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Abstract: Considering the harsh environment of deep, fully mechanized working faces and the
acutely imbalanced time distribution among excavation, support and anchoring, this paper designed
a new type of highly adaptable advance support for fully mechanized roadways that boasts high
adaptability, great support strength and a large working space. Firstly, the structure composition
and working principle of the advance support were introduced. The structures and mechanical
characteristics were then emphatically discussed. Subsequently, with the geological conditions of
the 8224-machine roadway in the XT Coal Mine taken as an example, the loads of the advance
support were obtained and then imported into the Ansys software to obtain the stress distribution
and displacement distribution of the whole advance support and its parts through calculation. Based
on the distribution, the stress and strain of the advance support were analyzed. The simulation
results are as follows: Under various working conditions, the maximum displacement of the advance
support was 4.5 mm, which is negligible compared to the overall size of the support; the maximum
stress was 72.8 MPa, which is lower than the yield strength of the material (235 MPa). Therefore,
the designed support can bear the pressure from the surrounding rock in the mine. Moreover, the
roof beam, which is a weak link in the support, deserves more attention in subsequent engineering
designs. This method conduces to not only parallel operations of excavation, support and anchoring,
but also to rapid excavation and the safe production of roadways, providing fresh ideas for the
advance support for fully mechanized roadways.

Keywords: fully mechanized roadway; high adaptability; advance support; support design

1. Introduction

As the main energy source in China, coal accounts for over 60% of China’s energy
consumption [1]. However, mining and excavation are the most dangerous production
links during coal exploitation, and the fully mechanized working faces turn into accident-
prone areas in coal mines [2]. Furthermore, gas, water, dust and other factors pose threats
to worker safety. The environment is extremely tough [3,4]. The continuously increasing
depth of coal exploitation leads to greater difficulty in coal mining. In addition, deep
mining, especially the mining of deep coal seams with large dip angles, has encountered
increasingly severe problems [5,6]. In such seams, poor stability of the roadway-head
surrounding rock, harsh environment, small working space and difficult support result
in slow excavation, which seriously imbalances the time distribution during excavation,
support and anchoring, critically affecting the speed of roadway excavation [7–12]. Thereby,
it is of great urgency to expand advance-support equipment for deep, fully mechanized
roadways [13–17] so as to ensure parallel operations of excavation, support and anchoring
and to improve excavation efficiency while guaranteeing the roadway construction safety.
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In recent years, many scholars have conducted considerable research on the ad-
vance support for fully mechanized roadways. Hao et al. [18] established the vibration-
mechanics model of advance support in the full-support state and performed vibration tests.
Yu et al. [19] divided the deformation and failure evolution of the trend of abandoned
roadway roofs into four stages: initial deformation, bending-separation deformation, frac-
ture failure and collapse failure. The technology for filling and controlling the trend of
abandoned roadways, with high-water material over the fully mechanized mining face,
was proposed, and the effect of the filling body on the roofs of the abandoned roadways
was revealed. Juarez et al. [20] studied the stability and strength of the column cylinder
of the self-moving advance support by means of simulation. Based on the simulation
results, they analyzed the stress and deformation of the roof beam and the main beam
of the support. Xie et al. [21] adopted a grouting anchor cable (bolt) + U-type steel + a
single-prop-combined support technology to support the roof, and on this basis, proposed
grouting the anchor cable to reinforce the weak surface of the roof and plug the cracks.
In order to enhance the stability and safety of the advance support for roadways during
stepping advancement, Wang et al. [22] formulated a control method for stable stepping
advancement, in accordance with the principle of the average hydraulic-oil volume release.
Meanwhile, they constructed a prototype of a similar test model with a compression ratio
of 1:8 and developed a test platform and a measurement datum frame for simulating the
roadway roof. In this way, the mechanical tests were carried out on the coupling system of
the roof and the advance support. Given the problems of untimely support, low support
strength and labor-consuming and time-consuming processes that exist in the current
mode of advance support for mechanized roadways, Zhang et al. [23] developed a new
set of stepping self-moving advance supports. Considering that the advance support for
mechanized roadways faces the problems of long support time, poor quality and low
strength, Sochacki et al. [24] designed a set of self-moving advance-support equipment
and performed mechanical analysis, numerical simulations and field tests. To sum up, the
existing studies demonstrated that current advance-support equipment of fully mechanized
roadways confront many problems, such as complex processes, slow movement, low work
efficiency, high labor intensity, difficult roof management and poor adaptability, failing to
ensure safety.

