to obtain TRF estimations at frame rates
as high as those provided by conventional coded approaches. The synopsis of the proposed
method is shown in Figure 1.
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Figure 1. a—Schematic representation of the proposed imaging approach. γ—tissue reflectivity
function; δ(k)—short electrical excitation of the kth wave; g(k)—received echoes that correspond
to the emission of δ(k) (kth wave); a(k)—code carried by the kth wave; y(k)—received echoes after
emission of a(k); y—recorded echoes when Npw plane waves are emitted simultaneously; f (k)—
optimal compression filter that corresponds to the kth wave; and ĝ(k)—estimation of g(k) obtained
from y. Finally, an estimation γ̂ of the tissue reflectivity function γ is obtained by solving the inverse
problem.

2. Materials and Methods
2.1. Model Using Two Transducers

Let us define u and v as punctual transducers such that u is the emitter placed in
ru = (xu, zu) and v the receiver placed in rv = (xv, zv). The pressure variation generated
by u inside a medium Ω is tied to its electrical excitation signal a(t) through its acousto-
electrical impulse response (IR) hu(t) [38]. Let us assume that the pressure wave generated
by u propagates under free-field conditions until it reaches a scatterer placed at r = (x, y).
The pressure wave is partially reflected by the scatterer [39]; consequently, the punctual
receiver v receives an electrical radiofrequency (RF) signal yuv(t) that depends on its
acousto-electrical IR hv(t) and on the incident wave pressure [40]. The RF signal, yuv(t),
can be written as [41]:

yuv(t) = a(t) ∗ hu(t) ∗ gu(r, t) ∗ hv(t) ∗ gv(r, t)γ(r), (1)

where ∗ is the continuous time convolution product, gu(r, t) is the spatial impulse response
between the medium point r and the emitter position ru, gv(r, t) is the spatial impulse
response between the medium point r and the receiver position rv, and γ(r) is the TRF value
in r. Green’s functions gu(r, t) and gv(r, t) model the free-field propagation of a pressure
wave inside a homogeneous medium [39]. The pulse echo spatial impulse response guv(r, t)
between the source u, the medium point r, and the receiver v can be expressed as:

guv(r, t) = gu(r, t) ∗ gv(r, t) =

1
4π2du(r)dv(r)

δ
(

t− du(r)+dv(r)
c

)
.

(2)

where du(r) = ‖r− ru‖2 is the distance between u and the scatterer, dv(r) = ‖r− rv‖2 is
the distance between the scatterer and v, and c is the sound speed in the medium. The term
guv(t) is obtained by integrating the contributions of guv(r, t) on the medium Ω such as:

guv(t) =
∫

r∈Ω
guv(r, t)γ(r)dr. (3)

Let us now consider a more realistic case where j and i are planar transducers of
surface Sj and Si such that j is an emitter and i a receiver. The transducers are of height h
(off-axis) and width w (along the x axis) (Figure 2a) with IR hj(t) and hi(t), respectively. As
shown by [41,42], the total received signal yji(t) can be approximated by applying Huygens’
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principle to both the emitting and receiving surfaces Sj and Si, in other words, subdividing
the surfaces Si and Sj in N punctual transducers. Thus, the total signal received by i is equal
to the sum of all of the signals generated by the (uj, vi) pairs. Assuming that second-order
scatterings generates waves with negligible amplitudes (a first-order Born approximation),
the signal received by i when j emits is:

yji(t) = a(t) ∗ hj(t) ∗ hi(t) ∗
[ ∫

ri∈Si

∫
rj∈Sj

gujvi (t)drjdri

]
, (4)

where gujvi (t) =
∫

r∈Ω gujvi (r, t)γ(r)dr is obtained by applying Equation (3) to each pair
(uj, vi). Equation (4) can be seen as a convolution product between an emission/reception
term and a wave propagation/scattering term, and therefore can be written as:

yji(t) = e(t) ∗ gji(t),

with:


e(t) = a(t) ∗ hj(t) ∗ hi(t),

gji(t) =
∫

ri∈Si

∫
rj∈Sj

gujvi (t)drjdri.
(5)

where e(t) accounts for the excitation signal a(t) and the impulse responses hj(t) and hi(t)
of the transducers. The term gji(t) models the free-field propagation of the pressure wave
in the medium Ω. The term gji(t) can be seen as the pulse echo spatial impulse response of
the medium when the planar transducer j emits and the planar transducer i receives.

Figure 2. (a) Schematic representation of the ultrasound wave emitter j, receiver i, and the associated
coordinate system. (b) Proposed discretization for the transducers and propagation medium Ω. The
surfaces Sj and Si are divided into N subdivisions.

2.2. Discretization of the Model

Let us assume that the signal yji(t) is sampled at frequency fs. Each entry yji[n]
corresponds to the value of the respective continuous time signal at time t = t0 + n/ fs,
where t0 is the start time for reception and n = [1...Ny]. The medium Ω is partitioned into
small cells of size (∆x, ∆z) that form an Nz × Nx grid Ω (Figure 2b), where each entry γ[m]
represents the scattering coefficient at the Ω grid cell defined by r = (xΩ, zΩ) ∈ Ω with:

m =
⌊ xΩ

Nx∆x

⌋
Nz +

zΩ

∆z
(6)

where b c is the floor function. Thus, the discretized TRF γ is an NzNx × 1 vector that
contains the scattering coefficients at each cell of the medium Ω. From Equation (5), it is
possible to write the discrete space–time expression of yji(t) as:

yji = e ?
N

∑
v=1

N

∑
u=1

gujvi
, (7)
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where ? is the discrete convolution, N is the number of subdivisions for each planar surface
Sj and Si, and the bold entities are the discrete equivalents (vectors) of the corresponding
continuous time/space signals.

