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Abstract: The neutralization of improvised explosive devices (IEDs) involves the use of disrupting
agents propelled explosively. Due to the special nature of such materials, a proper investigation of
the parts most susceptible to sympathetic detonation is in order. The initiation of IEDs is caused
by detonation products, shock waves, and propelled disruptive agents. In this paper, initiation of
IED composition (acceptor charge) due to the neutralization system’s (donor charge’s) explosive
charge detonation is evaluated based on the influence of the first two of the three above-mentioned
factors. One of the most susceptible components of IEDs to sympathetic initiation is the blasting
cap. Based on an experimental and numerical mix approach, blasting cap tendency to sympathetic
detonation in open field had been investigated. The suitability of critical energy fluence and Chapman–
Jouguet threshold criteria to the sympathetic detonation tendency of blasting caps was investigated.
Experimental and numerical/analytical results describing the phenomenon are in agreement.
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1. Introduction

Sympathetic detonation involves the initiation (usually unwanted) of an explosive
charge called the acceptor due to the detonation of another charge called the donor. The
initiation of the acceptor can be induced by detonation products and/or shock waves,
depending on the distance between the two explosive charges.

The issue of sympathetic detonation is encountered in both military and civilian
applications. In the military domain, avoiding sympathetic detonation is important, among
other things, in the process of neutralizing IEDs or unexploded ordnance (UXO). In order
to determine the critical distances at which the neutralization system can be placed, the
possibility of sympathetic initiation of the IED load must also be taken into account since
it is very important to avoid the effects that are produced by an unwanted initiation of
the IED.

Starting from the principle of IED neutralization, namely preventing its operation
(detonation of the explosive charge) and separating the component elements so that its
functioning can no longer be triggered by the subsequent handling or interacting with the
environment, the requirement of the neutralization system’s performance can be formulated
as the ability to induce a high enough shock in the IED to separate its parts, but at the
same time to avoid the initiation of the explosive charge caused by the effects of the donor
charge’s detonation.

In both military and civilian fields, the storage, transportation, handling, and the
production of explosives or items that include explosives involve risks due to the sensitivity
and reactivity of such materials. As history has proven, one of the main risks is associated
with the tendency of energetic materials to react to a nearby stimulus, such as an explosion
or a kinetic impact. Over time, the above-mentioned tendency led to several catastrophic
accidents in military facilities as well as in civil mining and industrial sites. Due to these
tragic events, regulations regarding the design and use of items containing explosives were
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imposed. Among these regulations, sympathetic detonation evaluation tests are mandatory
and can be seen as the backbone of safety program tests.

The evaluation of the tendency of an energetic material toward sympathetic detonation
is assessed using the gap test. Basically, the gap test is a widely used test that aims to
evaluate the sensitivity of explosives to blast waves. The gap test and other associated tests
have been performed numerically and experimentally for different types of explosives, both
on land and underwater, by several researchers throughout history. Thus, Yang et al. [1]
numerically investigated Composition B’s susceptibility to sympathetic detonation based
on a Direct Numerical Simulation (DNS) scheme, which was also validated experimen-
tally. They concluded that the probability of sympathetic detonation is related not only
to the type of explosive and distance but also to the size of the charge. Zhang et al. [2]
experimentally evaluated the underwater sympathetic detonation of TNT and analyzed
the energy, pressure, and pulsing cycle. Kubota et al. [3,4] investigated using high-speed
photography the sympathetic detonation of Composition B both in air and underwater and
also investigated it numerically by using Lee and Tarver’s phenomenological reaction-rate
law. An experimental study by Becuwe and Delclos [5] on the sympathetic detonation of
low-sensitivity explosive compounds (NTO and HMX-based PBX) showed that the shock
insensitivity of the studied explosive mixture is combined with very good behavior under
fire, slow heating, and a ball impact. Keshavarz et al. [6] studied the possibility of using
a small-scale gap test to evaluate the sympathetic detonation of CaHbNcOd explosives
and proposed a simple procedure for the analytical calculation of the shock sensitivity
of energetic compounds. Ko et al. [7] investigated experimentally and numerically the
shock sensitivity of a shaped charge underwater and showed that in an underwater ex-
plosion, the index of the sympathetic detonation is slightly higher than in the air. Along
with the previously mentioned research teams, several others can easily be named, includ-
ing researchers/teams that approached the subject in a theoretical manner, such as M.H.
Keshavarz, E.N. Ferm, H.R. James, and A.C. Victor [6,8–10].

