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Abstract: This paper refers to a machine learning method for solving NP-hard discrete optimization
problems, especially planning and scheduling. The method utilizes a special multistage decision
process modeling paradigm referred to as the Algebraic Logical Metamodel based learning methods of
Multistage Decision Processes (ALMM). Hence, the name of the presented method is the ALMM Based
Learning method. This learning method utilizes a specifically built local multicriterion optimization
problem that is solved by means of scalarization. This paper describes both the development of such
local optimization problems and the concept of the learning process with the fractional derivative
mechanism itself. It includes proofs of theorems showing that the ALMM Based Learning method can
be defined for a much broader problem class than initially assumed. This significantly extends the
range of the prime learning method applications. New generalizations for the prime ALMM Based
Learning method, as well as some essential comments on a comparison of Reinforcement Learning
with the ALMM Based Learning, are also presented.

Keywords: machine learning; reinforcement learning; metaheuristic; optimization method; discrete
optimization; scheduling; multistage decision process; heuristic methods; ALMM

1. Introduction

Curiosity is the main motivation for any human, a researcher in particular. Whenever
a new method or algorithm is developed, multiple questions emerge. Could the method
be applied under weaker assumptions, thus enhancing the area for its use? Could it be
improved? In which ways? How does the method relate to the ones that came earlier?
This paper refers to a learning method (a metaheuristic) called the ALMM Based Learning
method. The objective of the method is to solve discrete (combinatorial) optimization
problems, especially NP-hard ones. This paper presents further results of research involving
the method and thus provides answers to the questions above. The method utilizes a
special multistage decision process modeling paradigm referred to as the Algebraic Logical
Metamodel of Multistage Decision Processes (abbreviated as ALMM of MDP and finally
ALMM), which is presented in Section II. Based on the ALMM paradigm, one can develop
mathematical models for discrete optimization problems—the so-called AL models. Even
though a problem model may be known, its analytic solution is not available. Moreover,
as the model has a recursive character, it is difficult to infer decision consequences by more
than a single step. Initial work related to attempts to use algebraic logic models to optimize
discrete process control have been proposed in [1,2]. They used the concept of a simplified
algebraic-logical description of the properties of the process that could be used to control
its course. This approach had a strong limitation because it did not define a mathematical
model of the process, but only relationships of its properties that could be used to make
decisions controlling it [3–5]. In this paper, the authors define a generalized mathematical
notation of the process model described in the ALMM technology, which takes into account
the new mechanism of the learning strategy.
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The objective of this paper is twofold:

• To present new generalizations of ALMM Based Learning methods involving a frac-
tional derivative mechanism;

• To present essential remarks related to a comparison of Reinforcement Learning vs
the ALMM Based Learning method.

Many types of learning have been explored for some discrete optimization prob-
lems [6–14], especially scheduling: rote learning, inductive learning, neural network learn-
ing, case-based learning, classifier systems, and others. Particular methodologies offer
positive and negative features. However, none of the mentioned learning concepts use
a mathematical model of a problem to be solved. The novelty of the machine learning
presented in this paper is the fact that this method is based on a special mathematical
model. The paper is constructed as follows. The Algebraic Logical Metamodel of Multi-
stage Decision Process is presented in Section 2. Section 3 presents definitions of some
criterion properties that are used in further discussion. An example that is an extension
of the proposed learning method strategy is recalled in Section 4. Generalizations for the
prime ALMM Based Learning method, as well as essential comments on a comparison of
Reinforcement Learning with ALMM Based Learning, are given, respectively, in Sections 5
and 7. In Section 6, an example is presented.

2. Algebraic-Logical Meta-Model of Multistage Decision Processes

The discrete process, which is implemented in the form of a sequence of control deci-
sions, is an effective and practical approach that allows for monitoring various production
processes. The key problem in constructing models of such process control is the need to
have expert knowledge regarding the nature of such a process—whether it is deterministic
or stochastic—but also the degree of their adjustment to real systems and the related confi-
dence level of the conducted steering of this system. In this paper, the authors propose a
mechanism of abstract mathematical modeling to describe a deterministic process using
the approach paradigm named ALMM of MDP (abbreviated as ALMM). The idea of the
ALMM paradigm was proposed and developed by Dudek-Dyduch E. in [1] and recalled
in many other papers [5,15,16]. It has also been put to use in multiple cases [1,17–22].
Based on ALMM, the formal models, the so-called AL models, may be established for
a very broad class of discrete optimization problems from a variety of application areas
(especially for the modeling and control of discrete manufacturing and logistics processes),
thus yielding to the meta-model designation. The description and definition of the ALMM
paradigm, cited in the aforementioned articles, are cited below. “ALMM is a general model
development paradigm for deterministic problems, for which solutions can be presented
as a sequence (or a set) of decisions, usually complex ones (i.e., composed of some single
decisions). It facilitates convenient representation of all kinds of information regarding
the problem to be solved, in particular the information defining a structure of states and
decisions, algorithm used to generate consecutive states and various temporal relationships
and restrictions of the problem. Furthermore, ALMM enables us to define various problem
properties, in particular ones for which a particular heuristic method may be applied”.
ALMM provides a structured way of recording knowledge of the goal and all relevant
restrictions that exist within the problems modeled. Using this paradigm, the author has
provided, i.e., in [3,16], the definitions of two base types of multistage decision processes: a
common process (cMDP) and a dynamic process (MDDP). The definition of MDDP quoted
below refers to processes wherein both the constraints and the transition function depend
on time. Therefore, the concept of the so-called “generalized state” has been introduced,
defined as a pair containing both the state and the time instant.