The discrete time convolution between e and gujvi
in Equation (7) can be represented

as a matrix product between E and Cujvi , where the Ny × Ny Toeplitz matrix E (constructed
using e) depends on the excitation signal and on the IR of the transducers, and the matrix
Cujvi (of size N × N × Ny × Nx Nz) is related to the forward/backward propagation of
the wave inside the medium. Therefore, by applying Equation (A1) of Appendix A to
Equation (7), we obtain:

yji = E

[
N
∑

v=1

N
∑

u=1
Cujvi

]
γ = ECjiγ = Λjiγ,

with:


Cji =

N

∑
v=1

N

∑
u=1

Cujvi ,

Λji = ECji.

(8)

In Equation (8), matrix E depends on the excitation signal and the IR of the transducers.
Matrix Cji depends solely on the geometry of j, i, and Ω. The kernel Λji gathers all the
properties of E and Cji inside one matrix.

2.3. Derivation of the Model for Plane-Wave Imaging

PWs are unfocused waves emitted using an array composed of Nel separate transduc-
ers equally spaced by a pitch p. To emit a PW with a tilt angle θ(k), the emission delays for
each element j must be computed using the following expression:

tj = (j− 1)p
sin(θ(k))

c
, (9)

where j = [1...Nel], p is the pitch, and (k) is the kth wave. From Equations (8) and (A3) in
Appendix B, the PW equivalent of Equation (8) is given by:

yi = wiE

[
Nel
∑

j=1
wjCji

]
γ = wiECiγ = Λiγ,

with: Λi = wiECji

(10)

where wi are the apodization weights at reception. Considering a uniform spatial apodiza-
tion wj = wi = 1, ∀(j, i), we can use Equations (10) and (A6) from Appendix B to write the
received signal at the ith element of the array as:

y(k)
i = E(k)

[
Nel
∑

j=1
C(k)

ji

]
γ = E(k)C(k)

i γ = Λ
(k)
i γ,

with:


C(k)

i =
Nel

∑
j=1

C(k)
ji ,

Λ
(k)
i = E(k)C(k)

i .

(11)

where a(k)(t) is the excitation signal for the kth PW.
As shown in Section 2.2, E(k) is a square matrix of size Ny × Ny, where Ny is the length

of the recorded signals yi. The size of the matrix C(k)
i is Ny × NzNx. For a single pair of

planar transducers, a good approximation of the recorded signal is achieved when the
medium is sampled along the z axis with a step ∆z = c/ fs, which implies that Nz = Ny,
and thus Ny << NzNx. The linear system in Equation (11) contains a greater number of
unknowns than equations, which yields an ill-posed problem. In order to move closer
to a well-posed problem, a simple approach is to increase the number of equations in
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Equation (11). To achieve this, the Nel observation vectors y(k)
i obtained for each PW

with tilt angle θ(k) are concatenated. Therefore, similar to in Equation (11), γ is the same
∀i ∈ 1...Nel, and the new concatenated kernel Λ(k) will have the same number of columns
as each Λ

(k)
i ; however, it will contain Nel times more rows. The new concatenated system

can be written as follows:

y(k) = Λ(k)γ,

with:

 y(k) =
[
y(k)

1 ‖y
(k)
2 ‖ · · · ‖y

(k)
Nel

]
,

Λ(k) =
[
Λ

(k)
1 ‖Λ

(k)
2 ‖ · · · ‖Λ

(k)
Nel

]
.

(12)

where ‖ represents the vector concatenation along the rows. y(k) and Λ(k) are of size
NelNy × 1 and NelNy × NzNx, respectively. As for the discretization of the medium Ω, we
have ∆x < p (i.e., the spatial resolution along the x axis is smaller than the pitch of the
linear array), which results in Nx > Nel. In other words, the concatenated kernel Λ(k) is
still underdetermined.

2.4. Temporal Encoding for Simultaneous Emission of Plane Waves

A straightforward method that further increases the dimension of the observation
space (y(k)) consists of the following:

(a) Emit a PW in the direction θ(k) and receive its backscattered echoes y(k);
(b) Build the corresponding concatenated kernel Λ(k) using Equation (12);
(c) Repeat steps (a) and (b) Npw times with a different angle θ(k);
(d) Build the total observation vector ỹ of size NpwNelNy × 1 using:

ỹ =
[
y(1)‖y(2)‖ · · · ‖y(Npw)

]
, (13)

where each y(k) is computed using Equation (12);
(e) Build the enhanced kernel Λ̃ of size NpwNelNy × NzNx using:

Λ̃ =
[
Λ(1)‖Λ(2)‖ · · · ‖Λ(Npw)

]
, (14)

where each Λ(k) is computed using Equation (12).

In Equation (14), it can be seen that there is a value of Npw = d(NzNx)/NelNye for
which the system given by Equation (15) stops being underdetermined, and the number of
equations matches the number of unknowns.