On this basis, taking the excavation project of the 8224-machine roadway in the XT
Coal Mine as the background, this paper designed a new type of highly adaptable advance
support (HAAS) for fully mechanized roadways. The advance support integrated the
functions of support, movement and protection. The movement mechanism of the support
was set in the middle of the column so as to realize the fast and flexible movement of
the support. Meanwhile, the column of the support was telescopic and hinged with the
roof beam, which adapted to the floor undulation of the roadway and the change in roof-
dip angles. Moreover, the structure and working principle of the key components of the
equipment, i.e., the advance support, were elaborated. Finally, the stress and deformation
under different working conditions were also analyzed. The analysis results provide
technical support for the advance support for fully mechanized roadways.

2. Characteristics of the Structure of HAAS for Deep, Fully Mechanized Roadways
2.1. Structure of the Support

The new type of HAAS for fully mechanized roadways consists of the metal structural
parts and the hydraulic system. As shown in Figure 1, the maximum structural height, the
maximum stretching length and the maximum working resistance are 3.6 m, 7.9 m and
1600 kN, respectively. In addition, the metal structural parts are divided into the front
group and the rear group. During movement, the two groups support, push and pull each
other. They take hydraulic pressure as the power and the girders on both sides as the
guidance, which is conducive to fast and flexible movement and large-scale support.
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Figure 1. Schematic diagram of the new type of HAAS for fully mechanized roadways. 
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as roadheaders and anchor-drilling machines during roadway excavation. In addition, it 
mainly completes the actions of column lifting and lowering, movement and support un-
der the control of the hydraulic control system, and the advance support can realize rapid 
movement and large-scale support. The specific working state is as follows. 
(1) After the roadheader finishes a cutting, under the control of the hydraulic system, 

the column cylinder of the front support contracts. In this way, the lower column 
rises, while the upper column falls. Ultimately, the column of the front support sep-
arates from the roof and the floor (Figure 2a). 

 
Figure 2. Working process of the new type of HAAS for fully mechanized roadways. (a) Support 
preparation; (b) Front support movement; (c) Front support expansion; (d) Rear support retracted; 
(e) Rear support movement; (f) Rear support expansion. 

(2) Then, the column cylinder of the front support maintains the contraction state. Dur-
ing this process, the advance support underpinned by the rear support pushes the 
front one forward to the target position with the aid of the hydraulic system (Figure 
2b). 

Figure 1. Schematic diagram of the new type of HAAS for fully mechanized roadways.

2.2. Working Principle of the Support

The new type of HAAS for fully mechanized roadways coordinates with devices such
as roadheaders and anchor-drilling machines during roadway excavation. In addition,
it mainly completes the actions of column lifting and lowering, movement and support
under the control of the hydraulic control system, and the advance support can realize
rapid movement and large-scale support. The specific working state is as follows.

(1) After the roadheader finishes a cutting, under the control of the hydraulic system, the
column cylinder of the front support contracts. In this way, the lower column rises,
while the upper column falls. Ultimately, the column of the front support separates
from the roof and the floor (Figure 2a).
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Figure 2. Working process of the new type of HAAS for fully mechanized roadways. (a) Support
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(2) Then, the column cylinder of the front support maintains the contraction state. During
this process, the advance support underpinned by the rear support pushes the front
one forward to the target position with the aid of the hydraulic system (Figure 2b).



Appl. Sci. 2022, 12, 12728 4 of 13

(3) While the front support moves to the target position, its column cylinder extends
through the hydraulic system. Subsequently, the lower column falls to the floor, and
the upper column rises to the roof, thus completing the support for the roof (Figure 2c).

(4) The column cylinder of the rear support contracts under the control of the hydraulic
system. Thus, the lower column rises, while the upper column falls. Ultimately, the
column of the rear support separates from the roof and the floor (Figure 2d).

(5) The column cylinder of the rear support maintains the contraction state. Meanwhile,
through the hydraulic system, the advance support underpinned by the front support
pushes the rear one forward to the position nearest to the front support (Figure 2e).

(6) The column cylinder of the rear support extends with the assistance of the hydraulic
system. By doing so, the lower column of the rear support falls to the floor, and its
upper column rises to the roof. As a result, a whole movement process of the advance
support is completed (Figure 2f).

