
����������
�������

Citation: Górski, T. UML Profile

for Messaging Patterns in

Service-Oriented Architecture,

Microservices, and Internet of Things.

Appl. Sci. 2022, 12, 12790.

https://doi.org/10.3390/

app122412790

Academic Editors: José María

Alvarez Rodríguez and Javier

García-Heras Carretero

Received: 20 November 2022

Accepted: 10 December 2022

Published: 13 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

UML Profile for Messaging Patterns in Service-Oriented
Architecture, Microservices, and Internet of Things
Tomasz Górski

Institute of Computer Science, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland;
tomasz.gorski@ug.edu.pl

Abstract: The exchange of information among information technology (IT) systems is inevitable.
Service fulfillment often involves sending and receiving messages. The article presents a set of
messaging patterns for service-oriented architecture, microservices, and messaging protocols for the
Internet of Things. The paper describes selected patterns that are the result of current research work.
In addition, patterns introduced in open-source frameworks such as ZeroMQ have also been included.
Moreover, the set includes Enterprise Integration Patterns. All considered messaging patterns have
been described using the stereotype extensibility mechanism of the Unified Modeling Language
(UML), and their complete set has been included in the new UML Profile for Messaging Patterns. The
paper also shows the manner of integration flow modeling. In the illustrative examples, both the
integration flow modeling diagram and the profile have been used to describe the communication in
the context of the Integrated services view of the 1+5 architectural views model. The profile has been
designed in the visual paradigm tool and revealed in a public repository for the community.

Keywords: interoperability; service-oriented architecture; microservices; Internet of Things; Unified
Modeling Language; 1+5 architectural views model

1. Introduction

Service provisioning and execution more and more often requires cooperation and thus
the exchange of information among IT systems. Various integration styles are used. Among
the most widely known are the following: file transfer, shared database, remote procedure
invocation, and messaging. The most flexible and loosely coupled is the last one, and, thus,
the paper concentrates on that style. Integration flows enable communication between
systems using various data formats or communication protocols. The set of Enterprise
Integration Patterns (EIP) for integration flows was defined by Hohpe and Woolf [1] and is
widely known in the community. However, there are differences in the implementation
and naming of particular patterns for different message brokers. For example, the Apache
Camel integration framework introduces the Change Data Capture pattern that can be used
as the Messaging Bridge pattern [2]. In addition, there are new, specialized versions of EIPs
for the currently used message brokers, especially in lightweight architectures such as mi-
croservices. Widely used is an open-source messaging queue ZeroMQ [3]. That framework
defines new specializations of two EIPs: Request–Retry and Publish–Subscribe. Moreover,
messaging patterns are still a topic of research studies. Recently, the Saga pattern was
enhanced for distributed transactions in microservices architecture by Daraghmi et al. [4].
In addition, Martinez et al. [5] showed an implementation of the Publish–Subscribe pattern
in microservices architecture that employs container orchestration in Kubernetes. Addi-
tionally, Aziz et al. [6] emphasized in their literature review that integration solutions
using Enterprise Service Bus are mainly realized in service-oriented architecture, and more
research is required on the Internet of Things (IoT) and cloud-based systems.

When designing the exchange of messages between systems, it is important to be able
to model integration flows in a unified manner. Practitioners commonly use the Unified

Appl. Sci. 2022, 12, 12790. https://doi.org/10.3390/app122412790 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122412790
https://doi.org/10.3390/app122412790
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8393-1585
https://doi.org/10.3390/app122412790
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122412790?type=check_update&version=2

Appl. Sci. 2022, 12, 12790 2 of 15

Modeling Language for software architecture descriptions. Ozkaya et al. [7] surveyed
practitioners as to discover the usage of UML diagrams and architectural views. Informa-
tional (99% of asked professionals) and functional (96% of surveyed experts) views are the
most popular. The work revealed that the UML class diagram is the most commonly used
(85% of inquired specialists) for data structure modeling, whereas the UML deployment
diagram is usually adopted for infrastructure modeling (71% of questioned professionals).
It should be also noted that the UML activity diagram is quite frequently used for data
flow modeling (65% of queried professionals). UML offers stereotypes as extensibility
mechanisms to provide new semantics. Stereotypes are grouped into logically consistent
sets called profiles. In recent work, Petrasch and Petrasch [8] presented Data Integration
Patterns strictly connected with information systems interoperability. However, those
patterns focus on the data, and UML has been used to model data integration tasks.

There is a gap between the originally defined set of Enterprise Integration Patterns and
the ones that are currently being developed. Therefore, there is a necessity to gather a set of
messaging patterns that also include academic patterns and those designed in open-source
frameworks. For modeling purposes, there is also a need for structural elements that are
responsible for realizing actions representing messaging patterns. Last but not least is the
modeling method of integration flows situated in the architectural views model.

