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Abstract: Recently, deep learning-based models have emerged in the medical domain. Although
those models achieve high performance, it is difficult to directly apply them in practice. Specifically,
most models are not considered reliable yet, while they are not interpretable. Therefore, researchers
attempt to interpret their own deep learning applications. However, the interpretation is task specific
or only appropriate for image data such as computed tomography (CT) scans and magnetic resonance
imaging (MRI). Currently, few works focus on the model interpretation given time series data
such as electroencephalography (EEG) and electrocardiography (ECG) using LIME. Because the
explanation generated by LIME is from the permutation of the divided input data, the performance
of interpretation is highly dependent on the split method. In the medical domain, for the time series
data, existing interpretations consider only the time axis, whereas physicians take account of the
frequency too. In this work, we propose the model interpretation using LIME considering both
time and frequency axes. Our key idea is that we divide the input signal using graph-based image
clustering after transforming it using short-time Fourier transform, which is utilized to capture the
change of frequency content over time. In our experiments, we utilize real-world data, which is EEG
signals recorded from patients during polysomnographic (PSG) studies, as well as prove that ours
captures a significantly more critical explanation than the state-of-the-art. In addition, we show that
the representation obtained by ours reflects the physician’s standard such as K-complexes and delta
waves, which are considered strong evidence of the second sleep stage and a clue of the third sleep
stage. We expect that our work can be applied to establish computer-aided diagnosis as well as to
measure the reliability of deep learning models taking the time series into them.

Keywords: model interpretation; electroencephalogram; short-term Fourier transform

1. Introduction

Recently, deep learning-based models have been tremendously developed by many
researchers in the medical domain for image and signal datasets. Specifically, for image data
such as computed tomography (CT) scan, magnetic resonance imaging (MRI), deep learning
models based on U-Net [1], which is proposed to segment biomedical images, achieve high
performance. The studies include organ segmentation, brain tumor detection and skin
cancer classification [2-6]. In addition, deep learning models are applied to one-dimensional
medical data as well. The works utilize convolutional neural networks (CNNs) and long
short-term memory networks (LSTMs) for arrhythmia detection, mortality prediction,
sleep stage detection, bruxism detection and insomnia detection [7-14]. However, those
methods are difficult to directly apply in practice. The reason why is that the deep learning-
based model is hard to interpret. The lack of interpretability means the lack of reliability.
Although, some works attempt to interpret the prediction results, the interpretation highly
depends on their specific task [15-17].
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Since the interpretation methods for deep learning have been proposed, such as
Grad-CAM [18] the gradient-based visualization, KernelSHAP [19] the Shapley value-
based method from game theory and LIME, which exploits surrogate model [20], the
interpretations are also applied to the medical domain [21-23]. However, Grad-CAM-based
visualization is only appropriate for image data. Besides, the exact Shapley value is difficult
to earn, because the Shapley value is calculated from all combinations of the features [19].
Therefore, for one-dimensional data, LIME is utilized in the state-of-the-art interpretations,
which are named NEVES [24] and LIMESegment [25].

Given a target model that is to be explained and the input data, LIME exploits a
surrogate model that is considered easy to interpret, such as linear model or decision
tree [20]. The explanation is obtained from training the surrogate model using perturbed
samples and associated logits predicted by the target model. The perturbed samples are
a randomly permuted subset of the input. For example, given an image of skin cancer,
the image can be divided into lesions and normal skin of the image. Then, the perturbed
samples can be the image of lesions, the image of normal skin and the image of both.
Because the characteristics of LIME, the explanation depends on how to split the input
instance. Former works exploit LIME, split the input time series at the same interval and fill
it with interpolation [24] or divide from the change point, which is the boundary of the most
dissimilar between window slides [25]. They are, however, limited in that they consider
the signal changing along the time axis whereas physicians consider the characteristics of
signals along the time and frequency axes in practice [26-29].

