
Citation: Park, S.-Y.; Jeong, J.; Shin,

H.-C. Geometrical Effect of Active

Material on Electrode Tortuosity in

All-Solid-State Lithium Battery. Appl.

Sci. 2022, 12, 12692. https://doi.org/

10.3390/app122412692

Academic Editors: Sagar Mane,

Rajneesh Kumar Mishra

and Jay Singh

Received: 21 November 2022

Accepted: 9 December 2022

Published: 11 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Geometrical Effect of Active Material on Electrode Tortuosity in
All-Solid-State Lithium Battery
So-Yeon Park, Jiung Jeong and Heon-Cheol Shin *

School of Materials Science and Engineering, Pusan National University, Busandaehak-ro 63 beon-gil,
Geumjeong-gu, Busan 46241, Republic of Korea
* Correspondence: hcshin@pusan.ac.kr

Abstract: In this study, the effect of the active material geometry on the tortuosity in the ion
transport path of the electrode composite of an all-solid-state lithium battery was systematically
analyzed in terms of the different design and process factors of an electrode. A direct current
technique (i.e., chronoamperometry) using an electron-blocking cell was used to analyze the tortuos-
ity to minimize the experimental error. In addition, aluminum oxide was selected as a hypothetical
active material in a composite electrode to exclude the possible disturbance of the ion transport signal
caused by real active materials. The experimental results showed that the shape and composition
of the active material had significant influences on the ion transport characteristics. In particular,
when a fibrous material was applied with a high active material ratio, the degree of tortuosity was
significantly increased, reaching values as high as 45, due to the insufficient filling in the micropores
formed by particle aggregation. Moreover, the tortuosity degree decreased below 15 as the pressing
pressure increased during electrode manufacturing, and the cause of this decrease differed with the
active material’s particle shape. The analysis results confirmed that the change in tortuosity resulting
from the electrode design factors of an all-solid-state battery has distinctive features compared to that
for a conventional liquid electrolyte-based lithium-ion battery.

Keywords: tortuosity; electrode geometry; all-solid-state battery

1. Introduction

The all-solid-state lithium battery is receiving significant attention as a next-generation
lithium secondary battery because all the constituent materials, including the electrolyte,
are made of solids, and it is safer and has a higher energy density than a liquid-type
organic electrolyte-based lithium-ion battery [1–3]. However, the limited ductility of a
solid electrolyte makes it difficult to cover the rough surface of the active material and
penetrate the micropores of the electrode. Thus, the contact characteristics between the
active material and solid electrolyte and the filling rate of the electrolyte in the electrode
are relatively low compared to those of liquid electrolyte-based lithium-ion batteries [4].
This situation causes two significant problems. The first is poor contact, which increases
the interface resistance between the active material and electrolyte. This causes an increase
in the overvoltage during battery operation, which adversely affects vital performance
parameters such as the capacity, energy density, and rate capability. The poor contact
problem is a critical issue in all-solid-state batteries and has generated interest among many
researchers [5–8]. The other problem is that the transport of ions in the electrode is greatly
limited by the low filling factor, as well as the distribution and connectivity problems of the
solid electrolyte [9,10]. It has been reported that the ion transport resistance in the electrode
is a significant factor in the high-rate charge/discharge of the battery [11–13]. In relation to
the kinetics, facile ion transport within the electrode is essential to the performance of an
all-solid-state battery.