In this way, whenever the roadheader performs an excavation for a certain distance, the
new type of HAAS simultaneously advances for a corresponding distance in an alternating
way, closely following the roadheader. The specific working state provides timely support
for the newly exposed roof after the roadheader excavation and prevents the loosening and
caving in of the roof. Furthermore, it improves the support conditions of the end of the
roadheader and effectively protects the safety of equipment and personnel. Additionally,
the utilization of the hydraulic support for excavation not only leaves relatively sufficient
space for parallel operations of multiple anchor-drilling machines, but also reduces support
time, thus creating conditions for the rapid advance of the working face. If the floor
undulates, the lower column of the support will be adjusted to a different floor-touching
height; if the roof inclines, the upper columns on the left and right sides of the support will
be altered to different roof-connecting heights. Hence, the new type of HAAS preferably
accommodates the floor undulation of the roadway and the change in roof-dip angles.

2.3. Technical Characteristics of the Support

Technical characteristics of the new type of HAAS for fully mechanized roadways are
shown as follows.

(1) Novel structural design

The new type of HAAS, which is controlled by the hydraulic system, is characterized
by convenient operation and control, low inertia of motion of the whole structure and
rapid reaction speed. In addition, the support is able to realize self-advance, perform other
various actions and be easily automated. The movement mechanism of the support is
arranged in the middle of the column. With such an arrangement, the front support and
the rear support push and pull each other, thus avoiding disadvantages caused by the
arrangements along the roof and the floor in mechanized roadways. Moreover, as the whole
structural frame of the support is relatively large, the roadheader can conduct operations
under the complete coverage from the support.

(2) High adaptability

The columns are hinged with the roof beam. In this way, the columns on both sides,
by adjusting themselves to different heights, are applicable to the roadway with an inclined
roof, whose maximum dip angle reaches 15◦. Since the telescopic columns of the support
directly contact the roadway floor, the support is also suitable for roadways with an
undulating floor. In addition, the maximum working resistance of the support is 1600 kN,
enabling the support to provide greater supporting force and to serve roadway excavation
with high roof loads.

(3) High level of safety and reliability

The new type of HAAS actively supports the roadway roof inside the empty roof area
through the extension of the front probe beam. This indicates significant progress in safety
compared with traditional passive-support methods, such as temporary supports with the
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capped ore column or with the front probe beam. Moreover, the great support strength and
working resistance of the support further enhance its safety and reliability. The designed
length of the support ranges from 5500 mm to 7900 mm. In such an environment, with
abundant working space and high safety, workers can set anchor bolts (cables) under the
protection of the hydraulic support.

(4) High excavation efficiency

The new type of HAAS adopts the hydraulic system, which endows it with the ability
of rapid movement. This ability facilitates the advance of the working cycle during roadway
excavation. Moreover, the long step distance of support movement improves the circulating
footage and significantly reduces the time spent in temporary support, thereby remarkably
promoting excavation efficiency. In addition, the advance support with a simple structural
design can be run by only one person, while the traditional temporary support with front
probe beam needs to be operated by at least three to four people. Consequently, the new
type of HAAS saves working space and contributes to the improvement of the overall
excavation efficiency.

3. Coupling Dynamic Model of the Advance Support and the Roof

According to the relationship between the advance support and the roof, the coupling
dynamic model of the advance support and the roof is constructed in the light of the theory
of overburden rock mass block (Figure 3). The following assumptions are made: ms is the
equivalent mass of the advance support; ks, cs and zs are the support stiffness, damping and
vertical displacement of the advance support, respectively. The roadway roof is composed
of countless overburden rock mass blocks. The mass and vertical displacement of each
overburden rock mass block are mi(i = 1, 2, · · · , n) and zi(i = 1, 2, · · · , n), respectively.
The rocks, which have a higher stiffness than the soft and loose structures between the rock,
are regarded as rigid bodies. In contrast, the soft structures between the rocks are viewed as
the viscoelastic Kelvin solid. Moreover, the elastic coefficient is k j(j = 1, 2, · · · , n− 1) and
the damping coefficient is cj(j = 1, 2, · · · , n− 1). k′ and c′ act as the stiffness and damping
of contact between the advance support and the roof. As the rocks exhibit viscoelastic
properties, their vertical displacement is δi(i = 1, 2, · · · , n) [25].
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The coordinate origin of the dynamic model of the coupling system is seen as the static
equilibrium position of the rock system. Through analysis of the static equilibrium position,
the differential equation of the coupling dynamic response between the advance support
and the roof is obtained [26]:

M
..
z(t) + C

.
z(t) + K[z(t) + δ] = Mg (1)

where M, C and K are the mass matrix, damping matrix and stiffness matrix of the
system, respectively.
..
z is the acceleration vector of rock blocks;
.
z is the velocity vector of rock blocks;
z and δ are the displacement vector of rock blocks and viscoelastic fixing between rock
blocks, respectively. z = [z1, z2, · · · , zn, zs]

T , δ = [δ1, δ2, · · · , δn, δs]
T ;

and g is the acceleration of gravity.