The contribution of the paper comprises the new UML Profile for Messaging Patterns
with stereotypes for patterns resulting from the research carried out: Daraghmi et al. [4],
Martinez et al. [5], Zhong et al. [9], and Livaja et al. [10]. The profile includes new patterns
in the context of the open-source messaging queue ZeroMQ [3]. The profile also includes
the Enterprise Integration Patterns for message flows defined by Hohpe and Woolf [1]. The
profile has been designed using the Standard version of the Visual Paradigm tool. The profile
file UMLProfile4MessagingPatterns.vpp is stored under Git version control and is published as
a public GitHub repository [11]. In the 1+5 architectural views model, the Integrated services
view is dedicated to modeling the communication among cooperating parties [12]. It should
be emphasized that this is a unique and specially separated architectural view for the aspect of
communication between services or cooperating systems. Therefore, the article focuses on the
presentation of this architectural view. In the context of the view, the article depicts a method
of modeling integration flows with the use of UML component diagrams and specialized
UML activity diagrams, called integration flows diagrams.

Figure 1 presents the overview of the architectural description of integration flows. The
figure emphasizes the Integrated services view and both contexts: structural with cooperating
components and dynamic with modeled message flow. The UML component diagram
identifies the components involved in the message exchange and the interfaces of those
components. The integration flows diagram shows the flow of the message, taking into
account the responsibility of the components for performing individual actions in the flow.

Figure 1. Scheme of using the profile in designing the integration flow.

Appl. Sci. 2022, 12, 12790 3 of 15

The remaining part of this paper has the following structure. Section 2 presents related
work. Section 3 introduces stereotypes declared in the UML Profile for Messaging Patterns.
The section describes stereotypes declared for academic patterns, Enterprise Integration
Patterns, and their specialized versions in open-source frameworks. Section 4 shows the
modeling method of integration flows in the context of the Integrated services view in two
examples. Section 5 encompasses a discussion on the pros and cons of the profile and
method. Section 6 summarizes the work done and indicates further research directions.

2. Related Work

When designing the exchange of messages between systems, it is important to be able
to model integration flows in a unified manner. Modeling of software and IT systems archi-
tecture is commonly done using UML [7]. The language itself does not provide mechanisms
for modeling messaging patterns. However, stereotypes as extensibility mechanisms of the
UML can be applied to provide new semantics for patterns [13]. Stereotypes are grouped
into logically consistent sets called profiles. Generally, constructing UML profiles is a
simple and flexible way to provide semantically new modeling elements for use in various
fields. The Internet of Things allows for acquiring real-time data from multiple spatially dis-
tributed devices. In that field, Thramboulidis and Christoulakis [14] showed a UML profile
that supports the transformation of interfaces in the IoT environment to representational
state transfer (REST) type ones. In addition, Marouane et al. [15] introduced a profile with
concepts related to real-time databases and integrated with the Object Constraint Language
(OCL) to enforce the variation points consistency. The STS4IoT UML profile was introduced
by Plazas et al. [16]. The profile simplifies the definition of IoT applications and their
integration into other information systems, such as stream data warehouses. Moreover,
digital twin bridges the physical and virtual spaces. Wang et al. [17] proposed a profile that
uses Systems Modeling Language (SysML) stereotypes to represent the system design of a
digital twin in a unified manner. The profile includes system design digital models for the
following layers: virtual space, system services, relationships, and digital twin data. SysML
itself is defined as an extension of a subset of the Unified Modeling Language using a
profile mechanism. Furthermore, OPC unified architecture (UA) is a platform-independent
standard for message-based communication between clients and servers on various types
of networks used to facilitate information exchange. OPC UA has been adopted in various
domains, such as power grids, building automation, and smart devices, to support the
interoperability of involved systems. These domains also use the Unified Modeling Lan-
guage as the standard notation for data or system modeling. The use of various notations
in the same domain causes compatibility issues. Lee et al. [18] addressed this issue by
presenting an approach for transforming OPC UA to UML to improve their compatibility
and integration. In the approach, the authors rigorously analyzed the semantics of OPC
UA elements and established a mapping between OPC UA and UML modeling means.
The converse approach was proposed by Pauker et al. [19]. They proposed an automatic
transformation from UML class diagrams to OPC UA information models by extending
UML to guarantee the transformation preserves all relevant information. Analyzing the
current literature on the subject, it can be seen that UML profiles are used in many areas.
However, there is no up-to-date profile for modeling integration flows.

The design of integration flows requires more than just stereotypes. A recent review by
Kirpitsas and Pachidis [20] showed the evolution of software development methods. They
emphasized that in parallel significant advancements occurred in the field of the software
architecture description and pointed out the 1+5 architectural views model [12]. Indeed,
recently published research papers show a trend of applying a broader architectural perspec-
tive to the design of diverse IT systems. The communication aspect gains importance also in
blockchain applications. For example, Han et al. [21] present the deployment view of their
solution and use UML deployment diagrams. Although they have not formally constructed
a new profile, they have proposed specific stereotypes for IoT, Software Guard Exten-
sions (SGX), and blockchain nodes, services, and protocols, e.g.: <<IoTDeviceNode>>,

Appl. Sci. 2022, 12, 12790 4 of 15

<<IoTGatewayNode>>, <<SGXServerNode>>, <<distributedStorageService>>, and
<<blockchainService>>. Moreover, Ahmed et al. [22] proposed an incentive trust model
based on blockchain with a privacy-preserving threshold ring signature scheme for vehic-
ular ad hoc networks (VANETs). They focused on Logical and Deployment views to help
comprehend the information exchange between systems. For architectural description,
they used four UML diagram types: class, sequence, communication, and deployment.
They also proposed specific UML stereotypes for VANETs, e.g.: <<VehicleNode>> for
a vehicle node and <<RSUNode>> for a roadside unit. In both cases, the authors used
selected views of the 1+5 model to present the architecture of their solutions in the context
of communication among nodes. In addition, Akhilesh et al. [23] used the UML activity
diagram in the Use cases view, UML component diagram in the Logical view, and UML de-
ployment diagram in the Deployment view to show the design of the automated penetration
testing framework for IoT devices. This work has underlined the need for wider and more
precise architectural description giving an example of the 1+5 model.