In this work, we propose the method to interpret models based on deep learning
given time series medical data. Specifically, we consider the medical signals, which are that
not only the change point along the time axis but also the frequency plays an important
role in diagnoses such as electroencephalography (EEG), electromyography (EMG) and
electrocardiography (ECG) [30-32]. Given the input signal, our suggestion considers both
time and frequency axes. We transform the input signal using short-time Fourier transform
(STFT) and divide it into aspects of both axes. The divided signal is randomly permuted
and inverted by inverse STFT (ISTFT). Finally, our method produces the explanation of
the input as depicted in Figure 1. In the experiments, we show that our method figures
out a significantly more critical explanation than the state-of-the-art and it generates a
comparative explanation as a physician’s decision.

Our contributions are as follows:

*  We propose the novel approach to interpret a deep learning classifier given medical
signals such as EEG considering both aspects of time and frequency while physicians
consider both of them to diagnose in practice.

* In the experiments, we confirm the suggestion from this work with the real-world
dataset, which is EEG signals recorded from patients during polysomnogrphic studies.

*  We show that our suggestion captures the probable explanations such as K-complexes
and delta waves, which are considered strong evidence of the second sleep stage and
the third sleep stage, respectively.

The rest of our paper is organized as follows. In Section 2, we review existing in-
terpretations for deep learning models and their limitations in the general and medical
domains. We define our problem and introduce our method in Section 3. We compare the
performance between ours and the state-of-the-art in Section 4. Finally, we conclude our
research in Section 6. Moreover, we attach additional experimental results in Appendix A.
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Figure 1. Given the target model f, which is to be explained, and the input signal x, which is an EEG

signal, the explanation ¢(x) is obtained using the surrogate model g, which is easily interpretable as
a linear model. The model explanation ¢(x) depends on the perturbed samples z.

2. Related Work

Although deep learning model interpretation has been paid attention by many re-
searchers [18,19,33], those works are limited to the task for image data. Some works
consider the medical domain, but most studies consider only image data such as computer-
ized tomography (CT) scan and skin lesions [15-17], although only a few works attempt
to interpret models given the time series data [24,25]. In this section, we review existing
deep learning model interpretation methods in a general domain and in a specific domain,
which is the medical domain, as well as the model interpretation given time series data.

2.1. Model Interpretation in General Domain

Researchers attempt to interpret the decision of the model by calculating the impor-
tance score [19,33] and the heat map [18]. DeepLIFT [33] and KernelSHAP [19] compute the
difference of scores between the original class and target class. However, both DeepLIFT
and KernelSHAP are limited in the following ways. DeepLIFT has a limitation that users
should find the reference input, which plays an important role in score calculation. In other
words, the quality of the explanation depends on the experimenter’s domain knowledge.
KernelSHAP acquires the Shapley value, which is proposed to measure the feature impor-
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tance in game theory [19]. Although authors introduce an approximate method to derive
the Shapley value, their interpretation process still has a huge time cost [19]. In addition,
Grad-CAM [18] creates a heat map, which is related with the class based on the feature
map from the hidden layers. The heat map acts as the highlight of the most connected
part of the input image. However, Grad-CAM has the limitation that, if there are multiple
objects that are related with the class, it does not capture them.

2.2. Model Interpretation in Medical Domain

In the medical domain, researchers acquire the attention network and gradient to
interpret segmentation models given images of magnetic resonance imaging (MRI), CT and
skin lesions. SAUNet exploits the attention network to extract the global context of MRI
segments [15]. Factorizer [16] solves non-negative matrix factorization as a self-attention
role to segment brain tumors. The attention of both SAUNet and Factorizer is utilized to
interpret the model. Moreover, gradient-based saliency maps are employed to interpret a
skin cancer classifier [17]. Although they claim that their interpretations assure the decision
of their model is similar to a human’s, their interpretation methods are limited to the
specific task, specifically the images.

Given the time series data in the medical domain such as electrocardiogram (ECG),
NEVES [24] and LIMESegment [25], we find the most important subset of the input using
LIME [20]. NEVES divides the signal by the same interval, while LIMESegment separates
it by the change point, which is the most different point between window slides. Although
they attempt to interpret the model given medical time series data, they are limited to
only consider the aspect of time axis, whereas the frequency is also the important role to
diagnose in practice.