The expressions of the mass matrix, damping matrix and stiffness matrix of the system
are demonstrated as follows:

M =


m1

m2
...

mn
ms

 (2)

C =



c1 −c1
−c1 (c1 + c2) −c2

. . . . . . . . .
−cj−1

(
cj−1 + cj

)
−cj

. . . . . . . . .
−cn−1 (cn−1 + c′) −c′

−c′ (c′ + cs)


(3)

K =



k1 −k1
−k1 (k1 + k2) −k2

. . . . . . . . .
−k j−1

(
k j−1 + k j

)
−k j

. . . . . . . . .
−kn−1 (kn−1 + k′) −k′

−k′ (k′ + ks)


(4)

4. Stress Analysis on the HAAS for Deep, Fully Mechanized Roadways
4.1. Model Establishment

On the basis of the structure of the HAAS for deep, fully mechanized roadways, the
three-dimensional model of the advance support is established by the Ansys software. The
support material is Q235 steel, with a yield strength of 235 MPa, an elastic modulus of
200 GPa, a Poisson’s ratio of 0.3 and a density of 7850 kg/m3. The regular structure of the
roof beam of the advance support is displayed through the structured grid, while the rest
parts are shown through the unstructured grid (Figure 4).
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To obtain its working loads, the working state of the advance support was simulated
according to the geological conditions of the 8224-machine roadway in the XT Coal Mine.
In view of the working process of the advance support, the anchor bolts are set right
after the support is unfolded and then contacted with the roadway. Correspondingly, the
two sides of the roadway remain unstressed. Afterwards, the displacements of the base
and the face guard are fixed and the roof beam of the support is subjected to 0.31 Mpa
stress from the roof. Concurrently, gravity is imposed on the model of the advance support
so as to implement simulation analysis on the working loads of the advance support under
different working conditions, including the normal external loads, lateral external-force
interference and different roof-dip angles.

4.2. Stress Analysis on the Advance Support under the Normal External Loads

Under the premise of applying 0.31 Mpa external loads above the support, the over-
all stress and displacement distribution of the support under normal external loads are
exhibited in Figure 5. As illustrated in Figure 5, the maximum stress of the support is
61.9 Mpa, which appears in the support column. The roof beam of the support also en-
dures a relatively great stress of about 34.0 Mpa. Neither the stress of the support nor
the stress of the roof beam exceeds the yield strength of the material (235 Mpa). Mean-
while, the maximum displacement (3.3 mm) of the support occurs in the middle of the roof
beam. However, such a displacement is almost negligible compared to the overall length
(4450 mm) of the roof beam. The maximum displacement of the column is relatively small
(about 0.2 mm). Therefore, the roof beam is the comparably fragile component of the
support. The results of the finite element analysis demonstrate that, under the influence
of the normal external loads, the structure and strength of the overall support both meet
the geological conditions of the 8224-machine roadway in the XT Coal Mine. In sum-
mary, the support is endowed with the ability to fulfill the task of a fully mechanized
roadway support.

4.3. Stress Analysis on the Advance Support under the Lateral External-Force Interference

Considering that the support baffle may be subjected to the external force in the
horizontal direction, the influence of the lateral external force on the stress and deformation
of the support structure is investigated by directly applying this horizontal external force
to the support. Therefore, by maintaining the normal working loads of the support,
a horizontal force of 0.05 Mpa is imposed upon the front beam of the support and the ratio
of the lateral external force to the longitudinal load is one-sixth. The overall stress and
displacement distribution of the support under the lateral external-force interference are
presented in Figure 6. As can be seen from Figure 6, the maximum stresses of the support
are 72.8 Mpa, 10.9 Mpa or 17.6% higher than that in the absence of the lateral external
force; the maximum stress appears on the inner column. In addition, according to the
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displacement distribution, the maximum displacement under the lateral force is 3.9 mm,
increasing by 18.2% or 0.6 mm compared with that in the absence of the lateral external
force; the maximum displacement occurs on the inner beam. By analyzing the influence of
the lateral external force on the support, the following conclusions are drawn. The external
force has an obvious influence on the beams and columns inside the support; the lateral
loads and the vertical loads exert an equivalent impact on the whole support; the lateral
external force wields a slightly greater effect on the maximum displacement of the support
than the vertical stress.
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4.4. Stress Analysis on the Advance Support under Different Roof-Dip Angles