Tortuosity is considered one of the most important parameters of porous media and
there has been much effort to characterize the microstructure and ion transport properties
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of electrode composites in batteries by using it [14–19]. Because higher tortuosity indicates
a more complicated transport path for the ions in the electrode, the tortuosity is directly
related to the high-rate charge/discharge characteristics of the battery. Therefore, previous
studies have used the tortuosity to predict the ease of ion transport in the electrode and
the battery output characteristics in relation to the design factors of the electrode (e.g., the
thickness, density, composition, size, and shape of active material particles). Ebner et al.
used the Bruggeman relation to derive the tortuosity of the ion transport path in an electrode
according to the shape of the active material in a liquid-type lithium-ion battery [20], and
Usseglio-Viretta et al. mathematically analyzed the shape and size of the active material
particles, along with the tortuosity of the ion transport path, due to the pores formed
as a result in a liquid-type lithium-ion battery [21]. The reports related to electrodes for
all-solid-state batteries primarily discuss the distribution of the electrolyte and pores inside
the electrode. So et al. derived porosity and tortuosity values by modeling the interface
characteristics and structural changes of solid particles in relation to the pressure applied
during electrode manufacturing [22]. Assuming that the pores inside an electrode were
entirely filled with a solid electrolyte, Hlushkou et al. used calculated the tortuosity values
to analyze the effect on the filling factor of the electrolyte in an all-solid-state electrode [23].

However, most studies on tortuosity changes in relation to the microstructures of
electrodes are conducted using computational simulation [20–25]. Although computational
simulation is suitable for simplifying and realizing complex microstructures, there is a limit
to perfectly simulating the microstructure of an actual electrode because it is difficult to
implement the non-uniform distribution of particles or closed pores in a solid electrode. In
fact, in a tortuosity analysis using computer simulation, in a situation where the porosity
is very low or the influence of active material particles is significant, even lithium-ion
batteries show a significant deviation from the actual experimental results [26]. The result
may be different from the experimentally derived result because, in many cases, it is
difficult to quantify the diffusion coefficient values, and so arbitrary sets are used and
analyzed [27]. On the other hand, such a tortuosity variation in the electrode is also
observed in research based on experiments, e.g., electrochemical impedance spectroscopy
(EIS) [27–30]. Impedance spectra obtained from EIS are affected by various reaction signals,
including the state of the contact between particles in an electrode [31], contact between
particles and a substrate [32], oxidation/reduction reactions [33], active material interface
reactions, and reaction products [34]. In many cases, the influence of artifacts caused
by the structure of the test cell cannot be ignored [35]. Therefore, when only analyzing
specific reaction patterns in a battery (e.g., tortuosity analysis), great care is required in the
equivalent circuit construction and application [36].

In short, studies on the tortuosity in an electrode are primarily conducted using a the-
oretical, computational simulation method that simplifies and analyzes the microstructure
of an actual electrode and an EIS analysis method with a relatively high experimental error.
Hence, in-depth research is still needed to obtain more accurate results. When an electrode
for an all-solid-state battery has a high active material ratio, the solid electrolyte does
not sufficiently fill the spaces between the active material particles, resulting in randomly
generated pores. This makes the path complex and unpredictable. Thus, there is a need
for reliable tortuosity test results for solid electrolyte electrodes with high active material
content [36].

In this study, the tortuosity of an all-solid-state battery electrode with a high active
material ratio was quantified in an attempt to gain an in-depth understanding of the ion
transport in the electrode. Different electrode design factors (active material shape and size)
and a process factor (pressing pressure) were set as variables. To minimize the experimental
errors by simplifying the test cell and analysis method, an electron-blocking cell was used
with direct current techniques (i.e., the tortuosity was analyzed by chronoamperometry).
In addition, aluminum oxide powder (Al2O3), a non-conductive material, was used as a
hypothetical active material to exclude the interface reaction between the active material
and electrolyte, which can affect the electrochemical quantification of tortuosity. Specifically,
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a composite electrode with Al2O3, an inert material, was selected as a model system for a
thorough analysis of the geometrical effect of active materials on the ion transport through
a solid electrolyte in a composite electrode, in a similar manner as in previous works [36,37].
The ease of ion migration and migration path connectivity were investigated using the
tortuosity and porosity determined for each design and process condition, together with
the Bruggeman coefficient derived from it. In addition, the characteristic trends were
experimentally demonstrated in the all-solid-state battery electrode and we compared them
with the results for an existing liquid electrolyte-based lithium-ion battery electrode.