When an explosive charge (explosive bars) is subjected to the action of a shock wave,
this shock wave will produce the initiation of the acceptor charge only if the energy of the
shock wave is greater than the critical energy. The critical energy considers not only the
pressure level (shock amplitude) but also the pulse duration and the acceptor impedance
as stated by Walker and Wasley [11]. The formula for energy calculation is given in
Equation (1).

Ec = P2t/ρ0U (1)

where P is the shock amplitude, t indicates the pulse duration, ρ0 denotes the acceptor’s
initial density, and U is the shock velocity that travels through the acceptor. The term Ec
has the dimension of energy per unit area and is therefore referred to as energy fluence.
Through experimental tests carried out with different explosives subjected to the square-
wave shock produced by the impact of the flyer test, it was found that each explosive
has a range of energy fluence in which a stable detonation is produced, called critical
energy fluence [12]. Additionally, for the evaluation of the initiation of an explosive under
the action of the shock wave, the “Pop-plot” [12] can be considered, which represents
the graphic representation in logarithmic coordinates of the run distance as a function of
pressure for the acceptor explosive.

The application of Equation (1) used to evaluate the initiation of detonation of an
explosive charge requires the determination, by numerical analysis, of the amplitude
and duration of the applied shock. In the absence of numerical analysis, the relationship
developed by Yadav [13] takes into account detonation parameters, which are easier to
measure and can be used to determine the energy transmitted to the explosive charge. This
relation is specified in Equation (2).
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where ρ0 is the initial density, Dj is the velocity of detonation, δ is the thickness of reaction, r
denotes the specific heat ratio of detonation products, and ax and bx are Hugoniot constants.

In line with the sympathetic detonation issue, yet in a less conventional manner, the
current paper focuses on the investigation of the sympathetic detonation tendency of
the blasting cap, containing pentaerythritol tetranitrate (PETN) charges. The main focus
is targeted on investigating the applicability of critical energy fluence for a particular
configuration with an air gap between donor and acceptor explosive charges.

For the assessment of the detonation initiation potential of a blasting cap, in this paper,
we will use Equation (1) because, when using numerical analysis, the parameters in this
equation are determined much faster. The relevance of the study is obvious when one
considers the specific way in which the neutralization of suspicious packages is carried out.
Basically, the disruption of such packages is performed by propelling a disrupting agent
(metallic/plastic bolts or water) with the use of small explosive charges. The blast wave
generated by the detonation of an explosive charge has the potential, in certain conditions,
to lead to unwanted package detonation due to the initiation of explosive charge and/or
blasting caps.

2. Experimental Investigation

In order to experimentally evaluate the sensitivity of blasting caps to blast waves,
several tests have been performed. The experiments involved the use of 100 g of TNT as
donor charge and φ7 × 69 mm blasting cap as an acceptor. TNT was chosen as a donor
because it is considered a reference explosive. Although the amount of 100 g of explosive
is not common for neutralization systems, it was used to better capture the influence that
the detonation products and the shock wave can have on the sympathetic detonation of
a blast initiator. The experimental setup illustrated in Figure 1 aims to identify a critical
distance, in terms of air thickness, between the acceptor and the donor that will end in a
no-go reaction for the acceptor.
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Figure 1. Experimental set-up (side-on configuration).