With the above in mind, the author decided to prepare the UML Profile for Messaging
Patterns that takes into account a wider and up-to-date set of messaging patterns. The
profile has been used in the integration flows modeling method placed in the integrated
services view of the 1+5 architectural views model.

3. UML Profile for Messaging Patterns

Stereotypes extend the standard UML model element types [13]. For the message
pattern, the UML Action model element type has been assumed as a base type for stereo-
types. It applies to Enterprise Integration Patterns, patterns for ZeroMQ, and specialized
academic patterns. In addition, for the structural elements, the UML Component model
element type has been applied as a base type for stereotypes. It applies to message queues
and enterprise services buses. Finally, for the messaging protocols, the UML Control Flow
model element type has been used as a base type for stereotypes. Among others, it applies
to the following protocols: Message Queuing Telemetry Transport, Advanced Message
Queuing Protocol, and Constrained Application Protocol. Stereotypes are defined in UML
profile diagrams. Apart from the declaration of the new stereotype, there can be defined
tagged values as attributes associated with that stereotype.

Figure 2 presents the Stereotype Specification window for the academic <<SyncSaga>>
stereotype. As can be seen, the Name tagged value has been declared for that stereotype,
which stores its full name. Stereotype specification is also a place for adding a unique icon for
the stereotype.

Figure 2. Stereotype Specification window for the <<SyncSaga>>.

Proposed stereotypes do not change the set of UML etamodel (M2) elements avail-
able for use in modeling integration flows. However, at the UML Model (M1) level we
can employ UML base types and dynamically modify their semantics by applying spe-
cific stereotypes.

Appl. Sci. 2022, 12, 12790 5 of 15

3.1. Stereotypes for Academic Patterns

This article takes into account four patterns resulting from research work. All are
Enterprise Integration Patterns extensions: Saga and Publish–Subscribe Channel. The
Publish–Subscribe Channel pattern has attracted the most attention of scientists. Three
new versions of the pattern have been introduced. In addition, the Saga pattern has been
elevated on a higher level of transaction integrity.

The specialized version of the Saga (Software Automation, Generation, and Adminis-
tration) pattern was proposed by Daraghmi et al. [4]. The pattern was proposed to maintain
data consistency across distributed microservices transactions. However, it lacks isolation,
which means that reading and writing data from an incomplete transaction is allowed. The
specialized version uses the quota cache and the commit-sync service. In case a microservice
fails to be completed, the other microservices run rollback transactions, and the changes only
affect the cache layer. No wrong commit occurs in the database layer. Database commit is
executed when all transactions are completed successfully. The introduced enhancement for
the Saga pattern seems important enough to define a new version of the pattern. Therefore,
the author named the new pattern Saga for Synchronized Commits and proposed the new
stereotype <<SyncSaga>> and an icon associated with it.

The specialized version of the Publish–Subscribe Channel pattern in microservices
architecture was proposed by Martinez et al. [5]. The idea relies on the deployment of
communication components within containers of the Kubernetes (K8s) orchestration clus-
ter. The component implements a publish/subscribe pattern of communication among
microservices. The cluster provides self-healing and auto-scaling services. As the intro-
duced enhancement for the Publish–Subscribe Channel pattern seems important, the author
named the new version of the pattern Resilient Publish–Subscribe and proposed the new
stereotype <<ResilientPS>>, and the icon associated with it. Zhong et al. [9] extended the
same EIP pattern, but for geo-textual data. In their approach, subscribers get geo-textual
object pairs rather than individual objects, which leads to avoiding duplicates. The au-
thor named the new version the Pairwise Publish–Subscribe pattern and proposed the
new stereotype <<PairwisePS>>. Livaja et al. [10] proposed a cluster-based distributed
geospatial publish–subscribe system. The cluster matches incoming geospatial objects in
real-time with a set of stored subscriptions. The author named the new version the Separate
Publish–Subscribe pattern and proposed the new stereotype <<SeparatePS>>.

Table 1 shows the summary of the four patterns resulting from research work: Saga
for Synchronized Commits, Resilient Publish–Subscribe, Pairwise Publish–Subscribe, and
Separate Publish–Subscribe.

Table 1. New stereotypes for the patterns resulting from research work.

Name Stereotype Base Type Icon

Saga for
Synchronized

Commits
<<SyncSaga>> UML Action

Resilient
Publish–Subscribe <<ResilientPS>> UML Action

Pairwise
Publish–Subscribe <<PairwisePS>> UML Action

Separate
Publish–Subscribe <<SeparatePS>> UML Action

New and unique icons have been designed, in a color scheme of the Enterprise
Integration Patterns, for the academic patterns. A prefix characterizing the distinguishing
property is included in the names of stereotypes that expand the Publish–Subscribe Channel.
The suffix is the same.