2. Theoretical Background

The ion transport path through the electrolyte in the electrode can be quantified by
the tortuosity (τ) [38].

τ =
Ireal

Idirect
(1)

Here, Ireal is the actual transport distance of ions in the electrolyte, and Idirect is the
vertical straight transport distance of ions in the electrolyte. The degree of tortuosity is a
relation showing how much the actual transport path is distorted compared to a straight
transport path of ions in the electrolyte, with a higher value indicating a more complicated
path. Because the ease of ion transport can be represented by the ionic conductivity,
Equation (1) is identical to the equation below [39].

τ =
σelectrolyte

σeff
·ε (2)

where σelectrolyte is the intrinsic conductivity of the electrolyte, σeff is the effective conduc-
tivity, and ε is the volume fraction of the electrolyte. The Bruggeman relation is a typical
empirical formula that links the tortuosity with the ease of ion transport [40,41].

τ = ε−α (3)

Here, ε is the porosity, and α is the Bruggeman coefficient. In the above formula, ε is
the ratio of the electrolyte that can move ions, and α represents the connectivity of the ion
transport pathway [42].

3. Experimental Details
3.1. Materials and Electrode Fabrication

A total of five types of Al2O3 powder with different shapes and sizes were used as
hypothetical active materials: (1) a small spherical shape (Al2O3, 99.8%, 8–12 µm, Lumi-M
Co., Seoul, Republic of Korea), (2–3) medium and large spherical shapes (Al2O3, 99.8%,
90 µm, Lumi-M Co., Republic of Korea; powder was sieved and classified into two sizes),
(4) plate shape (Al2O3, primarily α phase 99.5%, Sigma-Aldrich, St. Louis, MO, USA),
(5) fibrous shape (Al2O3, with a diameter of 2–6 nm and length of 200–400 nm, Sigma-
Aldrich, St. Louis, MO, USA). The shape and size of the Al2O3 powder were observed using
a field emission scanning electron microscope (FESEM; MIRA3, TESCAN, Brno, Czech
Republic). In particular, the average sizes of the spherical particles were determined by
laser diffraction particle size analyzers (LS 13 320 SW, Beckman Coulter, Brea, CA, USA).
Argyrodite (Li6PS5Cl, 3 µm, CIS Solid Electrolyte, Seoul, Republic of Korea) and carbon
black (acetylene, 100%, compressed, Thermo Fisher Scientific, Oxford, UK) were used as
the electrolyte and conductive material, respectively. At this time, no binder was added, in
order to clearly observe the tortuosity change in relation to the active material’s shape. In
other words, the electrode was composed of an inert active material, a solid electrolyte, and
a conductive material (the term “electrode” used hereinafter means “electrode composite”
unless otherwise specified). When analyzing the tortuosity in relation to the active material
ratio or solid electrolyte ratio, the solid electrolyte volume ratio was varied between
0.32 and 0.72.
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To ensure a uniform dispersion of the mixture (active material + solid electrolyte + conduc-
tive material), it was mixed and dispersed evenly for 10 min at 2000 rpm in a Thinky mixer
(AR-100 Planetary centrifugal mixer, Thinky, Tokyo, Japan). Then, 80 mg of the dispersed
mixture was hydraulically pressed in a Φ13 mm mold at approximately 109 MPa to obtain a
thick film pellet having a thickness of approximately 250–350 µm. To analyze the tortuosity
degree in relation to the shape of the active material, the pressure condition was fixed at
109 MPa, and the hydraulic pressure condition was varied between 44 and 655 MPa to
analyze the tortuosity degree according to the pressing pressure.