3. Model Interpretation for Signal Classifier

As we mentioned in Section 2, model interpretation works have been proposed by
many researchers. In the medical domain, most researchers focus on a model interpretation
given image data, but few works deal with it given time series data. Specifically, in the
medical domain, for diagnosis given time series data such as electroencephalogram (EEG)
and electromyography (EMG), physicians consider not only periodic patterns, but also
frequency bands [27-29], whereas existing methods take account of periodic patterns [24,25].
Therefore, we aim to develop an improved model interpretation given time series data. We
simply define our problem as follows.

Problem definition: Given a black box classifier f, which is inaccessible model parameters,
and to classify an input data x, which is a time series, our goal is to provide an interpretable
representation §(x) of the input.

In the rest of this section, we introduce our explanation method and the building
blocks for our approach.

3.1. Prerequisites

LIME is an explanation method of machine learning models that is a black box classi-
fier [20]. Given a model f to be explained and an input instance x, LIME defines explanation
¢(x) as follows using explainable model g, which has trainable parameters such as a linear
model or decision tree:

2(x) = argmin £(f, 8, m:) +Q(g) ®

where 71, represent the distance between the input instance and the perturbed sample, as
well as ()(g) is the complexity of the explainable model g such as the number of non-zero
weights for a linear model. For the complexity (g), we choose a constant so that LIME
claims that Q(g) can be a hyper-parameter [20].

Once the complexity is chosen, the input x is divided by discrete components that are
interpretable. For example, given an image of a dog in the grass and a complexity of 2, it
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can be split into a set Z of two images such as the dog and the grass using a super-pixel
such as Felzenszwalb [34]. Then, a trainable linear model g is obtained by minimizing the
loss as below:

Lif,gm)= Y m(2)(f(z) - ()’

z,72'€Z

@

where z and z’ represent the perturbed sample and the discrete component of the input x
named perturbed sample, respectively, e.g., a perturbed sample z can be one of the image
of the dog or the image of the grass. At that time, the positive model parameter of g
describes the importance of the component because entries of z’ are 0 or 1 where those
entries represent “absence” and “presence” of the component, respectively. Consequently,
selection of the split method plays an important role. For time series data, former works
apply LIME as well [24,25,35]. Unlikely for images, they not only focus on how to split
the input, but also focus on how to generate perturbed regions. They acquire random
split [24,35] or finding the most probable change points comparing the similarity between
window slides [25]. In addition, they attempt to fill the regions to generate perturbed
samples using constant value, linear interpolation or both short-time Fourier transform
(STFT) and inverse STFT (ISTFT).

3.2. Perturbed Sample Generation for Time Series Data

Our approach is based on the given time series data being decomposed into two-
dimensional information, which are periodic patterns on the time axis and frequency
characteristics on the frequency axis. Moreover, as we mentioned earlier in Section 3.1,
the selection of both split method and filling method are important to generate the most
probable perturbed samples to exploit LIME for time series data. Our split method and
filling method are described in the following sections.

3.2.1. Separating Representative Component of Signal Data Using STFT and Super-Pixel

In practice, observed signals in medical centers are non-stationary, e.g., recorded
EEG for diagnosis seizure. In other words, biomedical signals change frequency over
time. Moreover, because physicians consider both periodic patterns and frequency bands
simultaneously to diagnose a patient [27-29], we exploit STFT to transform the input signal.

STFT is considered to capture the change of frequency content over time, whereas
the conventional discrete time Fourier transform (DTFT) averages frequency contents over
time [36]. STFT given the input signal is defined as follows:

m+(N—-1) ‘
Xkml= Y x[nw[n—mleiwr=m 3)

n=m

where x[n] is the observed data point at time 1, w[-] is the window function given the
window size and w represents the angular frequency as well as N is the number of samples.
Therefore, transformed X is represented as a 2-dimensional matrix that has the axes of the
frequency and the time segment. STFT describes the magnitudes of the frequencies for
the m-th segment. For example, we transform the input x using STFT and visualize it as
the spectrogram at the left diagram in Figure 2. As we can see in the second-row, the high
magnitude of the low frequency is represented well around the 19th time segment.