The blasting cap type used in these experiments is based on 0.6 g PETN charge with a
density of 1.75 gm/cm3. The donor charge was detonated using the same type of blasting
cap as the detonator as the one used as the acceptor.

The tests were performed in an open space configuration, imposing a higher y value
(donor/ground distance) than the x value (donor/acceptor distance). Using this approach,
the incident blast wave was allowed to arrive first at the acceptor position instead of a one
reflected. The post-test recovery of target blasting caps, when possible, was the criterion for
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identifying a possible detonation of the acceptor. A witness plate was not used due to the
chosen test setup (the TNT charge was parallel to the blasting caps in order to have a larger
contact surface; this represents the most unfavorable situation in relation to the position
that a disruption load can have towards an acceptor load from the components of an IED).
In this situation, the presence of a witness plate could have influenced the initiation of the
blast cap from the shock wave that is reflected from the plate.

Table 1 lists the experimental results regarding blasting cap sympathetic detonation
tendency.

Table 1. Gap test experimental results.

Air Gap Thickness X (mm) Go/No Go

100 Go
200 Go
350 No go
500 No go

A fast image recording camera (Photron, FASTCAM SA-Z), set to an acquisition rate of
30,000 fps, was used as part of the testing setup. Thus, the blast wave position and fireball
dimension during experimental tests were traced. Table 2 contains the results that were
extracted from image analysis, and the detonation of 100 g TNT is illustrated in Figure 2.

Table 2. Blast wave position and fireball dimension.

Time (s) Blast Wave Position (mm) Fireball Dimension (mm)

0 0 0
0.0003000 608.39 623.04
0.0005330 715.52 798.26
0.0006670 749.59 900.48
0.0009670 827.45 1061.09
0.0016330 851.79 1406.67
0.0036670 992.94 1596.58
0.0050330 1017.28 N/A
0.0067670 1065.96 N/A
0.0114330 1168.17 N/A
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3. Numerical Approach

While experimental testing is the most suitable method to evaluate sympathetic deto-
nation, the numerical approach has proved to be a valuable tool in deciphering the process
specifics. Thus, important aspects of the detonation propagation process (pressure level in
the donor/acceptor charge or run distance for a stable detonation) can be investigated using
a low-cost and reasonable-time scenario. For the proposed experimental tests, numerical
models have been defined using Autodyn 2021® software [14].
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3.1. Preprocessing

In order to corroborate the experimental results with the numerical ones, one simple
approach was considered. The numerical model is based on a 2D planar symmetrical
geometry and the use of multi-material Euler part.

Since the mesh sensitivity is a well-known characteristic of commercial software based
on the Finite Element Method (FEM), special attention was given to this aspect. Considering
Ko’s observation [7] regarding the recommended mesh dimension as a function of the
distance for the free air blast wave and also the distances involved in experimental tests,
a graded mesh was imposed. The mesh dimension varies in both directions from 0.1 mm
in the blasting cap region to 1 mm in the donor charge area, as shown in Figure 3.
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Figure 3. Typical mesh example.

In addition to the above-mentioned aspects, it must be pointed out that two rows of
six gauges, 1 mm apart on the X axis and 5 mm apart on the Y axis, were used for numerical
calculus to record the peak pressure in the acceptor charge. The position of the gauges, the
material location, and the edges on which boundary condition were imposed, as shown
in Figure 4. Additionally, in order to reduce the simulation time, the pressure contours
generated by 100 g TNT detonation have been remapped in the current simulation using
the fill option from a separate Autodyn 2021® file.
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3.2. Material Models

The basic properties of any substance, explosives included, are usually identified
through a mathematical relation that correlates pressure, volume, and internal energy/
temperature. The relation is called an equation of state (EOS).