ỹ = Λ̃γ. (15)

However, the acquisition time needed to record echoes from Npw observations is Npw
times greater than the time needed from one PW emission. The unwanted effect of the
increase in acquisition time is that for fast events, the TRF changes so quickly that for
Npw successive emissions the TRF is not the same. Under these conditions, Equation (15)
becomes less accurate. This drawback can be fixed by increasing the frame acquisition rate
or by compensating the tissue displacement [43].

To overcome the previously stated problem, we propose to emit Npw PWs simultane-
ously using quasi-orthogonal codes a(k)(t) associated with each kth PW. Using the principle
of linear propagation of PWs, we can write the total received signal y̌i(t) at the element i as
follows:

y̌i(t) =
Npw

∑
k=1

y(k)i (t) =
Npw

∑
k=1

e(k)(t) ∗ g(k)i (t), (16)
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where g(k)i (t) is the impulse response of the medium seen by the ith element, when in-
sonified with the kth PW. From Equation (16), it can be seen that the received signals y̌i(t)
contain a mix of echoes associated with each simultaneously emitted PW k. To separate
the contributions of each PW, we propose to use filters f (k)(t) adapted to the typical e(k)(t)
echo waveform of the of kth wave. We can write the expression of the filtered backscattered
echoes for each emitted PW k as follows:

ĝ(k)i (t) = f (k)(t) ∗ y̌i(t), (17)

where ĝ(k)i (t) can be seen as an estimation of g(k)i (t).
As we assume that all of the excitations a(k)(t) occupy the same frequency bandwidth,

in Equation (17) the signal ĝ(k)i (t) contains some unwanted residual signal related to the
waveforms el(t) (l 6= k), also known as the crosstalk noise. This noise can be evaluated
by considering the case where all of the Npw PWs that carry the codes a(k)(t) are emitted

successively. In this case, the received signals y(k)i (t) are not subject to crosstalk. Let us call

g(k)i (t) the corresponding estimation of g(k)i (t); we then have:

y(k)i (t) = e(k)(t) ∗ g(k)i (t),

g(k)i (t) = f (k)(t) ∗ y(k)i (t).
(18)

Using Equations (16)–(18), we can deduce the expression of the crosstalk noise ζ(k)(t):

ζ(k)(t) = ĝ(k)i (t)− g(k)i (t) =
Npw

∑
l=1,l 6=k

f (k)(t) ∗ el(t) ∗ gl
i(t). (19)

To minimize ζ(k)(t), there is the need to find the optimal filters f (k)(t) given the
excitation signals al(t). Directly minimizing Equation (19) is a complex problem, and most
importantly, its solution depends directly on the imaged medium (through gl

i(t)). Instead,
we propose to minimize the following expression that is TRF invariant:

ζ
(k)
r (t) =

Npw

∑
l=1,l 6=k

f (k)(t) ∗ el(t). (20)

The optimal filters f (k)(t) that minimize Equation (20) are Wiener filters empirically
adapted to the waveforms e(k)(t) as follows:

F(k)(ν) =

(
E(k)(ν)

)?∣∣E(k)(ν)
∣∣2 + S(ν)

, (21)

where F(k)(ν) and E(k)(ν) are the Fourier transforms of the corresponding temporal signals,
()? is the complex conjugate, and S(ν) is the spectral density of the crosstalk noise.

From Equation (21), it can be seen that the signals e(k)(t) (and the corresponding
compression filters f (k)(t)) that yield the lowest level of crosstalk need to be orthogonal or
quasi-orthogonal (i.e., high, pronounced main lobe for the convolution f (k)(t) ∗ e(k)(t), and
low values of the product f l(t) ∗ e(k)(t), l 6= k). The choice of the specific excitation signals
used in this study is detailed in Section 2.10.

2.5. Discretization of the Coded Excitation PW Forward Model

For simultaneous PW imaging, the discrete time/space equivalent of the signal received
by the ith element of the array can be deduced by applying Equation (11) to Equation (16):
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y̌i =
Npw

∑
k=1

Λ
(k)
i γ = Λiγ,

with: Λi =
Npw

∑
k=1

Λ
(k)
i .

(22)

The discrete expressions of the impulse responses estimation ĝ(k)i (t) can be computed
as follows:

ĝ(k)
i = F(k)y̌i = F(k)Λiγ, (23)

where F(k) are Toeplitz matrices computed using the waveforms of the filters f(k). From
Equation (23), it can be deduced that each matrix F(k) has Ny columns, with the number of
rows set by the relation Ny + N f − 1 with N f —the length of the vectors f(k).

As ĝ(k)
i depends only on the interaction between the PW k and the medium (leaving

out the crosstalk ζ(k)(t)), the observation space can be built by concatenation of the vectors
ĝ(k)

i for all of the receiving elements Nel and all of the PWs Npw:

g̃ =
[
ĝ1

1‖ĝ1
2‖ · · · ‖ĝ1

Nel
‖ · · · ‖ĝNpw

1 ‖ĝNpw
2 ‖ · · · ‖ĝNpw

Nel

]
. (24)

Under these conditions, using Equation (23), we can write the total kernel and the
corresponding linear system as follows:

Ψ =
[
F1Λ1‖ · · · ‖F1ΛNel

‖ · · · ‖FNpw Λ1‖ · · · ‖FNpw ΛNel

]
,

g̃ = Ψγ.
(25)

2.6. Inverse Problem Statement

In this section, the inverse problem is established and a gradient-based solver is
implemented to estimate the TRF.