Since our main purpose in this subsection is to divide the input signal into represen-
tative components, our next step is to segment the spectrogram. In this work, we utilize
Felzenszwalb [34], which is proposed to segment an image into sub-regions. The intuition
of Felzenszwalb is that pixels in an image and the differences between pixel values are
considered as nodes v; € V and weights ¢;; € E for nodes v; and v; in an undirected graph
G = (V,E). v; is already in a region S, but neighbor node v; is not yet. It compares the
weights ¢;; to the maximum weight Max(w) in the region S. After that, it decides whether
those pixels are in a same region or not using threshold 7. The threshold is added to



Appl. Sci. 2022,12, 12807 6 of 15

the maximum weight Max(w). We apply it for the spectgrogram as shown in Figure 2.
Consequently, we separate clusters, which are divided by associated frequency and time
pixels as we depicted in the third-row of the left diagram.

Perturbed Sample Generation
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Figure 2. The process of generating perturbed samples consists of two sub processes: (1) As shown

in the left diagram, given one-dimensional EEG signal x, the input is transformed using STFT. After
that, it is divided using image segmentation such as Felzenszwalb [34]. (2) The divided samples are
randomly permuted to generate perturbed samples as depicted at the upper side in the right diagram.
Then, the perturbed samples are converted into one-dimensional signal again using ISTFT.

3.2.2. Restoration the Signal Data from Separated Representations

We generate a perturbed sample from the segmentation mentioned in Section 3.2.1.
Because of the characteristics of Felzenszwalb, it divides around 40 segments. We select
the masking ratio for the the predicted labels by the model f to be explained as evenly
distributed. More concretely, for an input instance x, we generate 100 masked samples
for each masking ratio in range from 0.1 to 0.9 and choose the ratio, which maximizes the
entropy of the prediction by the model f. In Figure 2, in the right diagram, we show the
masking and sampling process. The upper three boxes are masked samples. Based on the
masking regions of the spectrograms, we zero out the real and imaginary value obtained
by STFT. Finally, we derive ISTFT as the following formula:

x[n| = —— X[k, m]en=m 4)
NW m=n—(N-1) k=0

where W is the summation of the window function for all segments and other terms are
same as Equation (3). In Figure 2, in the lower boxes in the right diagram, we depict the
results of ISTFT. The inverse signals that are highlighted in red show that our approach
masks the signal, not only the aspect of time but also the aspect of frequency.

3.3. Data Description

Our target model, which is to be explained, is trained using SleepEDF [37]. The
research consists of the cassette study and the telemetry study, which are able to discover
the effect of nothing from healthy patients and an insomnia medication temazepam from
patients who have mild difficulty falling asleep, respectively. Because our purpose focuses
on model interpretation, not the effect of a medicine, we consider only the dataset from the
cassette study. The dataset is obtained from around 40 healthy patients of varied ages and
sexes. The original dataset includes various channels, but we use only one channel of EEG
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in this work. Each record is around 8 h. We split the record for each epoch, which is 30 s.
Moreover, the dataset is annotated into six sleep stages, which are wakefulness, non-REM
1-4 and REM according to R&K rule [38], but we merge non-REM 3 and 4 as stated in the
American Academy of Sleep Medicine (AASM) standard [26]. Therefore, the target model
classifies five sleep stages given a 30 s EEG signal. Finally, we obtain 6955, 2581, 15951, 5051
and 7042 records of wakefulness, non-REM 1-3 and REM, respectively. We split the data
into 75% and 25% to train and interpret the target model, respectively.

4. Experiments

In this section, we describe our experimental environment and results as well as we
discuss our results. Every method including ours is implemented using PyTorch 1.11 in
Python 3.8. All experiments reported in this section are performed on machines with
Intel(R) Core(TM) i9-7900X CPU @ 3.30 GHz and 128 GB main memory running Ubuntu
18 OS. We also utilize a single GPU and NVIDIA GeForce 1080 Ti equipped with 11 GB
of memory.