Definition 1. The multistage dynamic decision process is a process that is specified by the sextuple
MDDP = (U, S, s0, f , SN , SG), where U is a set of decisions, S = X × T is a set of generalized
states, X is a set of proper states, T ⊂ R + U{0} is a subset of non-negative real numbers
representing the time instants, f : U × S → S is a partial function called a transition function,
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(it does not have to be determined for all elements of the set U × S), s0 = (x0, t0), SN ⊂ S and
SG ⊂ S are, respectively, an initial generalized state, a set of not admissible generalized states, and a
set of goal generalized states, i.e., the states in which we want the process to take place at the end.
Subsets SG and SN are disjoint, i.e., SG ∩ SN = ∅.

The transition function is defined by means of two functions, f = ( fx, ft), where fx, ft
determine the next state and the next time instant, respectively. It is assumed that the difference
∆t = ft(u, x, t) − t has a value that is both finite and positive. Because not all decisions de-
fined formally make sense in certain situations, the transition function f is defined as a par-
tial one. As a result, all limitations concerning the decisions in a given state s can be de-
fined in a convenient way by means of so-called sets of possible decisions Up(s), and defined
as: Up(s) = {u ∈ U : (u, s) ∈ Dom f }.

The cMDP is obtained by reducing a generalized state to a proper state with a transition
function f = fx. For both defined types of the multistage decision processes, in the most gen-
eral case, sets U and X may be presented as a Cartesian product U = U1 × U2 × ... × Um,
X = X1 × X2 × ...× Xn, i.e., u =

(
u1, u2, ..., um), x =

(
x1, x2, ..., xn).

In particular, ui, i = 1, 2, ..., m represent separate decisions that must or may be taken
simultaneously and relate to particular objects. Values of particular coordinates of a state or
a decision may be names of elements (symbols) as well as some objects (e.g., finite set, sequence etc.).

There are no limitations imposed on a type of elements of the sets; in particular they do
not have to be numerical. Thus, values of particular co-ordinates of a state or a decision may
be names of elements (symbols) as well as some objects (e.g., finite set, sequence etc.). The sets
XN , SN , XG, SG and Up are formally defined with the use of both algebraic and logical formulae,
hence the algebraic–logic model descriptor.

The most significant characteristic, unique for the proposed ALMM of MDP paradigm,
is the fact that:

• Proper state coordinates can be higher order variables;
• Decision u can take a complex form, consisting of individual decisions related to

various issues/objects; these individual decisions may or have to be taken or executed
at the same time;

• The transition function is defined as a partial one, which allows taking into account
various different restrictions on sensible decisions in different states.

Based on the meta–model recalled herein, AL models may be created for individual
problems consisting of seeking admissible or optimal solutions. In the case of an admissible
solution, an AL model is equivalent to a suitable multistage decision process, hence it is
denoted as process P. An optimization problem is then denoted as a (P, Q) pair, where Q is
a criterion. An optimization task (instance of the problem) is denoted as a (P, Q) , where
P is an instance of the process P and is named an individual process. At the same time,
an individual process P is represented by a set of its trajectories. A finite trajectory is a
sequence of consecutive states from the initial state to a final state (goal, not admissible
or blind one), computed by the transition function. Though trajectories may be finite or
infinite, for further consideration we assume only finite ones. For s0, it is assumed that no
state of a trajectory, apart from the last one, may belong to the set SN . Only a trajectory that
ends in the set of goal states is admissible (feasible). The decision sequence determining
an admissible trajectory is an admissible decision sequence. Obviously, the set of finite
trajectories corresponds to the state graph of the process P.

3. Properties of Problems

The vast majority of methods and algorithms described in the literature use (with or
without overt declaration) some properties of criteria that facilitate the solving process.
Some of these, defined based on the ALMM paradigm, have been presented in [3,19] and
then recalled in [23], are shortly recalled below. A broad class of criteria can be defined by
recurrence and computed in parallel to the calculation of trajectories, the author named the
said class as separable criterions (Definition 2). It is worth remembering, though, that these
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are not the only criterion classes that may be used. Let us denote P—a fixed multistage
decision process, SP—a set of all states of trajectories of the process, d(s̃)—the number of
the last state of a finite trajectory s̃, Ũ—a set of all decision sequences of the process P, R—a
set of real numbers.