In the presence of noise b, which refers to modeling and acquisition noise, Equation (A3)
becomes:

g̃ = Ψγ + b. (26)

A straightforward way to solve the problem of Equation (26) would be to minimize in a
least squares sense: ‖Ψγ− g̃‖2

2, where ‖ ‖2 represents the l2 norm. Under the condition
that Ψ is well-conditioned, the solution would be γ̂ = Ψ†g̃, where Ψ† is the Moore–Penrose
pseudo-inverse of Ψ.

As shown in Appendix C, Ψ is ill-conditioned. Thus, the use of the pseudo-inverse
would provide a degraded TRF estimation due to the amplification of the noise b. This
problem can be overcome by constraining the solution space through a regularization [44].
The TRF can then be estimated as:

γ̂SPW-FM-Lp = argmin
γ
{‖Ψγ− g̃‖2

2 + λ‖γ‖p}, (27)

where ‖ ‖p is the `p norm, and the scalar λ allows for a trade-off between the data fitting
and the regularization term.

Finding a general regularization term in Equation (27) is an open problem in the
ultrasound domain. The norm lp and the weight λ are usually adapted as a function of the
TRF [33,35,36]. In this article, the TRF is obtained using lp = l1; thus, the weight λ always
remains between 0 and 1. If the expected solution is sparse, λ is set high, otherwise smaller
values are used [45]. Here, λ is adapted on a trial-and-error basis.

The estimation of the TRF γ is obtained using the fast iterative shrinkage-thresholding
algorithm (FISTA) [46]. A detailed implementation of FISTA is presented in [37]. Similar
to [37], the FISTA stopping criterion was set to be a drop in the relative difference (between
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successive estimations) of the TRF of under 10−3. A final step of log-compression is applied
to the TRF.

2.7. Experiment Parameters

For the simulations and the experiments, a numerical model of the probe was used
(LA523E; Esaote, Florence, Italy). The probe consists of 64 elements spaced by 245 µm,
resulting in an aperture of 1.565 cm. The central frequency is 8.5 MHz. The IR of the probe
corresponds to the estimation given by the manufacturer. The assumption that the IR is the
same for all of the elements of the probe in emission and reception was made in the model.
The elements were subdivided by using N = 10 in the forward model.

The proposed method was simulated using Field II [38,47] on a synthetic sparse
medium (Figure 3a), which contains 35 scatterers. The distance between scatterers varies
linearly from 1.25 mm to 50 µm on the vertical axis, and from 1 mm to 120 µm on the
horizontal axis. The proposed method was also evaluated experimentally on a sparse
medium composed of five wires in a water tank (Figure 3b). This phantom was made by
uniformly stretching the wires inside a custom PVC mold. For the numerical simulations,
the Field II sampling rate f s was set to 200 MHz, and then decimated to 50 MHz. For the
experiment, f s was set to 50 MHz. The images are reconstructed on a grid with a pixel size
equal to 25 µm in the axial direction and 61.25 µm in the lateral direction.

Figure 3. Studied mediums. (a) Simulated position of the scatterers inside the wire phantom.
(b) Physical position of the scatterers inside the water tank.

2.8. Reconstruction Using Delay and Sum

The results obtained are compared with those provided by the classic reconstruction al-
gorithm DAS [18], using successive PWs. The excitation signal is two periods of sine waves
at the central frequency of the probe (8.5 MHz). The received signals y(k)

DASi
are apodized

in reception using a Tukey window with cosine fraction of 0.75. The f-number is set to 1.75.
Note that the DAS acquisitions are performed with only 64 elements and three PWs, which
is the same for the proposed method. An estimation of the TRF (γ̂(k)

3PW-DAS) is obtained after
each PW emission/reception. Finally, γ̂3PW-DAS is obtained by coherently adding the Npw
estimations. A post-processing step of envelope extraction and log-compression is applied
to γ̂3PW-DAS to obtain the final TRF estimation (B-mode).

For comparison purposes, a second denoised-DAS image is created by applying `1
denoising on γ̂3PW-DAS, such that γ̂3PW-DAS-L1 = argmin

x
{‖x− γ̂3PW-DAS‖2

2 +µ‖x‖1}, where

x represents the targeted sparse output image. This enables a comparison with γ̂SPW-FM-L1,
which is intrinsically constrained to a sparse solution through the `1 regularization term
(Equation (27)). The µ parameter is set as high as possible, while ensuring that all scatterers
remains visible on the reconstructed image.
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2.9. Image Quality Metrics

To evaluate the image quality provided by the proposed method, the following metrics
are used:

• Spatial resolution—quantifies the main lobe width of a point scatterer. The spatial
resolution is quantified by the full width at half maximum (FWHM), which measures
the spatial spreading of a point scatterer in the −6 dB interval. The spatial resolution
FWHM is measured both axially and laterally.