4.1. Implementation Methods

We implement a target model, which is to be explained, and the interpretation methods
in the following list.

e  Target model: Since our main goal is to interpret a deep learning classifier, we train
a deep learning model, which is to be explained, by the proposed method. The target
model is proposed for automatic sleep stage classification [39]. We train the model
using the SleepEDF dataset, which is described in Section 3.3. The model consists of
convolutional neural networks (CNNs) and long short-term memory networks (LSTMs).
CNNs and LSTMs in the model are designed to capture features from a given epoch
of an electroencephalography (EEG) signal and from sequential epochs of EEG signals,
respectively. Because only CNN layers, which are called FeatureNet, achieve comparative
performance with the full model in [39], our target model is FeatureNet.

e LIMESegment [25]: We compare our method with LIMESegment. They also exploit
LIME to interpret a classifier for time series. They focus on detecting the change point
given the time series data, which are considered the boundary of segments. Once the
change points of the input signal are determined comparing the similarity of window
slides, it generates perturbed samples. To create the perturbed samples, the intuition
is that the segment in the input signal is filtered based on the threshold frequency.
The threshold is determined by the highest frequency value over time with minimal
variance. After that, anything lower than the threshold is filtered out. We exploit the
imeplementation given by the authors from their GitHub repository.

*  Ours: We also implement our interpretation method, which is described in Section 3.

4.2. Qualitative Results

Since we aim to provide the interpretable representation, we measure how much the
representation describes the decision of the target model given the input well. Therefore, we
remove the most representative region searched by our work as well as LIMESegment, the
baseline. Then, we compute the difference of the logit. The experiment is based on our as-
sumption as follows. A modified input that is removed from the most representative region
is given to the target model. Then, we assume that the logit will be significantly changed.

We remove 25% of the most representative region according to each method and
calculate the difference of the logit between the modified input and associated original
input. For example, let a signal of wakefulness given to the target model produce the logit
0.85. If we remove 25% of the most representative region in the signal and it is given to the
target model, the logit will be decreased to some value such as 0.35. Then, the difference
of the logit is 0.5. In other words, the representative region provides probable decision
criteria of the target model given the signal. We list the mean of the difference for the sleep
stages, which are wakefulness, non-REM 1-3 and REM in Table 1. In the table, the five
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sleep stages are annotated as “W”, “N1”, “N2”, “N3” and “REM”. In the table, the mean
of the difference of logits shows that our work finds a more representative region than
the baseline.

Subsequently, we exploit t-test for each class, which compares the means of two groups
and whether they are significantly different or not. We set the null hypothesis and the
alternative hypothesis for the test as below.

*  Null hypothesis: The representations obtained by ours and LIMESegment are same.
e Alternative hypothesis: The representation obtained by ours is more critical for the
model decision than the baseline.

Because the standard deviations are not same between ours and the baseline, we apply
Welch’s t-test and set alpha 10%. Finally, we obtain p-values for each sleep stage less than
1 x 1075. Therefore, we reject the null hypothesis and statistically prove that our method is
significantly critical to describe the model decision.

Table 1. The difference of the logit between the input, which is removed from the most representative
region and associated original input. The entry describes the mean of the the difference with regard
to the sleep stage. Each column is for wakefulness, non-REM 1-3 and REM.

Methods\Sleep Stages w N1 N2 N3 REM
LIMESegment 0.07 0.23 0.04 0.24 0.05
Ours 0.46 0.76 0.51 0.99 0.65

4.3. Case Study

According to the AASM manual [26], the K-complexes are shown during the sleep
stage of non-REM 2 and they are considered strong evidence for the sleep stage. A
K-complex is a wave starting from a high-voltage peak and followed by slow and large
negative complex peaks around 350-550 ms. Moreover, there is an important clue for the
sleep stage of non-REM 3. If the delta wave exists for more than 50% in an epoch, it is
considered N3 [26]. The delta wave is the frequency between from 0.4 to 5 Hz. In this
section, we show samples of representations obtained by ours and the baseline. Then, we
discuss how the samples are representative, such as the rule stated in the AASM manual.