Definition 2. Criterion Q is separable for the process P if, for every decision sequence ũ ∈, Ũt can
be recursively calculated as follows:

Q0 = const, in particular Q0 = 0

Qi+1 = fQ(Qi, ui, si) for i = 0, 1, ... , d(s̃)− 1,
(1)

where Qi for i > 0 denotes a partial value of criterion Q calculated for the i-th state of the
considered trajectory, defined as follows:

Qi = Q(ũ′), (2)

where ũ′ = (u0, u2, ... , ui−1) is the initial part of the sequence ũ, fQ is some partial function
fQ : R×U × S→ R such that:

Dom fQ =
{
(a, u, s) ∈ R×U × S : s ∈ SP, u ∈ Up(s), a ∈ R

}
. (3)

Separability is a property of an algorithm which calculates a quality criterion for a sequence of
decisions ũ, and thus for designated trajectory s̃. The criterion is separable if we can calculate its
value for the next state of a trajectory knowing only its value in the previous state and the decision
taken at that time.

Particularly useful is the property of additive separability of criterion. Let Q be a separable
criterion and a function ∆Q denotes a change of criterion for two consecutive states on any trajectory,
i.e., ∆Qi = Qi+1 −Qi.

Definition 3. Separable criterion Q is additive for a process P, iff for each trajectory s̃ of the process
P and for each i = 0, 1, . . . , d(s̃)− 1 occurs:

fQ(Qi, ui, si) = Qi + ∆Q(ui, si), (4)

i.e., ∆Q depends on the state and decision only.

Definition 4. Separable criterion Q changes multiplicatively for a process P, iff for each trajectory
s̃ of the process P and for each i = 0, 1, . . . , d(s̃)− 1 the following is true:

fQ(Qi, ui, si) = Qi · ν(ui, si), (5)

where ν(u, s) is a certain function depending on the decision and the state only [16].

4. Machine Learning Based on ALMM

In the work [3], the authors proposed a machine learning method that used the
changes dynamics of the ∆Q criterion and the weighted sum of partial criteria to determine
the local quality criterion q. The learning process was reduced to determining a set of
trajectories of process states leading to SG states and sequentially searching for such control
sequences u, taking into account the selection of the weight vector a. To avoid unnecessary
redundancy, we recall briefly the basic form of the local criterion q(u, s) which became the
following form:

q(u, s) = a0
(
∆Q(u, s) + Q̂(u, s)

)
+ a1 ϕ1(u, s) + · · ·+ ai ϕi(u, s) + · · ·+ an ϕn(u, s), (6)

where ∆Q(u, s) is the change of the criterion value as a result of decision u, undertaken in
the state s, Q̂(u, s) is the estimation of the quality index value for the final trajectory section
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after the decision u has been realized, ψ(u, s) is the components reflecting additional limita-
tions or additional requirements in the space of states, i = 1, 2, . . . , n, ai is the coefficient
which defines the weight of i-th component ϕi(u, s) in the criterion q(u, s). The sum of
weight coefficients ai for i = 1, 2, . . . , n is equal to 1.

A role of the criterion components connected with considered subsets should be
strengthened for the next trajectory, i.e., the weights (priorities) of these components in-
crease. When the generated trajectory is admissible, the role of the components responsible
for the trajectory quality can be strengthened, i.e., their weights can be increased. Based on
the gained information, the local optimization task is being improved during simulation
experiments. This process is treated as a learning or intelligent searching algorithm. As the
q criterion coefficients change in consecutive iterations, the criterion assumes the following
form:

q(k)(u, s) = a(k)0

(
∆Q(u, s) + Q̂(u, s)

)
+ a(k)1 ϕ1(u, s) + · · ·+ a(k)i ϕi(u, s) + · · ·+ a(k)n ϕn(u, s), (7)

where k denotes the number of iteration.
Typically, the same initial coefficient values are assumed. Changes to the a2, a3, . . . , an

coefficients depend on real maximum distances of the last generated trajectory from the
reachable parts of the not-admissible state set SN , and the remaining special sets.

In the work [24], the fractional back propagation algorithm was proposed (FBP),
which uses the fractional order derivative according to Grünwald–Letnikov fractional
derivative (GL) theory. Assuming the general form definition of the integer derivative and
the fractional derivative, the GL derivative can be written:

u0,s0
∆ν

u,sQ(u, s) = lim
h→0

1
hν

[(u−u0,s−s0/h)]

∑
n=0

(−1)n
(

ν

n

)
Q(ui − ui−nh, si − si−nh), (8)

where (ν
n) denotes the Newton binomial, ν the order of the fractional derivative of basis

function ϕ(u, s), u0, s0 the interval range, and h denotes the number of steps in the state
space of the given process. Then, we can assume the backwards difference of the fractional
order as u0,s0

∆(ν)
u,s , where ν ε R+:

u0,s0
∆(ν)

u,s =
b(ui−u0,si−s0)/hc

∑
n=0

b(ν)n Q(ui − ui−nh, si − si−nh), (9)

where the consecutive coefficients b(ν)n are defined as follows:

b(ν)n =

{
1 for n = 0

(−1)n ν(ν−1)(ν−2)...(ν−n+1)
n! for n = 1, 2, 3, ..., N.