3.2. Cell Fabrication and Tortuosity Measurement

Figure 1a shows a schematic diagram of the electron-blocking cell used for the tortu-
osity analysis. When manufacturing the cell, stainless steel foil (SUS 444, 10 um, Woori-
Science, Seoul, Republic of Korea) was used as the substrate, and lithium foil (99.9%, 10 um,
MTI Corporation, Richmond, CA, USA) was used as the electrode material for the anode
and cathode. When a potential difference was applied between the anode and cathode,
the cell was suitable for analyzing the Li+ transport pattern in the electrode composite
because the electrolyte layer blocked the transport of electrons, and only the transport
of ions occurred. The steady-state current (Iss) was determined by applying a specific
potential difference, ∆E (=100 mV), to both ends of this cell (see Figure 1b). The resis-
tance (∆E/Iss) determined at this time was the total ion transport resistance (Rion,total)
inside the electron-blocking cell, which was the sum of the electrode composite resistance
and electrolyte resistance of the two layers. Therefore, by calculating the resistance of
the solid electrolyte layer using the ionic conductivity (σelectrolyte = 0.174 S/m), thickness
(LSE = approximately 600 µm), and area (ASE = 1.33 cm2) of the solid electrolyte, and
subtracting it from Rion,cell, the electrode composite resistance (Rion,electrode) was calculated.

Rion,electrode = Rion,total −
2 × LSE(

σelectrolyte·ASE

) (4)

Then, the Li+ conductivity (σeff) in the electrode composite was finally derived using
the area (ASE) and thickness of the electrode composite (Lelectrode), and the tortuosity was
determined by substituting this into Equation (2).

In addition, the porosity (n) of the electrode was determined using the formula below,
as a value representing the free volume, excluding the volume of the particles in the
electrode composite.

n =
Vreal − Vtheo

Vreal
(5)

Here, the actual electrode volume (Vreal) and theoretical volume of the constituent
materials (Vtheo) can be determined using the following equation.

Vreal = Lelectrode·Aelectrode (6)

Vtheo =
mAM

ρAM
+

mSE

ρSE
+

mCA

ρCA
(7)

where Lelectrode and Aelectrode represent the thickness and area of the electrode compos-
ite, respectively; mAM, mSE, and mCA represent the masses of the active material, solid
electrolyte, and conductive additive, respectively; and ρAM, ρSE, and ρCA represent the
respective theoretical densities.

All the electrochemical test cells were manufactured in an Ar-filled glove box (KK-
011AS-Extra (3 Port), Korea Kiyon, Seoul, Republic of Korea), and the electrochemical tests
were performed using a potentiostat (BCS 810, Biologic, Seyssinet-Pariset, France).
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Figure 1. (a) Schematic diagram of an electron-blocking cell used for tortuosity analysis, and (b) hy-
pothetical chronoamperometric curve showing steady-state current (Iss), together with the equations
for tortuosity estimation.

4. Results and Discussion
4.1. Shape Effect

Figure 2a–c show electron micrographs of the spherical, plate-shaped, and fibrous
Al2O3 particles used for the analyses of the electrode tortuosity according to the shape
of the active material, respectively. It was confirmed that each had the designed shape
characteristics. The spherical particles were isotropic and were well separated from each
other. The plate-shaped particles were anisotropic, which meant that their aspect ratios
were distributed in various ways, while the fibrous particles had extremely large aspect
ratios and many micropores were formed due to the aggregation of the particles.
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Figure 2. Scanning electron micrographs of different shapes of aluminum oxide (Al2O3) powder.
(a) Sphere, (b) plate, and (c) fiber.