Appl. Sci. 2022, 12, 12790 6 of 15

3.2. Stereotypes for Enterprise Integration Patterns

Messaging makes applications loosely coupled by communicating asynchronously.
It makes communication more reliable because the two applications do not have to be
running at the same time. The messaging system is responsible for transferring data from
one application to another, so the applications can focus on what data they need to share
but not worry so much about how to share them. Standard actions within such commu-
nication have been enclosed in Enterprise Integration Patterns and can be divided into
the following categories: messaging systems, messaging channels, message construction,
message routing, message transformation, messaging endpoints, and system management.

According to the Enterprise Integration Patterns website, there are 61 patterns [24].
For each of them, the corresponding stereotype is declared. For the majority of them, the
icon is also attached to the stereotype in the profile. Some of the patterns do not have
declared icons at all, e.g., Format Indicator, Scatter–Gather, or Canonical Data Model. The
defined stereotypes for selected Enterprise Integration Patterns are presented below. A
brief description of the purpose of each of the shown patterns is provided.

For messaging systems patterns the following stereotypes have been declared:

• <<MessageChannel>>—the source application adds the information to a particular
message channel and the target application retrieves the information from that channel;

• <<Message>>—data must be converted into one or more messages and then sent
through messaging channels;

• <<PipesAndFilters>>—divides a larger processing task into a sequence of process-
ing steps (Filters) that are connected by channels (Pipes);

• <<MessageRouter>>—receives a Message from the Message Channel and sends it
to one of the alternative channels due to conditions fulfillment;

• <<MessageTranslator>>—translates one data format into another;
• <<MessageEndpoint>>—a client of the messaging system that can be used to send

or receive messages.

Table 2 shows stereotypes and icons for the patterns in the messaging system category.

Table 2. Stereotypes with icons for the patterns in the messaging system category.

Name Stereotype Base Type Icon

Message Channel <<MessageChannel>> UML Action

Message <<Message>> UML Action

Pipes and Filters <<PipesAndFilters>> UML Action

Message Router <<MessageRouter>> UML Action

Message Translator <<MessageTranslator>> UML Action

MessageEndpoint <<MessageEndpoint>> UML Action

The stereotypes for selected patterns from particular categories are presented below:

• <<PublishSubscribeChannel>>—one input channel splits into multiple output chan-
nels. When an event occurs, a copy of the message is delivered to each of the sub-
scribers’ channels;

• <<ChannelAdapter>>—operates as a messaging client to the messaging system and
invokes functions via an application programming interface;

Appl. Sci. 2022, 12, 12790 7 of 15

• <<RequestReply>>—sends a pair of messages, one to the target application and the
second back to the source application, in separate channels;

• <<Saga>>—provides a way to define a series of related actions in a route that should
be either completed successfully or not executed;

• <<DurableSubscriber>>—makes the messaging system save published messages
while the subscriber is disconnected;

• <<EnvelopeWrapper>>—wraps application data inside an envelope that is compli-
ant with the messaging infrastructure. The message should be unwrapped when it
arrives at the destination;

• <<ContentEnricher>>—accesses an external data source so as to augment a message
with missing information.

Figure 3 presents the UML profile diagram with stereotypes for messaging systems.

Figure 3. UML profile diagram with declared stereotypes for messaging systems.

Table 3 shows stereotypes and icons for selected patterns from messaging channels,
message construction, message routing, and message transformation categories.

Table 3. Stereotypes for selected messaging patterns.

Name Stereotype Base type Icon

Publish–Subscribe
Channel

<<PublishSubscribe
Channel>>

UML Action

Channel Adapter <<ChannelAdapter>> UML Action

Request–Reply <<RequestReply>> UML Action

Saga <<Saga>> UML Action

Durable Subscriber <<DurableSubscriber>> UML Action

Envelope Wrapper <<EnvelopeWrapper>> UML Action

Content Enricher <<ContentEnricher>> UML Action

3.3. Stereotypes for Structural Components and Messaging Protocols

Two trends in communication can be observed. The first is derived from corporate
solutions, and communication is related to the realization of a business process. In the
second one, communication most often occurs between two services. The first type employs
enterprise service buses, and the second type is intended for lighter message brokers.
Therefore, stereotypes for both environments have been included in the profile. The
abstract <<EnterpriseServiceBus>> stereotype has been proposed. The rest are concrete
stereotypes that inherit from this abstract stereotype and represent actual frameworks.

Appl. Sci. 2022, 12, 12790 8 of 15

Figure 4 depicts the UML profile diagram with an inheritance hierarchy of stereotypes
for structural components representing enterprise service buses.

Figure 4. Stereotypes for enterprise service buses.

Similarly, for message queues, one abstract <<MessageQueue>> stereotype has
been declared. Three concrete stereotypes stand for actual message broker frameworks:
<<ActiveMQ>>, <<RabbitMQ>>, and <<ZeroMQ>>. Table 4 shows stereotypes
declared for message queues.

Table 4. Stereotypes for message queues.

Name Stereotype Base Type

Apache Camel ActiveMQ <<ActiveMQ>> UML Component
RabbitMQ <<RabbitMQ>> UML Component
ZeroMQ <<ZeroMQ>> UML Component

In addition, there are various communication protocols, especially in the IoT area.
That is why the stereotypes have been declared for the most commonly used IoT messaging
protocols [25]. Table 5 shows stereotypes declared for messaging protocols.