• Peak-to-center intensity difference (PCID)—quantifies the ability to separate two
scatterers in the reconstructed image [48,49]. PCID is a measurement of the minimum
value of intensity in the pixels that separate two maxima corresponding to the scat-
terers. We consider that two scatterers are separate if PCID is at least -6 dB. PCID
is computed both axially and laterally for the TRF estimations γ̂SPW-FM-L1, γ̂3PW-DAS,
and γ̂3PW-DAS-L1.

2.10. Temporal Plane-Wave Encoding
As ∆x < p, the forward model for one PW insonification is underdetermined Section 2.3.

To increase the size of the observation space, coded PWs are emitted simultaneously. For
the kernel Ψ, the number of observations is equal to the number of unknowns when
Npw = 3 PWs are emitted simultaneously inside the medium. The chosen emission angles
θ(k) are the following: θ(1) = −10◦, θ(2) = 0◦, and θ(3) = 10◦, which ensures that each angle
provides new information about the TRF [18,50].

Extensive research, which we cannot detail here for the sake of brevity, shows that
the waveforms e(k)(t) and the corresponding filters f (k)(t) that minimize the crosstalk (see
Equation (18)) in accordance with the technical specifications of the ultrasonic emission
system consist of a mix between chirps (Figure 4a–c) [24]. To compute a(k)(t), we propose
the following pipeline:

(a) e1(t) is designed as a chirp waveform emitted with an angle θ(1):

e(1)(t) = η(t)cos
(
2π f0t + π

B
T

t2), (28)

where B = 5.1 MHz is the bandwidth of the ultrasound probe, T = 18.55 µs is the
waveform duration, f0 is the central frequency of the probe, and η(t) is a 20% Tukey
window of duration T. The instantaneous frequency of the signal grows with time
and thus e1(t) is called an ‘up’ chirp.

(b) In the same way as e(1)(t), e(2)(t) is designed as a ‘down’ chirp waveform emitted
with an angle θ(2):

e(2)(t) = η(t)cos
(
2π f0t− π

B
T

t2), (29)

(c) e(3)(t) is designed as a ’up–down’ chirp, with slopes twice as steep as e(1)(t) and
e(2)(t), emitted with an angle θ(3):

e(3)(t) = η(t)cos
(
2π f0t + π

2B
T

t2),
f or 0 < t <

T
2

;

e(3)(t) = η(t)cos
(
2π f0t− π

2B
T

t2),
f or

T
2
< t < T;

(30)

(d) The excitation signals a(k)(t) are deduced from the relation e(k)(t) = a(k)(t) ∗ h(t),
using the following Wiener filter:
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Ψ(k)(ν) =

(
H(k)(ν)

)?∣∣H(ν)
∣∣2+ς

,

A(k)(ν) = Ψ(ν) ∗ E(k)(ν),

(31)

where the parameter ς can be empirically tuned to bypass zero division (outside the
bandwidth of h(t)) [51], and A(ν) and E(ν) are the Fourier transforms of a(t) and
e(t), respectively.

Figure 4. (a–c) Examples of three orthogonal e(k)(t) signals. This set of waveforms contains an ‘up’
chirp, a ‘down’ chirp, and a ‘up−down’ chirp. (d–f) Corresponding excitations a(k)(t) are used to
drive a transducer of IR h(t).

The resulting excitation signals a(k)(t) that allow the generation of echoes of shape
e(k)(t) (Figure 4a–c) are shown in Figure 4d–f. These excitation signals allow the negative
effects to be overcome (i.e., main autocorrelation lobe broadening, compression side lobe
level increased [52,53]), and they were successfully implemented on chirps by [54–56].

The optimal filters f (k)(t) are computed using Equation (21). The filtering results of
the e(k)(t) waveforms with the corresponding f (k)(t) filters are shown in Figure 5a–c. Each
crosstalk ζ

(k)
r (t), computed using Equation (20), is illustrated in Figure 5d–f. The amplitude

of the crosstalk noise is lower than the amplitude of the compressed pulse by more than
14 dB.

Figure 5. (a–c) Results of compression of the waveforms e1(t), e2(t), and e3(t) using the filters f 1(t),
f 2(t), and f 3(t), respectively. (d–f) Crosstalk noise (realization of ζ1

r (t), ζ2
r (t), ζ3

r (t) in Equation (20))
generated during the compression of the waveforms e1(t), e2(t), and e3(t), respectively.
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2.11. On the Gain in Acquisition Time

For a conventional emission/reception of three PWs, the total acquisition time can be
approximated by:

t3PW = 3(ts + tΩ + tSW) +
3

∑
k=1

t(k), (32)

where ts is the duration of the excitation signal, and tΩ is the total time needed for the
ultrasound wave to propagate forward and backward inside the medium Ω. tSW <<
ts << tΩ is a buffer time that most ultrasound scanners require to switch between an
emission event and a reception event, and t(k) is the maximal emission delay for each PW k.
Indeed, for the proposed method, the excitation signals are longer than for a conventional
acquisition scheme (ta > ts); however, as all three PWs are emitted simultaneously, the
total acquisition time can be approximated by:

tSPW = ta + tΩ + tSW + max
k∈[1..3]

t(k). (33)

Thus, using Equations (32) and (33), we can deduce the gain in acquisition time as:

η3PW =
t3PW − tSPW

t3PW
≈ 2tΩ + 3ts − ta

3tΩ + 3ts
. (34)

In Equation (34), it can be seen that if tΩ >> ta then η3PW ≈ 2/3; in other words, if
the imaged medium is very large, the time gain provided by the proposed method is 66%.
In this study, the value of tΩ = 53.6 µs is not much higher than that of ta = 18 µs. Thus, the
time gain provided for this configuration is η3PW = 55.57%.