(10)

N denotes the number of discrete measurements of Q(u, s). The ∆Q(u, s) in Equation (7) is
therefore true for the special case when ν = 1 and N = 1. Taking into account the above,
it is possible to formulate a generalized form of the considered relationship, in which
the change of the criterion ∆Q can be estimated by an approximation of the fractional
derivative of the ν order in the following form:

qk(u, s) = a(k)0

(
u0,s0

∆(ν)
u,s Q(u, s) + Q̂(u, s)

)
+ a(k)1 ϕ1(u, s) + · · ·+ a(k)i ϕi(u, s) + · · ·+ a(k)n ϕn(u, s). (11)

Thus, in the formula adopted above, it becomes possible to search for a set of trajec-
tories taking into account the variable length of the state vector history. In the adopted
formula for determining successive coefficients implementing the approximation of the
fractional-order derivative, it should be remembered that the accuracy of the approximation
is determined by the length of the vector b(ν)n . Moreover, the boundary value of N for
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successive sequences of process states cannot exceed the length of the generated trajectory.
Using the above interpretation and the results of the research carried out for standard
feed forward neural network structures using the backpropagation mechanism of the
fractional-order derivative, it is possible to indicate the following features and properties
of the proposed machine learning method:

• It is possible to smoothly control the fractional-order derivative approximation algo-
rithm, using as parameters the order of the derivative ν and the number of vector

elements
−→
b(ν);

• For the value of ν = 1, the algorithm works as for the method described in [24], calculat-
ing the difference ∆Q, using the property (10), such that for N = 1,
b(1)n = {1,−1}, where n = 〈0, 1〉;

• For a value of v in the range of 0 < ν 6 2∧ ν 6= 1, a smooth selection of the derivative
approximation is possible, allowing for the search for the trajectories of optimal
solutions in the full spectrum of the space of permissible states.

The proposed algorithm is a generalization of the machine learning method proposed
in [3]. The numerical stability of determining the approximation of the derivative of the ∆Q

criterion using the vector
−→
b(ν) will depend on the number of its elements. For sufficiently

large values of N, it is possible to determine their values in advance, also with the use of
the Gamma function and further implementation in the form of a static structure, reducing
the computational complexity of the algorithm at the stage of sequential search for the
solution trajectory of a given optimization problem. The obtained solutions, in the form
of optimal discrete process trajectories, can be used as suboptimal controls for other more
complex optimization problems. At the current stage of the research, the authors will
use the above machine learning model with a fractional order derivative to control the
processes described in the ALMM technology to control a fleet of unmanned aero vehicles
(UAV) in the conditions of dynamically changing system resources; in particular, in the
case of a change in the number of UAVs, airspace availability and the intensity of the jobs
stream of logistic tasks carried out by this fleet.

5. Generalized ALMM Based Learning Method

Generalizations of the method may take two basic directions:

• Modification of the local criterion and the learning process;
• Weakening assumptions under which the method can be applied.

5.1. Criterion Modifications

First of all, let us notice that for certain problems a sufficiently accurate estimation
of the criterion for the remaining part of the criterion Q̂(u, s) may be difficult or not even
possible. The learning method can be applied in such cases for the q criterion, omitting the
Q̂(u, s) addent, i.e., the formula (7) becomes:

q(k)(u, s) = a(k)0 ∆νQ(u, s) + a(k)1 ϕ1(u, s) + · · ·+ a(k)i ϕi(u, s) + · · ·+ a(k)n ϕn(u, s). (12)

Secondly, let us notice that the reliability of q criterion addends is not uniform. The ∆Qν
i

value is certain, but the other parts are merely estimates or predictions of unknown values,
meaning they are not as reliable, with specifics depending on the problem instance under
analysis. What is more, the reliability may even vary for individual parts of a local criterion.
This suggests a deviation from the deterministic choice of the best decision for a given
state, to be replaced with stochastic choice. The probability of selecting decision u in state
s is proposed to be proportional to the q(u, s) value. The proposed approach, using the
probability choice, is also beneficial as the exploration of the solution space is necessary too.
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5.2. Weakening the Assumptions

Although the learning concepts using ALMM technology, in combination with a
separable additive steering quality criterion, have been discussed by the authors in previous
works, we will show below that the method can also be defined for a weaker assumption,
namely for a merely separable criterion.

Theorem 1. Assumption: let the ALMM Based Learning method, defined for a problem (P, Q),
be additively separable.
Thesis: The ALMM Based Learning method can be defined for the problem (P, Q’), where Q’ is
any separable criterion.

Proof. Let us analyze the local criterion q′(u, s) for a problem (P, Q’).
As restrictions represented by the process P remain unchanged, (and , as a consequence,

the restrictions of all the instances (P, Q′) of the problem (P, Q’) remain unchanged), one
has to consider the first two addends in formula (7) or the first addend in formula (12) only.
It results from Definition 2 that:

∆νQ = Qi+1 −Qi = fQ(Qi, ui, si)−Qi f or i = 0, 1, . . . , d(s̃)− 1. (13)

As the value of Qi is known at the state si, one can compute fQ(Qi, ui, si) and the component
∆Qi can be used in formula (7) or formula (12). If sufficiently accurate, estimation criterion
Q̂(u, s) may be difficult or not even possible and formulae (12) instead of (7) should be
applied for the criterion q′(u, s). Q.E.D.