In the process of numerical analysis of the sympathetic detonation, it was found that
the choice of the equation of state that describes the behavior of the donor and acceptor
charges plays a very important role.
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Over time, numerous attempts to define an EOS that accurately predicts the behavior
of explosive gas products have been made. In fact, the number of proposed equations
was high enough to classify them into two distinct categories: one considers the chemistry
explicitly and the other does not [15].

Unfortunately, all of the above-mentioned equations have limited the applicability
and variable accuracy. Despite this shortcut, their use in numerical calculus is extremely
beneficial since different particular situations can be investigated in a reasonable time frame
and an almost costless manner.

When explosive detonation applications are numerically investigated, one EOS is
usually involved, namely Jones–Wilkins–Lee (JWL) [16]. In fact, the use of the JWL EOS is
so common that by now almost all hydrocodes have implemented it and several forms can
be identified in the literature. However, the most known form of equation is the form of a
family of isentropes [17], which is illustrated in Equation (3).

p(S, V) = Ae−R1V + Be−R2V + C∗(S)V−(ω+1) (3)

where p is the pressure; S refers to the entropy per unit initial volume (s/v0); V is the volume
relative to the undetonated state (v/v0); A, B, R1, and R2 are constant fitting parameters; ω
is an assumed-constant material parameter (Grüneisen function); and C*(S) is a parameter
dependent only upon the entropy S.

Based on the previously mentioned JWL EOS and ideal gas EOS assumptions, the
pressure in the front of a traveling blast wave can be accurately evaluated when hydro-
dynamic simulations are employed. Even though the equation’s versatility is impressive,
the application of JWL EOS by itself cannot deliver crucial data regarding the initiation
of the explosive when subjected to blast wave stimulus. Thus, in order to investigate the
blasting cap sympathetic detonation susceptibility, a slightly different EOS was chosen, the
Lee–Tarver equation of state [18]. In fact, the Lee–Tarver EOS is basically a JWL EOS that
has been upgraded with a supplementary equation, Equation (4), that allows the evaluation
of the burning fraction based on the pressure level acting on/inside the explosive [18].

∂F
∂t

= I(1 − F)b
(

ρ

ρ0
− 1 − a

)x
+ G1(1 − F)cFd py + G2(1 − F)eFg pz (4)

where F is the explosive burning fraction which has a value between 0 and 1.
The importance of JWL EOS and Lee–Tarver EOS for the current blast cap sympathetic

detonation study is correlated with the Chapman–Jouguet pressure level that can be used
as the Go/No-Go criterion.

The materials used in the numerical simulation are TNT for the donor charge, PETNJJ1
for the acceptor charge, aluminum for the blasting cap walls, and air for the space between
the donor and the acceptor. All the equations of state (EOS) and strength models of the
materials were adopted from the library of the Autodyn 2021® software.

3.3. Numerical Results

The obtained numerical results are presented in Table 3. In Figure 5, the pressure
levels recorded by two different gauges located inside the acceptor charge are illustrated
for two cases. Figure 5a shows the pressure levels in the case of a 200 mm gap between
the donor and acceptor, while Figure 5b shows the results for a distance of 500 mm. The
peak overpressure was directly measured from the gauges. The pressure wave speed was
determined from graphs of pressure in time, for consecutive sensors. By dividing the
distance between the sensors by the values of the times at which the maximum values of
the pressures were obtained, the shock wave velocities were determined for each case of the
acceptor–donor charge. The critical energy fluence was determined by using the maximum
pressure value, speed, and the pulse duration of the shock wave. For the calculation of
the shock wave pulse duration, the area under the pressure–time curve was numerically
evaluated and then approximated with a square-shaped pulse (rectangle with a height
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given by the maximum pressure value and length given by the value of pressure-acting
time that equals the previously calculated impulse).

Table 3. Virtually measured data in acceptor charge.