3. Results

In this section, the results obtained using the described mediums (Section 2.10) are
detailed. First, the performance of the forward model is evaluated using numerical simula-
tions on point scatterers. Then, the method is applied experimentally on a sparse medium
using a commercial scanner (Pioneer, TPAC, Nantes, France). This ultrasonic system has an
arbitrary waveform generator that enables emission of the coded waveforms described in
Section 2.10.

3.1. Wire Phantom Simulation

Here, the method is evaluated in simulation using the phantom described in Figure 3a.
Figure 6 (left to right) shows the TRF estimations γ̂3PW-DAS obtained using DAS on succes-
sive PW acquisitions. γ̂3PW-DAS-L1 is obtained by `1 denoising of γ̂3PW-DAS, as described
in Section 2.8). The TRF estimation γ̂SPW-DAS is obtained by applying DAS to the ĝ(k)

compressed echoes obtained after Wiener filtering. The TRF estimation γ̂SPW-DAS-L1 is an `1
denoised version of γ̂SPW-DAS, with the same denoising process described in Section 2.8.
Finally, the estimated TRF with the proposed method γ̂SPW-FM-L1 is shown using λ = 0.01.

First, it can be seen that the point scatterers are correctly localized whatever the
reconstruction method. However, image quality varies greatly between the techniques. It
is noted that γ̂SPW-DAS is a poor-quality image with a very high amount of noise. In other
words, since the excitation sequences e(k) are not perfectly orthogonal (as described in
Figure 5), the RF estimations ĝ(k) are corrupted with crosstalk noise that affects the image
negatively. Nevertheless, when applying `1 denoising, the TRF is relatively similar to the
one of γ̂3PW-DAS-L1.

The TRF-estimated γ̂3PW-DAS contains artifacts that affect the final image negatively.
From Table 1, it can be seen that the scatterers are reconstructed with a broader spatial
resolution than for the proposed method. As the scatterers are punctual, thinner spatial
resolution means a better reconstruction. When applying `1 denoising (γ̂3PW-DAS-L1), the
DAS artifacts are suppressed and the spatial resolution decreases both axially and laterally.
However, it can be seen that the TRF estimation is better with the proposed method as



Appl. Sci. 2022, 12, 12809 13 of 20

the spatial resolution is point-like. This effect is clearly noted on the closely placed wires
(e.g., at 31 mm, the rightmost points are not distinguishable), while the proposed method
separates these targets.

Table 1. Image quality metrics evaluated on the simulated wire phantom.

Metric γ̂3PW−DAS γ̂3PW−DAS−L1 γ̂SPW−DAS γ̂SPW−DAS−L1 γ̂SPW−FM−l1

Ax. res WHM 192.5 µm 87.4 µm 244 µm 98.8 µm 25 µm
Lat. res WHM 455 µm 177.8 µm 551.25 µm 245 µm 61.25 µm

The performance of all the methods is evaluated using the PCID (Section 2.9) from
0.16λ to 2λ in both the axial and lateral directions. The results are presented in Figure 7.
For the axial direction, scatterers spaced more than 0.16λ are separated by the proposed
method, γ̂3PW-DAS-L1 and γ̂SPW-DAS-L1, while γ̂3PW-DAS allows us to separate scatterers
spaced more than 0.81λ and γ̂SPW-DAS more than 0.89λ. For the lateral direction, scatterers
spaced more than 0.6λ are separated by the proposed method, γ̂3PW-DAS-L1 and γ̂SPW-DAS-L1,
while γ̂3PW-DAS allows us to separate scatterers spaced more than 2λ. Thus, the proposed
method outperforms conventional DAS reconstruction in terms of spatial resolution in the
simulated sparse medium. The performance is similar with γ̂3PW-DAS-L1 and γ̂SPW-DAS-L1;
however, γ̂SPW-DAS-L1 contains a significant amount of noise even with few scatterers and
will therefore be discarded for the rest of the study.

Figure 6. Estimation of the TRF on simulated wire phantom. (a) Estimated using successive PW
acquisitions with DAS algorithm (γ̂3PW-DAS). (b) Estimated using `1 denoising on γ̂3PW-DAS with λ = 0.5
(γ̂3PW-DAS-L1). (c) Estimated using DAS and coherent compounding of the compressed echoes ĝ(k) after
simultaneous PW excitation (γ̂SPW-DAS). (d) Estimated using `1 denoising on γ̂SPW-DAS with λ = 0.5
(γ̂SPW-DAS-L1). (e) Estimated using the proposed method with simultaneous PW excitations (γ̂SPW-FM-L1).

3.2. Wire Phantom Experiment

In this subsection, we apply the proposed method experimentally to the sparse
medium described in Figure 3b. Figure 8 shows the estimated TRF using DAS (γ̂3PW-DAS),
using `1 denoising on γ̂3PW-DAS (γ̂3PW-DAS-L1), and using the proposed method with
λ = 0.01. In order to avoid confusion, the location of the scatterers is indicated by the
red arrows.