To perform a more in-depth analysis of the difference in tortuosity in relation to the
particle shape in the all-solid-state battery electrode, the ratio of solid electrolyte in the elec-
trode (εSE) was adjusted: εSE,1 = 0.32, εSE,2 = 0.72. Figure 3 shows the chronoamperometric
curves of the test cell fabricated with the three types of active materials, using the high
(εSE,1, Figure 3a) and low (εSE,2, Figure 3b) active material ratios, for a total of six active
material conditions. In all six cases, a steady state was reached after an initial rapid decrease
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in current. In addition, because the transport of lithium ions was relatively complex with
a high active material ratio (εSE,1), it took longer to reach a steady state compared to the
case with the low active material ratio (εSE,2), and the steady-state current (Iss) was also
low. The tortuosity was determined based on the steady-state current using the method
presented in Section 2, and the results with the high (εSE,1) and low (εSE,2) active material
ratios are shown in Figure 4a,b, respectively.
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of Al2O3 powders. (a,b) Low electrolyte volume fraction (εSE,1 = 0.32); (c,d) high electrolyte volume
fraction (εSE,2 = 0.72).

First, under the condition in which the ratio of active material was high (εSE,1), a sig-
nificant difference in tortuosity occurred according to the shape (Figure 4a), with tortuosity
values two times and three times higher than the spherical shape, for the plate and fiber
shapes, respectively. Because the electrodes all had the same electrolyte volume ratio, this
difference could be said to reflect a difference in the ease of lithium-ion transport due to the
shape of the active material or connectivity difference in the transport path. On the other
hand, the spherical and plate-shaped electrodes had almost the same porosity (~20%), while
the fibrous electrodes had values that were approximately twice as large (Figure 4c). The
fact that the spherical and plate-shaped electrodes had the same porosity suggested that
the difference in the tortuosities of the electrodes with these two forms of active material
was due only to the complexity of the ion transport path in the solid electrolyte. In the case
of plate-shaped particles with a large aspect ratio, considering the previous report that the
particles tend to be preferentially arranged in a direction parallel to the substrate during
the electrode manufacturing process [21], the tortuosity difference between the spherical
and plate-shaped particles with the same porosity was easy to understand. The preferential
arrangement of our plate-shaped particles was also observed in the cross-sectional image
of the composite electrode (Figure 5a).
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brous particles at low volume fraction of solid electrolyte (εSE,1 = 0.32). AM: active material. SE:
solid electrolyte.

On the other hand, it is noteworthy that the fiber type had twice the porosity. This
means that when the active fibrous material was used, the solid electrolyte did not smoothly
penetrate the pores inside the electrode during the electrode manufacturing process. In the
case of the fibrous particles, unlike the other shapes, particle aggregation was observed, and,
as a result, countless micropores were formed between the particles (Figure 2c). Thus, it is
believed that the electrodes composed of fibrous particles had high porosity and tortuosity
values because the solid electrolyte did not sufficiently fill the numerous micropores formed
by the aggregation of particles. The above argument was supported by the cross-sectional
image of the electrode (Figure 5b). When an active fibrous material is used in an electrode
for a lithium-ion battery using a liquid electrolyte, the excellent permeability of the liquid
electrolyte generally increases the active material/electrolyte contact area, which is known
to be advantageous for realizing a high-power battery [43]. However, given the above
results, it is necessary to pay great attention to the low filling rate of the solid electrolyte
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resulting from particle aggregation in all-solid-state battery electrodes, especially when a
high proportion of active fibrous material is used.

To experimentally verify the above arguments about the low filling results when a
solid electrolyte was used with fibrous particles, the same analysis was performed for
a high electrolyte ratio (low active material ratio) with a relatively low solid electrolyte
permeation problem. As a result, the differences in the tortuosity and porosity values
between the fibrous type and the other shapes were significantly reduced at a low active
material ratio (Figure 4b,d). It is quite likely that the particle aggregation was suppressed
as the electrolyte ratio increased, and the electrolyte filling was also dramatically improved.