Air Gap Thickness,
X (mm)

Peak Overpressure
(Mbar)

Pressure Wave
Speed (mm/ms)

Critical Energy
Fluence (J/m2)

100 4.02 × 10−3 3162 1.69 × 105

200 3.55 × 10−3 2881 1.51 × 105

350 1.58 × 10−5 2840 97.38
500 0.91 × 10−5 2739 37.46
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4. Discussion

As the main goal of the present study is to evaluate the sympathetic detonation
tendency of blasting caps, the main focus is on the correlation of experimental and numeri-
cal results.

If the experimental approach is a straight forward method that clearly points out the
presence of acceptor detonation, the numerical approach is somehow trickier.

As previously mentioned, the numerical simulation is based on the use of Lee–Tarver
EOS [19]. The Lee–Tarver EOS points mainly at the Chapman–Jouguet [19,20] findings
that were later included in von Neumann’s work [21]. Basically, a stable detonation is
achieved when the pressure level reaches a certain value that is specific to each explosive
(0.327 Mbar for PETN). Considering this approach, the blasting cap will not be susceptible
to sympathetic detonation (in a range of a 0.1 to 0.5 m clearance distance) as long as
the pressure recorded by the gauges indicates significantly lower levels (see Table 3).
Nevertheless, as experimental tests have proved, the blasting cap detonation manifested at
both 100 mm and 200 mm, where, according to numerical simulation, the peak overpressure
is less than 0.327 Mbar.

Acknowledging the hypothesis involved in the critical energy fluence theory (step
pulse shape and constant impedance, mainly) and the 1.5 × 105 J/m2 threshold value
for the energy fluence of PETN (1.75 gm/cm3) [22], the calculus based on the numeri-
cal data (Figure 5) indicates a very good match with the experimental observation (see
Tables 1 and 3). Thus, it is found that for distances of 100 mm and 200 mm, the critical
energy values are close to the threshold value for the initiation of the acceptor explosive.
On the other hand, the recorded pressures are lower than those corresponding to the C-J
state, which indicates a weak detonation. The values of the maximum pressure and the
duration of the positive phase of the phenomenon shown in Figure 5a fall within the values
presented in the literature for the initiation of solid explosives [23]. Moreover, the shape of
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the pressure–time curve in Figure 5a is similar to the ones in Walker and Wasley’s work [24]
at the point that the initiation of the explosive occurs. Additionally, by analyzing Figure 5,
it can be observed that the pressure wave shape acting on the blasting cap has a much
different profile from the ones usually recorded during a standard gap test.

Due to the mismatch between the shock wave’s front velocity and donor gas products’
front velocity, the first to act on the blast cap is the blast wave, and the gas products pressure
shortly afterward, depending on the relative position between the donor and acceptor
charges, as can be deduced from Figure 6. The pressure wave profile is also shaped by the
reflected blast wave, which is clearly indicated by the numerical simulation.
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The same outcome can be underlined by theoretical means as well. Therefore, using
far-field experimental data (images recorded when the blast wave has already traveled
over a 0.6 m distance), the Sedov-Taylor model [25,26], and Gilev’s observations [27], one
can predict the distance between the incident blast wave and the gas products’ border.
Useful data regarding the position of the blast wave and the gas products’ border can be
extracted by solving Equations (5)–(10) [25–29]. In Figure 7, a comparison between experi-
mental results and the application of Equations (5)–(10) for two values of the expansion
dimensionality factor is presented.

Rs(t) = atb (5)

a =

[
Ed/(τs

0 l3−n
0 )

ρ

]1/(n + 2)

(6)

b =
s + 2
n + 2

(7)

l0 =

(
3m
2πρ

)1/3

(8)

τ0 =
l0

vTNT
(9)

R f (t) = Rmax

(
1 − e−kt

)
(10)

where Rs(t) indicates the shock front radii; a and b are coefficients; Ed is the TNT release
energy during detonation (usually 4.1 MJ/kg); l0 denotes a length scale; τ0 denotes a time
scale; m is the TNT mass; ρ is the TNT mass density; vTNT denotes the TNT detonation
velocity (6940 m/s); s indicates a factor characterizing the rate of energy release: instan-
taneous energy release (s = 0) and constant-rate energy release (s = 1); n is the expansion
dimensionality: planar expansion (n = 1), cylindrical expansion (n = 2), and spherical
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expansion (n = 3); Rf(t) indicates the fireball radii; Rmax is the fireball stopping radii (0); and
k denotes the drag coefficient.