First, it can be seen that the proposed method converges to a stable solution where
the five scatterers are correctly localized. In fact, the estimated TRF contains 63 nonzero
coefficients located around the physical position of the scatterers, which is more than the five
expected but still considerably lower than the 836 and 36,405 coefficients from γ̂3PW-DAS-L1
and γ̂3PW-DAS. Due to the acquisition noise and the imperfect orthogonality of the sequences,
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an ideal solution of five nonzero coefficients cannot be reached experimentally. However,
these results confirm that the proposed method can be applied experimentally, even with
the complexity of the simultaneously emitted waveforms.

Figure 7. PCID measured on all reconsructed images. (a) Axial direction. (b) Lateral direction. The
successive acquisitions (3PW), γ̂3PW-DAS and γ̂3PW-DAS-L1, are displayed in green (solid line and
dash-dotted line, diamonds). The simultaneous acquisitions, γ̂SPW-DAS, γ̂SPW-DAS-L1, and γ̂SPW-FM-L1,
are displayed as follows: γ̂SPW-DAS is displayed in red, dotted line, circle; γ̂SPW-DAS-L1 is displayed in
pink, dash-dotted line, circle; the proposed method γ̂SPW-DAS is displayed in blue, dash−dotted line,
square. For the sake of clarity, the values of the peak−to−center intensity differences lower than this
limit are shown at −60 dB.

The spatial resolution FWHM from the central scatterer is compared between γ̂3PW-DAS,
γ̂3PW-DAS-L1, and γ̂SPW-FM-L1. In the axial direction, the measured spatial resolution FWHM
is 25, 250, and 175 µm for the proposed method γ̂SPW-FM-L1, γ̂3PW-DAS, and γ̂3PW-DAS-L1.
Thus, the axial resolution is improved 10-fold using γ̂SPW-FM-L1 rather than γ̂3PW-DAS. In
the lateral direction, the same trend is observed. The measured spatial resolution FWHM
is 61, 367, and 250 µm for the proposed method γ̂SPW-FM-L1, γ̂3PW-DAS, and γ̂3PW-DAS-L1.
These measurements clearly show that the proposed method outperforms conventional
techniques on sparse mediums in terms of spatial resolution, while increasing the frame
rate by 55.57%.

Figure 8. Estimation of the wires TRF. (a) Estimated using the delay and sum algorithm (γ̂3PW-DAS).
(b) Estimated using `1 denoising on γ̂3PW-DAS. (c) Estimated using the proposed approach
(γ̂SPW-FM-L1). The physical location of the scatterers is indicated by the red arrows. It can be seen that
for parts a and b, an additional step of envelope detection is applied before log−compression.
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4. Conclusions

Here, we presented a general forward model that links the recorded RF data to the
excitation signals, the geometric/acousto-electrical properties of the ultrasound probe,
and the TRF. The general model was adapted to the concept of coherent PW compound-
ing. To increase the frame acquisition rate, simultaneous coded emission of PWs was
proposed, and the forward model was adapted accordingly. Three PWs were emitted
simultaneously inside the medium to obtain an overdetermined forward model. The
proposed excitation signals were a mix of three linear chirps. The maximal value of the
cross-correlation/autocorrelation ratio obtained (between the excitation signals) did not
exceed 14 dB. In addition, the proposed forward model accounts for the crosstalk noise,
which was compensated for during the inversion of the forward model.

Simulation results on wire phantom showed that the ability to separate scatterers
is improved axially and laterally with the proposed method. For the estimated TRF
γ̂SPW-FM-L1, scatterers axially spaced by more than 0.16 λ were separated, while DAS
achieved a similar performance at 0.89 λ. In the lateral direction, the scatterers separated
by more than 0.6 λ were separated using the proposed method, while for the same task,
DAS-reconstructed TRF required more than 2 λ. Furthermore, the PCID was globally lower
than −60 dB for the proposed method, while the best value for DAS was −31.6 dB. We also
observed that the PSF inside the proposed TRF estimation was quasi-constant as a function
of the scatterer depth and lateral position (unlike the DAS). Such improvements were
obtained because the proposed model is not based on the classic DAS assumptions (a pulse
as the excitation signal, an ultrasound probe of infinite bandwidth, far-field scatterings). In
addition, we implemented the proposed method experimentally on an ultrasonic system
and imaged a sparse medium composed of five wires in water. The spatial resolution was
better than the one obtained with conventional DAS and DAS with `1 denoising (γ̂3PW-DAS
and γ̂3PW-DAS-L1). This confirms that the model is accurate, even on real experimental data.
However, since the model is based on free-field propagation within nonattenuating media,
it may not be accurate for media with heterogeneous speed of sound and attenuation. In
the proposed method, three planes waves were emitted simultaneously. More plane waves
could be emitted simultaneously to increase the image quality and the frame rate. However,
due to the crosstalk noise (Section 2.4), which can cause degradation in the image quality, it
would require a higher number of orthogonal sequences.