Theorem 2. Assumption: let the ALMM Based Learning method be defined for a problem (P, Q).
Thesis: The ALMM Based Learning method can be defined for the problem (P, Q’), where Q’ is
any multiplicative criterion.

Proof. It results from Definition 3 that the multiplicative criterion is a separable one. Thus,
the thesis resulting from Theorem 1 is true, so:

∆Qν
i = Qi+1 −Qi = Qi · v(ui, si)−Qi = Qi · (v(ui, si)− 1) f or i = 0, 1, . . . , d(s̃)− 1 Q.E.D. (14)

These types of criteria are common in term securities investment problems that may not be
redeemed early.

6. Exemplary Problem

An example of a problem that can be used as a difficult-to-control process due to
the exponential complexity of the process of selecting control decisions may be a fleet of
drones performing transport tasks to a network of airport destinations. Assume that the
graph of a destination is a loaded undirected graph G = (I, J, P) in which the set of edges
denotes the air routes J and the set of landing sites I represent the set of nodes partially
connecting the air corridors described by the relation of interconnections P ⊂ (I × J).
This relation includes only those connections that are defined in the considered airspace
structure of routes. In the considered example, it was assumed that the drones fleet used is
the counterpart of a set of parallel machines, which may differ in their operating parameters.
In particular, it is their cruising speed, transported weight and range. Airport tasks are
characterized by due times and their deadlines. It is also assumed in the considered
example that the operational time of the fleet is not subject to restrictions related to the
access of airspace and the routes of individual ships can be determined independently
while maintaining adequately safe air separation. The execution of the flight along a given
route during the execution of the task is not subject to stoppages and individual tasks may
be assigned weights, taking into account the priority of their implementation. The main
task of the system is to generate the trajectory of decisions that control the process, taking
into account the costs of the work of individual machines, the waiting times for assigning
tasks and the total time of the execution of all tasks.
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The preliminary idea of the learning algorithm for this problem was given in [2]. Other
examples that refer to simplified models of discrete processes can be indicated in other
studies [23,25]. The specification of individual elements of the AL model is very extensive.
Below we will provide only those elements of the model that are necessary to explain the
structure of the local criterion and methods of learning. The process state at any instant
t is defined as a vector x =

(
x0, x1, x2, . . . , xjMj

)
, where M = M1 ∪ M2. A coordinate

x0 represents a set of corridors, namely routes to be traveled by drones to the moment
t. The other coordinates xm describe the state of the m-th drone, where m = 1, 2, . . . , |M|.
A state s(x, t) belongs to the set of not-admissible states if there is a route corridor whose
job flight is not completed yet and whose due date is earlier than t. The definition of SN is
as follows:

SN =
{

s = (x, t) :
(
∃j ∈ J, j /∈ x0

)
∧ d(j) < t

}
. (15)

A state s(x, t) is a goal if all the jobs have been completed, i.e.:

SG =
{

s = (x, t) : s /∈ SN ∧
(
∀j ∈ J, j ∈ x0

)}
. (16)

A decision determines the flights that should be started at the moment t, machines
which are in the air, machines that should be serviced or prepared to be operational or
the machines that should be waiting for weather reasons. Thus, the complex decision
u =

(
u1, u2, · · · u|M|

)
, where the co-ordinate um refers to the m-th drone and included all

pieces of needed information. Based on the current state s(x, t) and the decision u taken in
this state, the subsequent state (x′, t′) = f (u, x, t) is generated by means of the transition
function f .

In the course of trajectory generation in each state of the process, a decision is taken
for which the value of the local criterion q(u, s) is the lowest. The local criterion takes into
account a component connected with cost of work, and a component connected with the
necessity for the trajectory to omit the states of set SN . The first components constitute a
sum of ∆Q(u, x, t) and ∆Q̂(u, x, t), where ∆Q(u, x, t) denotes the increase of work cost as a
result of realizing decision u and ∆Q̂(u, x, t) is the lower estimation of the cost of finishing
the set of headings matching the final section of the trajectory after the decision u has been
realized. As was presented in Section 4, the fractional order ν of the discrete difference ∆Qν

might be used to fluently scan the space of the process states.
The next component is connected with the necessity for the trajectory to omit the

states of set SN , i.e., it takes into account the consequences of the decision u from the due
date’s limitations point of view. Let L(x′, t′) estimate the minimal distance between the
new state (x′, t′) and the subset of not-admissible set SN that is reachable from the state
(x′, t′). The estimation is defined in detail in [16,26]. Thus, involving the GL fractional
derivative, the local criterion is of the form:

q(u, x, t) = ∆Qν(u, x, t) + Q̂(u, x, t) + a
1

L(u, x′, t′)
, (17)

where a is a parameter that is being changed during consecutive experiments (trajectory
generations). The value of criterion q is computed for each u ∈ Up(x, t). This decision u∗

for which the criterion value is minimal is chosen. Then, the new state (x, t′) = f (u∗, x, t) is
generated and the new best decision is chosen. If a newly generated trajectory is admissible
and, for most of its states, the distances to the set SN are relatively big, the parameter a
can be decreased. In such a situation, the role of optimization compounds is enlarged.
On the contrary, when the generated trajectory is not admissible, the parameter a should be
increased because then the greater emphasis should be put on the due date’s limitations.