It should be mentioned that it is not easy to use computer simulation to investigate
the microstructure of an electrode for an all-solid-state battery in which active material
aggregation and insufficient electrolyte filling occur. In general, when computational
simulation is used for tortuosity analysis, it is common to simplify the microstructure of
an electrode and then analyze it based on a theoretical formula. The result may have a
significant error compared to the actual result. The discrepancy between the theoretical
and actual values could also be confirmed using the results for the change in tortuosity
in relation to the volume ratio of the solid electrolyte in the electrode (Figure 6). When
the Bruggeman relation (Equation (3)) was applied with the low active material ratio
(εSE > 0.45), which was considered to have relatively few problems with dispersion, ag-
gregation, and electrolyte penetration, the Bruggeman coefficient was estimated to be
approximately 3.13. It is noteworthy that when the active material ratio was approximately
60% or greater (εSE < 0.6, blue dotted circle in Figure 6), the tortuosity value derived from
the actual experiment was larger than the expected value based on the Bruggeman relation,
and a larger active material ratio resulted in a more significant difference. These results
suggest that erroneous results may be derived when the microporous structure in the
electrode for an all-solid-state battery is overly simplified and implemented.
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Figure 6. Tortuosities of the composite electrodes containing fibrous Al2O3 as a function of volume
fraction of solid electrolyte. The black symbols and red dotted line are the experimental results and
fitted curve by Bruggeman equation, respectively. Blue dotted circle represents the experimental
tortuosity values at low electrolyte volume fraction (or high Al2O3 volume fraction), showing
significant deviation from Bruggeman relation.
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4.2. Size Effect

Figure 7a–c show electron micrographs of the Al2O3 powders used to analyze the
effect of the active material size on the tortuosity in an electrode, together with particle
size analysis data (Figure 7d). A total of three types were used, with average diameters of
approximately 10, 70, and 100 µm (hereafter, they are called S10, S70, and S100, respectively).
As previously mentioned, because active material aggregation was determined to have a
significant effect on the tortuosity, the active material size effect was analyzed by removing
the powder with a relatively low particle diameter (<10 µm), which had a relatively high
possibility of particle aggregation.
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Figure 7. Scanning electron micrographs of spherical Al2O3 powders with different average particle
sizes. (a) 10 µm, (b) 70 µm, and (c) 100 µm. (d) Particle size analysis data.

Figure 8a shows the change in tortuosity according to the particle size of the active
material. It could be confirmed that the tortuosity slightly increased with the diameter of
the active material particles. This was contrary to the previously reported tortuosity change
in relation to the active material’s size in an all-solid-state battery electrode. Froboese
et al. reported that as the particle size of the active material increased, the interparticular
interstices were better filled by the electrolyte, and the tortuosity decreased [36]. However,
these results were obtained using a very low active material ratio or a high electrolyte
ratio (electrolyte volume ratio in the electrode: 50–90%) compared to this study, suggesting
that sufficient electrolyte effectively filled the large particle gaps, which in turn resulted
in low tortuosity [36,44,45]. On the other hand, in this study, a high active material ratio
(electrolyte volume ratio: 32%) was used for a high-energy-density all-solid-state battery,
which is a recent industrial development direction. Thus, the electrolyte content may not
have been sufficient to fill all the particle gaps.
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Figure 8. (a) Tortuosities, (b) porosities, and (c) Bruggeman coefficients of the composite electrodes
containing spherical Al2O3 powders with different average particle sizes of 10 µm (S10), 70 µm (S70),
and 100 µm (S100).

A comparison of the porosity results according to the particle size (Figure 8b) showed
that the porosity values of the electrodes using S10 and S70 were statistically similar. This
suggested that the S70 electrode had the same volume of unfilled pores as the S10 electrode,
but had a high degree of tortuosity because of the poor connectivity of the solid electrolyte
in the large particle gaps. On the other hand, the electrode using S100 showed an increase
in porosity compared to the other two electrodes. Therefore, it was conjectured that the
overall connectivity of the ion transport path in the S100 electrode had further deteriorated
as a result of the increase in the volume of unfilled pores, along with the low connectivity of
the solid electrolyte in the large particle gaps. The difference in the ion-path connectivities
of the S10, S70, and S100 electrodes was also confirmed by the change in the Bruggeman
coefficient (Figure 8c). In conclusion, when the electrode had a high active material ratio, it
should be noted that the connectivity of the electrolyte may have deteriorated because of
the limited amount of solid electrolyte, even if the particle size of the active material and
interparticle gaps increased.