It must be stated that the Sedov–Taylor equation can be applied only to the mid-field
region according to Equation (11) [28].(

3m
2πρ

)1/3
� Rs �

(
∆Hd

p

)1/3
(11)

where ∆Hd indicates the total energy released during detonation, afterburning included,
(up to 10.1 MJ/kg [30]), and p denotes the ambient pressure.

Using high-speed camera imaging, Rs radii can be identified for different time values.
Since the TNT charge has a cylindrical shape, a factor n = 2 was considered. Additionally,
due to the fact that the distances between the TNT charge and the blasting cap are small
(less than 0.5 m) for the experimental setup, an instantaneous energy release (s = 0) was
set. However, the experimental results plotted against the results provided by Equation (5),
which are presented in Figure 7a, show some considerable differences.
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By closely analyzing the footage in Figure 8, it can be observed that the blast wave
shape presents itself neither as a cylindrical shape nor as a spherical one. The mismatch
is probably due to the ratio between the length and the diameter of the TNT blast charge,
which has a value of 3.57, and also due to the overall small dimensions of the charge. Con-
sidering the experimental blast’s wave shape, which is more like an ellipsoid, a different
value for n factor was chosen, namely 2.7. A comparison between predicted and experi-
mental results for the modified value of the n factor is presented in Figure 7b, and it is clear
that the use of this value leads to a much better approximation of the experimental data.

The Rf radii can also be calibrated with the use of the camera footage and finally
plotted against Rs values, as shown in Figure 9. Predictions using Equation (11) are plotted
in the same figure. With the use of Figure 9, one can easily see that the blast wave gradually
moves away from the fireball border, which is consistent with the data provided by the
numerical simulation.
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The analytical calculus based on Equations (5)–(10) is confirmed by a numerical
approach, as shown in Figure 10. According to Figure 10, the blast wave front gradually
speeds up, leaving behind the front of the donor gas products.

As mentioned in Section 3.1, two rows of gauges (six gauges/row) were used for
pressure recording in the acceptor charge. This particular choice was due to the close
distance between the donor and acceptor charges which resulted in a curved shock wave
front, as depicted in Figure 10. As a result of the curved shock wave front, the first
susceptible area to interact with the blast wave is the upper front of the acceptor charge.
This can be clearly seen in Figure 5, where the higher-pressure values are recorded by
gauges no. 7 and 8.
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5. Conclusions

Sympathetic detonation tendency of the blasting cap for different scenarios is manda-
tory when the disrupting equipment is used on suspicious packages (IEDs). While ex-
perimental tests easily allow the evaluation of blasting cap sensitivity to blast waves, the
mix between numerical and experimental approaches can enhance the understanding of
the phenomenon.

Based on the relations of the mathematical model, it can be concluded that the shock
wave detaches gradually from the donor gas products, the complete detachment being
completed at a greater distance than the ones characterized by the blast cap initiation.
In the nearby distance of the donor charge, both the shock waves’ and the gas products’
overpressure act on and initiate the blasting caps, even though not simultaneously, as
proved in Figure 6. It is also clearly pointed out that the presence of gas products favors
reaching the critical value for sympathetic detonation, according to the critical energy
fluence criterion.

The analysis of sympathetic detonation tendency of blasting caps in close vicinity
shows that the critical energy fluence criterion is preferable to the Chapman–Jouguet
pressure threshold. The critical energy fluence criterion can be applied to test configurations
that include not only a dense matter gap but also an air gap.
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