Table 5. Stereotypes for messaging protocols.

Name Stereotype Base Type

Message Queuing Telemetry
Transport <<MQTT>> UML Control Flow

Advanced Message Queuing
Protocol <<AMQP>> UML Control Flow

Constrained Application
Protocol <<CoAP>> UML Control Flow

HyperText Transfer Protocol <<HTTP>> UML Control Flow
Extensible Messaging and

Presence Protocol <<XMPP>> UML Control Flow

Data Distribution Service <<DDS>> UML Control Flow

Appl. Sci. 2022, 12, 12790 9 of 15

There are no icons declared for structural components, as components can be applied
to various stereotypes. The icon would restrain its use in one context. Stereotypes for
protocols mark connections between two modeling elements. In the paper, the UML Control
Flow type element connects two UML Actions type constructs. Connections have a standard
appearance in UML.

3.4. Stereotypes for ZeroMQ Framework Patterns

ZeroMQ defines specialized versions of two EIP patterns: the Publish–Subscribe
Channel and Request–Reply. The built-in core ZeroMQ Request–Reply patterns are:

• <<LazyPirate>>—polls the socket and receives from it only when it is sure a reply
has arrived. If no reply has arrived within a timeout period, the pattern resends a
request. The transaction is abandoned if there is no reply after several requests;

• <<SimplePirate>>—extends the Lazy Pirate pattern with a queue proxy that allows
for transparent communication with multiple servers;

• <<ParanoidPirate>>—allows for robust reliable queuing that allows sending and
receiving messages at any time but requires its own envelope management;

• <<Majordomo>>—adds a service name to requests that the client sends and asks
servers to register for specific services. Adding service names turns the Paranoid
Pirate pattern from the queue into a service-oriented broker;

• <<Titanic>>—stores messages in the message broker to ensure they never get lost;
• <<BinaryStar>>—puts two servers in a primary–secondary high-availability pair.

At any given time, the active server accepts connections from client applications. The
passive server is idle, but the servers monitor each other. If the active server stops
working, the passive one takes over as active;

• <<Freelance>>—creates a pool of name servers so if one stops working, clients can
connect to another. In this architecture, a large set of clients connect to a few servers in
a pool directly. The clients connect to the pool, which is the opposite of a broker-based
approach such as Majordomo, where clients connect to the broker.

Figure 5 shows, in the UML Profile diagram, the ZeroMQ stereotypes inheritance tree
for specializations of the Request–Reply pattern. The <<Titanic>> stereotype stands for
the most specialized version of the Request–Reply pattern, whereas the <<Freelance>>
stereotype refers to its most flexible variant.

Figure 5. ZeroMQ stereotypes for patterns that inherit from the EIP Request–Reply pattern.

Table 6 shows a few ZeroMQ stereotypes with proposed icons for the Request–Reply
pattern specializations. The original icon for the Request–Reply pattern has been modified
and a black-red-white color schema has been adopted for icons proposed for stereotypes
related to ZeroMQ patterns.

Appl. Sci. 2022, 12, 12790 10 of 15

Table 6. Selected stereotypes for ZeroMQ specializations of the Request–Reply pattern.

Name Stereotype Base Type Icon

Lazy Pirate <<LazyPirate>> UML Action

Simple Pirate <<SimplePirate>> UML Action

Paranoid Pirate <<ParanoidPirate>> UML Action

Majordomo <<Majordomo>> UML Action

Titanic <<Titanic>> UML Action

Binary Star <<BinaryStar>> UML Action

Freelance <<Freelance>> UML Action

The built-in core ZeroMQ Publish–Subscribe Channel patterns are:

• <<SuicidalSnail>>—allows for the detection of slow subscribers. Devoted to sub-
scribers having service-level agreements to guarantee specific maximum latency;

• <<BlackBox>>—allows for detection and dealing with high-speed subscribers. The
pattern breaks subscriber design into a multithreaded one so that sending and reading
messages are in separate sets of threads;

• <<Espresso>>—allows for monitoring a publish–subscribe network and works by
creating a listener thread that reads a socket and prints anything it gets;

• <<Clone>>—builds a shared key-value store. The pattern allows for updating a
shared state across a set of clients. To achieve that, the pattern uses key-value pairs,
which represent atomic units of change in the shared state.

Each of these four patterns presented is a direct specialization of the Publish–Subscribe
Channel pattern. Similarly here, the original icon for the Publish–Subscribe Channel pattern
has been modified and a black-red-white color schema has been adopted for icons proposed
for stereotypes related to ZeroMQ patterns.

Table 7 shows ZeroMQ stereotypes with proposed icons for the Publish–Subscribe
Channel pattern specializations.

Table 7. Stereotypes for ZeroMQ specializations of the Publish–Subscribe Channel pattern.

Name Stereotype Base Type Icon

Suicidal Snail <<SuicidalSnail>> UML Action

Black Box <<BlackBox>> UML Action

Espresso <<Espresso>> UML Action

Clone <<Clone>> UML Action

Appl. Sci. 2022, 12, 12790 11 of 15

There are two more patterns in the ZeroMQ framework: Client–server and Radio–dish.
The client–server pattern allows a single ZeroMQ server to communicate with one or more
ZeroMQ clients. After starting the conversation with the client, both the server and the
client can send messages asynchronously to each other. The Radio–dish pattern is used
for one-to-many distribution of data from a single publisher to multiple subscribers in a
fan-out manner. However, both of the patterns are still in draft state. Therefore, there have
been omitted in the current version of the profile.