In a typical process of optimizing logistic tasks for unmanned aircraft, the process is
affected by problems related to downtime (e.g., vessel failures or delays in flight tasks),
continuous control of fleet vessels, their availability, optimal task planning, optimal use of
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the available capacity, and available airspace capacity. In current air task planning systems
(such as the European ATM Master Plan), this is still a manual process that is supported
by additional technical means. Intelligent technology is used to control the process of
executing dynamically incoming air tasks by a fleet of drones that move concurrently
according to the distribution of nodal points—individual air destinations. For such a use of
algebraic–logical description, the following assumptions are defined:

• The task of controlling the process of executing dynamically incoming aerial tasks
by a fleet of drones that move concurrently according to the distribution of nodal
points—individual aerial destinations—is defined.

• The aviation destinations for individual tasks can dynamically appear in the system,
according to the properties of the process state vector.

• The drone fleet consisted of six unmanned aerial vehicles (UAV1–UAV6).
• The UAVs take off and land at a dedicated airport; the nodal points are known.
• The tasks to be executed arrive in real time and are respectively defined as T1, T2, . . . , Tn,

having the structure of single-stage and multi-stage target nodes, respectively.
• The execution of the assigned individual tasks for the UAV is carried out, respectively,

at specific time intervals depending on the currently prevailing conditions and ex-
ternal interference, as well as taking into account the conditions related to possible
dangerous/collision situations of the UAV.

A number of studies have been conducted for different trajectory classes, number of
drones and tasks. The example presented below is for a fleet of four drones that had to
perform a set of 21 random tasks for a single-stage trajectory (i.e., the number of target
nodes is 1). Table 1 shows the obtained results; in the Drones column, the obtained values
in the form of A × B describe the number of steps in which the tasks were completed
with the initial zero state (A) and the number of drones performing the tasks (B). For the
cases considered, the shortest time for the drone fleet to complete incoming tasks is 8269[s],
and the longest is 8507[s].

Table 1. Results of simulations with four UAVs.

No. Drones Time [s]

1 22 × 4 drone 8269
2 21 × 4 drone 8305
3 22 × 4 drone 8340
4 22 × 4 drone 8507
5 22 × 4 drone 8321
6 21 × 4 drone 8408
7 22 × 4 drone 8356
8 22 × 4 drone 8435
9 21 × 4 drone 8279

Table 2 shows the trajectories in which the individual drones carried out the assigned
tasks (value 0—means the completion of the task, 1–21—task numbers) for which SG was
found, respectively.
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Table 2. Assigned tasks for the UAV fleet.

Trajectory
Number Drone 1 Drone 2 Drone 3 Drone 4

1 (super-zero
condition) 0 0 0 0

2 0 2 8 21
3 0 11 16 21
4 4 0 16 21
5 4 1 0 21
6 4 1 2 0
7 0 1 2 18
8 9 1 0 18
9 9 0 3 18
10 9 17 3 0
11 9 17 0 12
12 0 17 8 12
13 20 0 8 12
14 20 6 0 12
15 20 6 15 0
16 20 6 0 5
17 0 6 14 5
18 7 0 14 5
19 7 13 14 0
20 0 13 14 10
21 0 0 0 10
22 0 0 0 0

Figure 1 shows the next steps in the tasks performed by the drone fleet.
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Figure 1. Schedule of consecutive flights’ performance by fleet of four drones. (a) the shortest and
(b) the longest time.

Further simulations were carried out for a randomly determined fleet of seven drones
and 29 tasks, in which the solution with the shortest time of 6401 [s] and the longest time of
7199 [s], respectively, was obtained (see Table 3).



Appl. Sci. 2022, 12, 12766 11 of 16

Table 3. Results of simulations with four UAVs.

No. Drones Time [s]

1 30 × 7 drone 6911
2 30 × 7 drone 6676
3 30 × 7 drone 6729
4 30 × 7 drone 6664
5 30 × 7 drone 6708
6 30 × 7 drone 6546
7 30 × 7 drone 6948
8 30 × 7 drone 6940
9 30 × 7 drone 6471
10 30 × 7 drone 6929
11 29 × 7 drone 7101
12 30 × 7 drone 6893
13 30 × 7 drone 6895
14 30 × 7 drone 6719
15 30 × 7 drone 6546
16 30 × 7 drone 6991
17 30 × 7 drone 6918
18 30 × 7 drone 6918
19 30 × 7 drone 6848
20 30 × 7 drone 6757
21 30 × 7 drone 6487
22 30 × 7 drone 6914
23 30 × 7 drone 6626
24 30 × 7 drone 6465
25 30 × 7 drone 6879
26 30 × 7 drone 6940
27 30 × 7 drone 7199
28 30 × 7 drone 6401
29 30 × 7 drone 6982

Table 4 shows the assigned tasks for the drone fleet for which a target solution has
been received (value 0–task completion, 1–29—task numbers).