The prospectivesof this work are the following. First, the performance of the method
will be evaluated in sparse mediums containing microbubbles such as in ultrasound
localization microscopy [57], and in phantoms mimicking blood vessels, where the gain in
frame rate may be truly beneficial. Safety measures will be quantified with a view toward in
vivo application of the technique. The feasibility of using a larger number of simultaneous
plane waves will be studied. Finally, regularization techniques using deep learning (see,
e.g., [58]) will be studied for TRF reconstruction.
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Appendix A. Formulation of the Cji Matrix for Planar Transducers

In Equation (8), it can be seen that gji can be replaced with a matrix product between
an Ny × NzNx matrix Cji and the vector γ. As each column m of the matrix Cji is related to
a point in Ω through Equation (6), for each point~r = (x,z), the entries along only column
m of Cji will be modified, as follows: m will be null everywhere except at line τ that
corresponds to time τ/ fs = b(t − t0) fse/ fs when the echo generated in~r arrives at vi
(b e represents the nearest integer function). Ideally (if τ/ fs = t− t0), the entry Cji[τ, m]

will take the value given by the geometric spreading term 1/(4π2du(~r)dv(~r)) of the wave
amplitude. However, as in most cases τ/ fs 6= t− t0, we propose to extrapolate the term
1/(4π2duj(~r)dvi(~r)) into two entries of Cji[τ, m], as follows:

Cji[τ, m] =
N
∑

v=1

N
∑

u=1
Cujvi [τ, m]

with: Cujvi [τ, m] =


α

4π2duj(~r)dvi(~r)
, for τ =

⌊ duj(~r)+dvi(~r)
c fs

⌋
β

4π2duj(~r)dvi(~r)
, for τ =

⌈ duj(~r)+dvi(~r)
c fs

⌉
0, elsewhere

(A1)

where d e is the ceiling function. Linear interpolation, nearest-neighbor, and ceiling func-
tions were compared. The lowest mean square error (compared to the reference using Field
II) was achieved using the ceiling function. In Equation (A1), the extrapolation coefficients
α and β are chosen in such a way as to minimize the echo discretization error, and they are
computed using the following expression:

argmin(α,β)

∥∥∥∥∥e(t) ∗
[
δ
(
t− duj(~r)+dvi(~r)

c
)
−

(
αδ(t− τ) + βδ(t− τ − 1

fs
)
)]∥∥∥∥∥

2

(A2)

Appendix B. Establishment of the General Forward Model

To overcome some emission/reception artifacts, it is also possible to apply a spatial
apodization function to the elements of the probe at emission/reception [59,60]. This
consists of applying a weight wj on the excitation signal (aj(t)) for each element j, and a
weight wi on the received signal at each element i. Let us consider that Nel elements of the
probe are active in emission. Under these conditions, the total signal yi(t) received by an
element i can be approximated by the sum of the signals yji(t). We obtain:

yi(t) = wihi(t) ∗
Nel

∑
j=1

wjhj(t) ∗ aj(t) ∗ δ(t− tj) ∗ gji(t) (A3)
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Assuming that the excitation signal is the same for all j (a(t) = aj(t), ∀j) and that the
elements have the same IR h(t) in emission and reception, we can rewrite Equation (A3) as
follows [61]:

yi(t) = wie(t) ∗ gi(t)

with:


e(t) = a(t) ∗ h(t) ∗ h(t)

gi(t) =
Nel

∑
j=1

wjδ(t− tj) ∗ gji(t)

(A4)

As can be seen, the signal gi(t) depends on the emission tapering, emission delays,
TRF, probe and medium geometry, and medium TRF. Using Equation (A1), the discrete
expression of Equation (A4) becomes:

yi = wiE

[
Nel
∑

j=1
wjCji

]
γ = wiECiγ = Λiγ

with:


Ci =

Nel

∑
j=1

wjCji

Λi = wiECi

(A5)

Appendix C. Estimation of the Condition Number of Kernel Ψ

The condition number KΨ of kernel Ψ can be deduced as follows. In Section 2.10, we
showed that the filters f (k)(t) are adapted to quasi-orthogonal waveforms e(k)(t). This
means that f (k)(t) is also almost orthogonal and the resulting Toeplitz matrices F(k) verify
(F(k))TF(k) ≈ I, ∀k ∈ {1..Npw} where ( )T is the transpose operator and I is the identity
matrix. We can use the Gram matrix rank property to deduce the rank $Ψ of the matrix Ψ:

$Ψ = $(Ψ)TΨ (A6)

Using Equation (A3), we can deduce the analytical expression for the matrix product
(Ψ)TΨ:

(Ψ)TΨ =
Npw

∑
k=1

Nel

∑
i=1

(Λi)
T(F(k))TF(k)Λi ≈

Npw

∑
k=1

ξ(k)
Nel

∑
i=1

(Λi)
TΛi ≈ Ξ

Npw

∑
k=1

ξ(k)

with:


ξ(k) = ‖f(k)‖

Ξ =
Nel
∑

i=1
(Λi)

TΛi

(A7)

As $Λi ≤ Ny, we can use the subadditivity property of the matrix rank to write:

$Ξ ≤
Nel

∑
i=1

$(Λi)
TΛi
≤ NelNy (A8)

Combining Equations (A6)–(A8), we obtain:

$Ψ ≤ $Ξ ≤ NelNy (A9)

Given that the kernel Ψ is of size NpwNel(Ny + N f − 1) × Nx Nz, the result of
Equation (A9) means that Ψ is not full rank, which means by definition that its condi-
tion number KΨ is very high (∼1022).
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