4. Modeling Method with Examples of Integration Flows

The Integrated services view shows both static and dynamic aspects of communication.
The structural aspect is modeled using a UML component diagram and encompasses the
components of cooperating IT systems and the message broker or service bus component.
Services are modeled using interfaces realized by components. The most important are
the interfaces provided by the components representing IT systems. In these components,
the functions necessary to perform the integration flow are implemented. The message
queue or service bus component performs flow actions but forwards calls for execution to
the system component. That component realizes interfaces, which means that it provides
the implementation for interface functions. Therefore, the system component realizes
calls for services invoked on the interface. All components are crucial for modeling the
dynamic aspect of integration. In integration flow diagrams, components are represented
as partitions and services are used as endpoints.

In presented examples, integration flows show the context of a single message transfer
from the source application to the destination application, service, or device. The first ex-
ample shows a message flow of sending orders from the Brokerage House (BH) application
to the Stock Exchange (SE) system. Figure 6 presents an integration flow diagram (the
specialized version of a UML activity diagram) for the Send order to the Stock Exchange flow.
This example uses both icons and stereotype names for messaging patterns.

Figure 6. The Send order to the Stock Exchange integration flow.

Appl. Sci. 2022, 12, 12790 12 of 15

Figure 7 presents the UML component diagram in the context of the Create order in the
SE use case.

Figure 7. UML Component diagram for BH and SE systems cooperation.

In the UML component diagram, two additional stereotypes from the Service-Oriented
Architecture Modeling Language have been used: <<Consumer>> and <<Provider>>.
They can be used to clearly denote the difference between the component that realizes the
interface (<<Provider>>) and the component that uses the function from the interface
(<<Consumer>>). Both components cooperate using a message queue. The SE system
enables stock exchange trading. A purchase and sale transaction in the SE system is
concluded when two opposite buy and sell orders for the same company appear on the
trading market. In addition, in both orders, the buyer agrees to pay the price proposed by
the seller.

The second example concerns sending the request for energy produced to IoT devices.
Renewable energy prosumer communities exchange energy to optimize usage and cost of
energy. Those communities are managed using blockchain networks. The flow illustrates
the use of various IoT message protocols.

Figure 8 presents the integration flow diagram for the Send Request for Energy Produced
integration flow. The second example uses only icons for messaging patterns.

Figure 8. The Send Request for Energy Produced integration flow.

Appl. Sci. 2022, 12, 12790 13 of 15

5. Discussion and Limitations

A wide variety of messaging patterns are included in the profile. Efforts were made to
keep the stereotypes names for the patterns brief and concise. However, the full names of
patterns, components, or protocols were placed in stereotypes in the form of devoted tagged
values. For ease of modeling, the icons for patterns should be unique. That is not fulfilled
for all environments. For example, Apache Camel uses the same icon for Messaging Bridge
and Change Data Capture patterns. Moreover, another icon is shared also by Threads and
Throttle patterns. An important feature of the profile is the uniqueness of the proposed
names for patterns and their icons. In the current version of the profile, protocols used in
Internet of Things applications are included [25]. For protocols, there are no icons in the
profile due to the fact that those stereotypes are attached to directed links between actions,
which have standard look in the UML. Instead, the name of the stereotype is used. However,
in terms of the Internet of Things, Covert Channels attract more and more researchers’
attention. Velinov et al. [26] analyzed that topic, and their work may be a good source of
patterns. Currently, they are out of the scope of the profile. The article shows that the area
of communication between systems/services is constantly being developed, and more and
more flexible patterns are emerging. An interesting is the Freelance pattern introduced
in the ZeroMQ framework. It makes the communication mechanism independent of a
single intermediary element. Therefore, it eliminates a single point of failure. These types
of patterns can become the basis for communication between networks of distributed
blockchain nodes. Such exchange of messages may also be organized in a distributed
manner. For example, Al-Shaibani et al. [27] proposed a decentralized platform for the
stock exchange that is based on blockchain technology. Another vital blockchain application
is the managing of energy exchange among prosumer communities [28].

The patterns presented in the work vary in terms of complexity and range from single
actions to architecturally complex but clearly defined components. For example, the use of
the Resilient Publish–Subscribe pattern can greatly simplify the architectural description
of the communication design between cooperating services. That is why the description
of the software architecture is so important. The ability to present a design mechanism at
a higher level of abstraction enables the definition of patterns that can be reused by the
community. The actual limitation is that in the profile there are no detailed descriptions of
the patterns. Future work should involve the configuration of constituents of the patterns.
It should encompass those standard components provided by the pattern and components
that fulfill certain roles that must be delivered by the integration flow designer. The next
step is the generation of integration flows using tagged values as configuration parameters
of message patterns. This mechanism has been successfully used in the continuous delivery
and deployment of complete distributed blockchain applications and node deployment
configurations for blockchain networks [29].