Considering the adaptability of the support to different roof-dip angles of roadways,
the support simulation schemes are arranged under different roof-dip angles, i.e., 0◦, 5◦,
10◦ and 15◦. The overall stress and displacement distribution of the support under different
roof-dip angles are shown in Figure 7. As can be observed from Figure 7, the maximum
stresses of the support under different roof-dip angles all appear on the column and the
maximum stress of the column rises with the increase in the roof-dip angle. When the
roof-dip angle is 0◦, the maximum stress of the support is 60.6 Mpa; when the roof-dip
angle is 15◦, the maximum stress of the support is 64.4 Mpa, growing by 6.27%, but still
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much lower than the yield stress of the material of 235 Mpa. Under different roof-dip
angles, the maximum displacements of the support all occur in the middle of the beam
and rise with the increase in the roof-dip angle. When the roof-dip angle is 0◦ and 15◦, the
maximum displacement of the support is 3.3 mm and 4.5 mm, respectively. Meanwhile,
under the effect of roof loads, the column experiences a certain amount of outward offset.
Moreover, with the increase in the roof-dip angle, the outward offset of the left high
column presents a relatively huge rise. Such an outward offset of the support column
is considerably unfavorable to the stability of the whole structure. Thus, in practical
engineering applications, the roof-dip angle of a roadway should be kept within 15◦, which
is well-suited for the hydraulic support for excavation.
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5. On-Site-Application Effect

The strike length of the 8224-machine roadway in the XT Coal Mine is about 1547 m
and the dip length is approximately 246 m (Figure 8). The stratigraphic column is shown
in Figure 9. The HAAS for deep, fully mechanized roadways was officially installed in
January 2018. During the trial excavation process from February to March, the stability
tests for single-machine operations and multimachine linkage operations were imple-
mented. The normal production began in April and the production capacity met the design
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requirements. The following is the site-application effect of the HAAS for deep, fully
mechanized roadways.
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Figure 9. The stratigraphic column of the 8224-machine roadway in the XT Coal Mine.

(1) Success in active support: Through the hydraulic system, the advance support suc-
cessfully provides active support to the roof. The hydraulic support for excavation
adopts the frame structure. Additionally, the overall structure of the support bears
relatively large roof pressure, with high support strength and effective control of
complex surrounding rocks.
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(2) Wide coverage of the roof support: The hydraulic support delivers effective support
to the roof within 6 m of the roadway head, leaving abundant safe space for operators
in the roadway head.

(3) Success in remote control: The operators stand under the permanent support at the
back of the advance support so that they can operate the hydraulic system away from
the roadway head. In this way, they have no need to approach the roadway head or
receive safety threats from the roof, thereby achieving intrinsic safety.

(4) High adaptability of the support: Since the support is well-adapted to changes in the
roof-dip angles and roadway slopes, it can be widely used in various roadways with
complex conditions.

(5) Improvement of the working cycle: Compared with traditional temporary supports,
the hydraulic support with a long step distance extends the working cycle from 1.6 m
to 3.2 m, which greatly boosts the single heading level of roadway excavation.

(6) Improvement of support efficiency: The support with low labor intensity is run by
only one person. It performs continuous operations of excavation and support. By
using support for an extensive cover, the parallel operations with two anchor-drilling
machines are now implemented by four machines, greatly improving the efficiency of
roadway support.

6. Conclusions

(1) The structure of HAAS for deep, fully mechanized roadways was preliminarily
designed. The support arranged the movement mechanism in the middle of the
column so as to achieve rapid and flexible movement. Simultaneously, the telescopic
support column was hinged with the roof beam, adjusting to the floor undulation of
the roadway and the change in the roof-dip angle.

(2) The finite element model of HAAS for deep, fully mechanized roadway was estab-
lished and the stress and displacement distribution of the advance support under
different working conditions were obtained by calculation. The analysis results
showed that the support designed for various working conditions bears the pressure
from surrounding rocks without being destroyed, which meets the requirements
of fully mechanized roadway support. In addition, the relatively great stress and
deformation are generally located at the roof beam and column of the support. Fac-
tors such as lateral external force and roof-dip angle have a great influence on the
support stability.

(3) The on-site application of the 8224-machine roadway in the XT Coal Mine revealed
that the HAAS for deep, fully mechanized roadways effectively controls the roof
stability. The support also eliminated the difficulty in support movement and en-
hanced the excavation efficiency of the fully mechanized roadway, saving the costs
of manpower and material resources. In addition to notable economic benefits, it
also boasts remarkable social benefits, as it improves the working environment of the
working face, reduces the labor intensity of workers and resource waste, and achieves
the technical progress of intelligent mining in coal mines.
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