In Figure 3a, we depict the representations obtained by us and LIMESegment for N2.
The representative regions are filled with light green. The 1st and 4th rows show the most
representative regions for each method. Note that ours is selected from the spectrogram
transformed by STFT while the baseline is raw signals. The most representative region
for the class is shown as the blue lines in the 2nd and 5th rows, whereas without the
representation is shown as the red lines in 3rd and 6th rows. The title of each signal
explains the predicted class from the target model given the signal. As shown in the figure,
the proposed method captures the K-complexes well, as pictured in the blue boxes. The
baseline captures the K-complexes as the most opposite representation in the red boxes.
Therefore, the only representation signal obtained by ours is still classified as the original
class N2 as shown by the blue lines. However, the representation from the baseline is not
classified as the original class, rather it is classified as N1 the blue line at the upper sample.
Moreover, without the representative region, both signals from ours are misclassified as
REM, but from the baseline is still classified as N2, the red line at the lower sample. In
addition, when we retain only the most opposite representation by ours, the remaining
signals are classified as different sleep stages as REM and N1, while the baseline ones are
classified as the original sleep stage.
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Figure 3. We depict how the representations are critical for the decision of the target model. The blue
box and the red box indicate the most probable positive explanation of the target model and the most
probable negative explanation of the target model given the signal respectively. They can be acquired
to support physicians to interpret the target model. (a) Original sleep stage of the EEG samples is N2.
(b) Original sleep stage of the EEG samples is N3.
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In addition, we also draw the representative regions from both methods in Figure 3b.
The regions are filled light green as well. As we can see in the figure, our method captures
delta waves well in the blue boxes at the 2nd and 5th rows, whereas the baseline does only
part of it. Therefore, only representative signals from ours are classified as the original sleep
stage N3, but the baseline ones are misclassified as N2. Without the representation, the
signals made by ours are misclassified as N1 and N2, while the signals from the baseline
are still classified as N3.

5. Discussion

In this section, we analyze the results produced in the experiments. Moreover, we
introduce a the possible scenario of developing applications using our method in practice.
In addition, we discuss the limitations of our method and the future direction.

5.1. Analysis of Results

Our method is confirmed to outperform the baseline as described in Section 4.2. It is
proved using statistical analysis. Moreover, in Section 4.3, it shows that the explanations
obtained by ours for sleep stage N2 and N3 represent plausible reasons of diagnosis by
the target model as physicians, as stated in the AASM standard [26]. Specifically, our
method captures not only the explanation of the K-complexes for sleep stage N2, but also
the explanation of delta waves for sleep stage N3. We analyze that because our method
considers more fine-grained components of the input signal, and unlike the baseline
considers coarse components, it is available to capture more representative regions.

5.2. Possible Application of Proposed Method

Moreover, our method can be adopted to develop an application to support physicians
who want to utilize deep learning-based computer-aided diagnosis (CAD). For example, a
physician can reduce the time cost of diagnosis using the CAD, and the reliability of the CAD
is provided using ours, such as the explanations as depicted as the blue lines in Figure 3.

5.3. Limitations and Future Directions

Although our method considers both time and frequency axes together, it is limited in
that the suggestion in this work depends on a clustering method for a transformed signal
such as Felzenszwalb [34], which is exploited in this work. Moreover, the clustering method
could not take account of the important bands of frequency. For example, according to the
AASAM manual [26], humans consider the frequency at most beta waves, which is between
14-30 Hz. However, the clustering method does not consider the bands. Therefore, our
method captures the over-explained sample from 0-100 Hz as shown in the region filled
with light green in Figure 3. In the future, we plan to elaborate our method to consider the
frequency more precisely and apply the model given the signal, not only EEG, but also
different ones such as ECG or EMG.

6. Conclusions

In this work, we introduced the method to generate perturbed samples considering
time and frequency axes to interpret the model given the signal data acquiring LIME.
In the experiments, we provided our model interpretation, which captures significantly
more important representation compared to the state-of-the art in a statistical manner.
Moreover, in the case study, we showed that the representation obtained by ours reflects
the physician’s standards, such as AASM. We expect that our method promotes the model
based on deep learning and can support computer-aided diagnosis in medical centers.
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Appendix A. Additional Representations

In this section, we attach additional representations obtained by our work and LIME-
Segment. In Figure A1, our representations show that it captures K-complexes well, which
is the hard evidence to annotate as N2, while the baseline is not. In addition, we depict
how ours catches delta waves, which is the important clue for N3, whereas the baseline
only does partly in Figure A2.
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Figure Al. Additional representations obtained by ours and LIMESegment for N2.
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