The use of the UML profile also positively affects the ease of maintenance of the
designed integration models. Model elements in models are independent of stereotypes
because they use basic types from the UML language. The tool used connects the profile to
integration projects in the form of an external associated file. The profile design can there-
fore be developed independently, and the changes will be visible in the related integration
projects. In addition, updating the profile involves adding more stereotypes or modifying
the existing ones. Thanks to this, existing integration projects will be provided with the
used set of stereotypes and newly added ones. The author has also intended to prepare the
profile in a commonly used and affordable modeling tool, the Visual Paradigm Standard
version. The profile has been shared in the public repository and can be used freely.

6. Conclusions

The paper introduces the UML Profile for Messaging Patterns. The author took a set
of Enterprise Integration Patterns as a basis and applied an object-oriented inheritance
relationship to model specialized stereotypes for derived patterns. In this way, the con-
sistency of both the set of patterns and stereotypes corresponding to them was achieved.

Appl. Sci. 2022, 12, 12790 14 of 15

Only fully developed open-source patterns have been taken into account and presented in
the article. The patterns in a draft state have been omitted. During this work, more and
more patterns have become visible as a result of scientific work. One of the directions of
further work may be the development of a comprehensive library of these patterns with
detailed descriptions and architectural support for modeling and generation of integra-
tion flows. Specifically, further research patterns for the Internet of Things, containerized
environments, and blockchain technology applications will be considered. Moreover, the
profile will keenly encompass future open-source proposals.

Using the profile, it is possible to model flows on two levels of abstraction. Abstract
stereotypes such as MessageQueue were introduced in the profile. That particular one
is suitable for modeling any type of message queue. There is a similar situation with
the stereotypes for ZeroMQ. They extend the stereotypes from the Enterprise Integration
Patterns set, which is commonly known and used in various frameworks.

It is worth emphasizing that the profile also includes stereotypes for structural el-
ements involved in integration flows. This provides the basis for modeling them in an
architectural context. The modeling method, presented in the paper, is limited to one
architectural view. The Integrated services view shows an excerpt from the architectural
description of the integration design. The description method clearly identifies all compo-
nents involved in the integration. In addition, the proposed integration flows diagram assigns
responsibilities for performed operations to components and determines the sequence of
actions in the integration flow. As a result, the method identifies the structural elements and
the dynamics of activities between them. For a full perspective, there should be shown the
requirements in the Use cases view, and the business process in the Integrated processes view.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Hohpe, G.; Woolf, B. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions; Addison-Wesley

Professional: Boston, MA, USA, 2004.
2. Apache Camel—An Open-Source Integration Framework. Available online: https://camel.apache.org (accessed on 20 Novem-

ber 2022).
3. ZeroMQ—An Open-Source Universal Messaging Library. Available online: https://zeromq.org (accessed on 20 November 2022).
4. Daraghmi, E.; Zhang, C.-P.; Yuan, S.-M. Enhancing Saga Pattern for Distributed Transactions within a Microservices Architecture.

Appl. Sci. 2022, 12, 6242. [CrossRef]
5. Martinez, H.F.; Mondragon, O.H.; Rubio, H.A.; Marquez, J. Computational and Communication Infrastructure Challenges for

Resilient Cloud Services. Computers 2022, 11, 118. [CrossRef]
6. Aziz, O.; Farooq, M. S.; Abid, A.; Saher, R.; Aslam, N. Research Trends in Enterprise Service Bus (ESB) Applications: A Systematic

Mapping Study. IEEE Access 2020, 8, 31180–31197. [CrossRef]
7. Ozkaya, M.; Erata, F. A survey on the practical use of UML for different software architecture viewpoints. Inf. Softw. Technol. 2020,

121, 106275. [CrossRef]
8. Petrasch, R.J.; Petrasch, R.R. Data Integration and Interoperability: Towards a Model-Driven and Pattern-Oriented Approach.

Modelling 2022, 3, 105–126. [CrossRef]
9. Zhong, Y.; Zhu, S.; Wang, Y.; Li, J.; Zhang, X.; Shang, J.S. Pairwise Location-Aware Publish/Subscribe for Geo-Textual Data

Streams. IEEE Access 2020, 8, 211704–211713. [CrossRef]
10. Livaja, I.; Pripužić, K.; Sovilj, S.; Vuković, M. A distributed geospatial publish/subscribe system on Apache Spark. Future Gener.

Comput. Syst. 2022, 132, 282–298. [CrossRef]
11. UML Profile for Messaging Patterns, GitHub Repository. Available online: https://github.com/drGorski/UMLProfile4

MessagingPatterns (accessed on 20 November 2022).
12. Górski, T. The 1+5 Architectural Views Model in Designing Blockchain and IT System Integration Solutions. Symmetry 2021,

13, 2000. [CrossRef]
13. Pender, T. Customizing UML Using Profiles. In UML Bible; Wiley Publishing, Inc.: Indianapolis, IN, USA, 2003; pp. 687–723.

https://camel.apache.org
https://zeromq.org
http://doi.org/10.3390/app12126242
http://dx.doi.org/10.3390/computers11080118
http://dx.doi.org/10.1109/ACCESS.2020.2972195
http://dx.doi.org/10.1016/j.infsof.2020.106275
http://dx.doi.org/10.3390/modelling3010008
http://dx.doi.org/10.1109/ACCESS.2020.3038921
http://dx.doi.org/10.1016/j.future.2022.02.013
https://github.com/drGorski/UMLProfile4MessagingPatterns
https://github.com/drGorski/UMLProfile4MessagingPatterns
http://dx.doi.org/10.3390/sym13112000