Figure 2 shows the schedule of tasks carried out by the supervised drone fleet of seven
drones.
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Table 4. Assigned tasks for the UAV fleet.

Trajectory
Number Drone 1 Drone 2 Drone 3 Drone 4 Drone 5 Drone 6 Drone 7

1 (super-zero
condition) 0 0 0 0 0 0 0

2 20 0 25 4 5 29 7
3 20 0 25 4 5 29 7
4 20 12 25 4 0 29 7
5 20 12 25 4 10 0 7
6 20 12 25 0 10 14 7
7 0 12 25 26 10 14 7
8 21 12 25 26 10 14 0
9 21 12 0 26 10 14 8

10 21 0 22 26 10 14 8
11 21 15 22 0 10 14 8
12 21 15 0 28 10 14 8
13 21 0 18 28 10 14 8
14 21 11 18 28 10 0 8
15 0 11 18 28 10 13 8
16 23 11 18 28 0 13 8
17 23 11 18 28 2 13 0
18 0 11 18 28 2 13 19
19 3 0 18 28 2 13 19
20 3 27 18 0 2 13 19
21 3 27 0 24 2 13 19
22 3 27 6 24 2 0 19
23 3 27 6 24 2 17 0
24 3 27 6 24 0 17 1
25 3 0 6 24 9 17 1
26 3 0 6 24 9 17 0
27 0 0 6 24 9 17 0
28 0 0 6 24 9 0 0
29 0 0 6 0 9 0 0
30 0 0 6 0 0 0 0
31 0 0 0 0 0 0 0

The above results take into account only the obtained sets of acceptable or so-called
admissible trajectories . These are only those trajectories that allow a process to reach the
goal state. Unacceptable trajectories also referred to as non-admissible trajectories, which
bring the process to forbbiden states, for example, as a result of over-timing the task to be
executed, have been omitted. However, they can provide additional information to search
for acceptable solutions to protect the process from entering a forbidden state.

7. Reinforcement Learning vs. ALMM Based Learning

ALMM Based Learning exhibits certain similarities to a general and much more well
known method, namely Reinforcement Learning (RL) [6,8,9,11,15,27]. Let us attempt to
review these similarities as well as differences. It is worth remembering, though, that these
remarks do not constitute an entire comparison of the two methods. Such a comparison
would not be possible anyway due to the large variety of RL method variants available.
A more comprehensive comparative discussion will be the subject of a separate study.
Similarities may be noticed more clearly when uniform terminology is used, which is why
this paper attempts to provide equivalent terms for both methods.

7.1. Application of Learning

The Reinforcement method is a much more general method, which is why its applica-
tions cover multiple fields such as controlling robots, planning and scheduling problems,
various games and many more. ALMM Based Learning was developed to deliver approxi-
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mate solutions of NP-hard discrete optimization problems. It can be noticed, however, that
the approach can be utilized for a broader spectrum of applications.

7.2. Environment

Both methods utilize the state space and both build the best possible trajectory (or
its parts). In both cases the ultimate goal of an algorithm is to find a most profitable
(overall) sequence of actions/decisions. The environment for the ALMM Based Learning
method, however, is defined by the Algebraic Logical Metamodel of Multistage Decision
Processes, while for the RL method it is defined as the Markov Decision Process. Thus, the
ALMM Based Learning environment is deterministic, while the Reinforcement Learning
one is stochastic. The next difference stems from the fact that ALMM Based Learning may
utilize the so-called generalized states space S = X× T, with X corresponding to a space
of proper states and T representing the time instants space. As a consequence, ALMM
Based Learning suits non-stationary environments well. All components defining the
environment may be non-stationary, including the transition function f (u, s) = f (u, x, t)
as well as possible decision sets Up(s), (matching subsets of actions available in particular
states) and constraints defining goal state set SG and not-admissible state set SN .

7.3. Completeness of Information

ALMM Based Learning utilizes a mathematical model of a problem (or instance) to be
solved. One may say it has complete information on the environment beforehand. Taking
into account the recursive character of the AL models, though such information may only
be utilized locally, a certain degree of analysis of the environment properties is possible;
however, an estimation of the distance to the not-admissible state set and other sets is
necessary. In contrast to ALMM based Learning, the RL scheme implies that there is little
need for human expert knowledge about the domain of application.

7.4. Learning Scheme

In the RL method, the agent is supposed to choose the best action based on the current
state. The selection is made based on properly built Value Functions taking various forms
depending on the various RL method variants. In ALMM Based Learning, the decision
(that corresponds to the RL method’s ‘action’) is calculated based on a parametric, local
criterion function q(u, s). Obviously, one may express it as the Agent taking a decision
based on function q, similar to the RL method.

7.5. Aim of Learning

Let us now review certain similarities to the indirect “aim” of the learning processes
in both methods. First of all, both methods share a common assumption: the agent selects
an action/decision that will maximize the reward in long term, not only in the immediate
future. Such algorithms are known to have an infinite horizon, though in practice the
heuristic philosophy is applied to a finite time range or finite trajectories (so-called episodic
problems). The objective of an RL based algorithm is to find a ∏ policy with a maximum
expected return. A policy refers to mapping that assigns some probability distribution
over actions with the actions selected by the policy. The objective of an algorithm utilizing
ALMM Based Learning is to find coefficients a2, a3, . . . , an for a local criterion function
q(u, s) in a way that would optimize the value of a global criterion Q. The selection of a
decision in a given state is performed based on the local criterion q. Roughly speaking,
a policy, or more precisely an action value function under policy ∏, corresponds to a local
criterion q for ALMM based Learning, while the expected reward criterion corresponds to
the global criterion Q.

7.6. Learning Process

In an RL method, the learning process utilizes a “reward feedback” for the agent
learning its behavior. This is known as a reinforcement signal. Exact reinforcement al-
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gorithms vary depending on the RL method variant. This is the main novelty presented
study, namely the learning progress performed by the ALMM Based Learning strategy.
Iteration for ALMM Based Learning consists of generating a whole trajectory (admissible
or not-admissible). The algorithm analyzes the whole trajectory path. Knowledge of the
environment is applied to generate the most suitable local criterion. The gaining of knowl-
edge is aggregated in a form of optimized coefficient values that determine the influence
of individual criterion components. The coefficients are then improved in consecutive
iterations based on the analysis of individual trajectory paths.

8. Conclusions

This paper presents new generalizations referring to the learning approach named
the ALMM Based Learning method. The learning method is applied mainly to solve
NP hard discrete optimization problems, however, the proposed approach can be used
efficiently with algorithms for the broad area of applications. The paper includes proofs
of theorems showing that the ALMM Based Learning method can be defined for much
broader problem classes than initially assumed, including multiplicatively separable criteria.
Then, it proceeds to propose and discuss essential modifications to the local criterion.
The novelty of a machine learning method based on ALMM is the fact that it is uses
formal algebraic–logical models of problems to be solved. Moreover, the generalization
of the changing dynamics measurement of the ∆Qν criterion was applied with the use
of a fractional derivative of the GL type. This allows for fluent searching in the state
space for optimal and suboptimal solutions. However, although initial knowledge is
delivered it cannot be utilized easily. Thus, the additional knowledge iis acquired and
gathered during successive experiments which consist of the generation of subsequent
trajectories. Comparing the method with methods of machine learning [8,28–30], the
presented approach has similarities to Reinforcement Learning. However, it is not its
typical class. A large number of difficult problems can be efficiently solved by means of the
presented method. The method is especially very useful for difficult scheduling problems
with state-dependent resources. The managing of projects, especially software projects,
belongs to this class. Multiple experiments were carried out, confirming the efficiency of the
presented method. Simultaneously, the experiments indicated the need for further research
regarding coefficient fine-tuning algorithms. More detailed classification of problems based
on properties of the AL problem models is also necessary, to be followed by studies for
individual classes.

Author Contributions: Conceptualization, Z.G., E.D.-D. and E.Z.; methodology, Z.G., E.D.-D. and
E.Z.; software, Z.G., E.D.-D. and E.Z.; validation, Z.G., E.D.-D. and E.Z.; formal analysis, Z.G., E.D.-D.
and E.Z.; investigation, Z.G., E.D.-D. and E.Z.; resources, Z.G., E.D.-D. and E.Z.; data curation, Z.G.,
E.D.-D. and E.Z.; writing–original draft preparation, Z.G., E.D.-D. and E.Z.; writing–review and
editing, Z.G., E.D.-D. and E.Z.; visualization, Z.G., E.D.-D. and E.Z.; supervision, Z.G., E.D.-D. and
E.Z.; project administration, Z.G., E.D.-D. and E.Z.; funding acquisition, Z.G., E.D.-D. and E.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ALMM Algebraic Logical Metamodel of Multistage Decision Processes
cMDP common multistage decision processes
MDDP dynamic multistage decision process
U The set of decisions
S initial generalized state
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s0 initial state
f transition function
SN The set of not admissible generalized states
SG The set of goal generalized states
Up The set of possible decision
X The set of proper states
XN The set of proper not admissible states
XG The set of proper goal states
P process
(P, Q) The optimization problem
Q critterion
(P, Q) The optimization task (instance of the problem)
P The instance of the process P and named an individual process
SP The set of all states of trajectories of the process
d(s̃) The number of the last state of a finite trajectory s̃
Ũ The set of all decision sequences of the process P,
R The set of real numbers.
SAi The state sets that are advantageous
SADi The state sets that are disadvantageous
UAV Unmanned Aerial Vehicle
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