Appl. Sci. 2022, 12, 12790 15 of 15

14. Thramboulidis, K.; Christoulakis, F. UML4IoT—A UML-based approach to exploit IoT in cyber-physical manufacturing systems.
Comput. Ind. 2016, 82, 259–272. [CrossRef]

15. Marouane, H.; Duvallet, C.; Makni, A.; Bouaziz, R.; Sadeg, B. An UML profile for representing real-time design patterns. J. King
Saud Univ.—Comput. Inf. Sci. 2018, 30, 478–497. [CrossRef]

16. Plazas, J.E.; Bimonte, S.; Schneider, M.; de Vaulx, C.; Battistoni, P.; Sebillo, M.; Corrales, J.C. Sense, Transform & Send for the
Internet of Things (STS4IoT): UML profile for data-centric IoT applications. Data Knowl. Eng. 2022, 139, 101971. [CrossRef]

17. Wang, H.; Li, H.; Wen, X.; Luo, G. Unified modeling for digital twin of a knowledge-based system design. Robot.-Comput.-Integr.
Manuf. 2021, 68, 102074. [CrossRef]

18. Lee, B.; Kim, D-K.; Yang, H.; Oh, S. Model transformation between OPC UA and UML. Comput. Stand. Interfaces 2017, 50, 236–250.
[CrossRef]

19. Pauker, F.; Wolny, S.; Fallah, S M.; Wimmer, M. UML2OPC-UATransforming UML Class Diagrams to OPC UA Information
Models. Procedia CIRP 2018, 67, 128–133. [CrossRef]

20. Kirpitsas, I.K.; Pachidis, T.P. Evolution towards Hybrid Software Development Methods and Information Systems Audit
Challenges. Software 2022, 1, 316–363. [CrossRef]

21. Han, J.; Zhang, Y.; Liu, J.; Li, Z.; Xian, M.; Wang, H.; Mao, F.; Chen, Y. A Blockchain-Based and SGX-Enabled Access Control
Framework for IoT. Electronics 2022, 11, 2710. [CrossRef]

22. Ahmed, W.; Di, W.; Mukathe, D. A Blockchain-Enabled Incentive Trust Management with Threshold Ring Signature Scheme for
Traffic Event Validation in VANETs. Sensors 2022, 22, 6715. [CrossRef]

23. Akhilesh, R.; Bills, O.; Chilamkurti, N.; Chowdhury, M.J.M. Automated Penetration Testing Framework for Smart-Home-Based
IoT Devices. Future Internet 2022, 14, 276. [CrossRef]

24. Messaging Patterns of EIPs. Available online: https://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
(accessed on 20 November 2022).

25. Al-Masri, E.; Kalyanam, K.R.; Batts, J.; Kim, J.; Singh, S.; Vo, T.; Yan, C. Investigating Messaging Protocols for the Internet of
Things (IoT). IEEE Access 2020, 8, 94880–94911. [CrossRef]

26. Velinov, A.; Mileva, A.; Wendzel, S.; Mazurczyk, W. Covert Channels in the MQTT-Based Internet of Things. IEEE Access 2019,
7, 161899–161915. [CrossRef]

27. Al-Shaibani, H.; Lasla, N.; Abdallah, M. Consortium Blockchain-Based Decentralized Stock Exchange Platform. IEEE Access 2020,
8, 123711–123725. [CrossRef]

28. Górski, T. Reconfigurable Smart Contracts for Renewable Energy Exchange with Re-Use of Verification Rules. Appl. Sci. 2022,
12, 5339. [CrossRef]

29. Górski, T. Towards Continuous Deployment for Blockchain. Appl. Sci. 2021, 11, 11745. [CrossRef]

http://dx.doi.org/10.1016/j.compind.2016.05.010
http://dx.doi.org/10.1016/j.jksuci.2017.06.005
http://dx.doi.org/10.1016/j.datak.2021.101971
http://dx.doi.org/10.1016/j.rcim.2020.102074
http://dx.doi.org/10.1016/j.csi.2016.09.004
http://dx.doi.org/10.1016/j.procir.2017.12.188
http://dx.doi.org/10.3390/software1030015
http://dx.doi.org/10.3390/electronics11172710
http://dx.doi.org/10.3390/s22176715
http://dx.doi.org/10.3390/fi14100276
https://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
http://dx.doi.org/10.1109/ACCESS.2020.2993363
http://dx.doi.org/10.1109/ACCESS.2019.2951425
http://dx.doi.org/10.1109/ACCESS.2020.3005663
http://dx.doi.org/10.3390/app12115339
http://dx.doi.org/10.3390/app112411745

	Introduction
	Related Work
	UML Profile for Messaging Patterns
	Stereotypes for Academic Patterns
	Stereotypes for Enterprise Integration Patterns
	Stereotypes for Structural Components and Messaging Protocols
	Stereotypes for ZeroMQ Framework Patterns

	Modeling Method with Examples of Integration Flows
	Discussion and Limitations
	Conclusions
	References