4.3. Electrode Density (Pressure) Effect

When manufacturing an electrode for a solid-state battery, a pressing process is in-
cluded to improve the contact characteristics between the internal solid particles. Therefore,
examining how the electrolyte connection characteristics vary depending on the pressuriza-
tion condition is essential. Figure 9a–c show how the tortuosity, porosity, and Bruggeman
coefficient changed with different shapes of the active material, respectively, when the
applied pressure changed in the range of 40–660 MPa during the manufacture of electrodes.
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Overall, regardless of the shape of the active material, the degree of tortuosity tended to
decrease monotonically as the pressing pressure increased. However, the pattern of the
porosity change was somewhat different when it had a fibrous shape compared to those
with the other shapes.
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Figure 9. Variations in (a) tortuosity, (b) porosity, and (c) Bruggeman coefficient of the composite
electrodes containing different shapes of Al2O3 powders with pressing pressure. The regions A and
B in the figures represent variations for fibrous Al2O3 contacting electrode at low- and high-pressure
regions, respectively.

First, in the case of electrodes containing spherical and plate-shaped active materi-
als, the change in porosity with an increase in the pressing pressure was insignificant
(Figure 9b). This means that an increase in pressure did not significantly improve the
electrolyte penetration into the pores in the electrode. On the other hand, it was confirmed
that the Bruggeman coefficient, which reflects the electrolyte connectivity, decreased sig-
nificantly as the applied pressure increased (Figure 9c). In other words, the decrease in
tortuosity with increasing pressure in electrodes containing spherical and plate-shaped
active materials was believed to be due to improved contact between electrolyte parti-
cles (reduction in lithium-ion migration resistance at electrolyte grain boundaries) and
improved tightness of ion migration paths [46].

In the case of an electrode containing a fibrous material, the porosity changed signifi-
cantly in the region where the pressing pressure was low, but there was almost no change in
the area where the pressing pressure was high (regions A and B in Figure 9b). On the other
hand, the Bruggeman coefficient did not differ in the low-pressure region but changed
significantly in the high-pressure region (regions A and B in Figure 9c). As previously
discussed, there are many micropores in an electrode composed of a fibrous material due
to the aggregation of particles. When pressure was applied, the electrolyte penetrated the
agglomerate and filled these micropores (region A), which eventually led to a considerable
decrease in tortuosity. Then, when electrolyte penetration into the micropores of the ag-
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gregate was no longer possible because of the limited electrolyte ductility (region B), as in
the case of using spherical and plate-shaped active materials, the contact characteristics of
the electrolyte particles improved as the pressing pressure increased, and the tortuosity
further decreased.

In summary, as the pressing pressure increased during electrode manufacturing, the
degree of tortuosity decreased, resulting from the improved contact between electrolyte
particles and the electrolyte filling factor in the electrolyte. This was an exceptional result
only in the electrode of an all-solid-state battery, which was not observed in a lithium-ion
battery using a liquid electrolyte. In general, in the case of a lithium-ion battery, when the
electrode is pressurized, the distortion of the ion transport path filled with liquid electrolyte
becomes severe, and the tortuosity tends to increase [47]. On the other hand, in an electrode
for an all-solid-state battery, the pressing pressure is effective in improving the tortuosity
(i.e., the mobility of lithium ions) within a range where the mechanical destruction of the
active material does not occur [48] and is more effective in improving the fibrous shape
than when the active material has a spherical or plate-like shape.

5. Conclusions

In this study, the tortuosity in all-solid-state battery electrodes was systematically
analyzed in relation to electrode design factors (i.e., the active material shape and size) and
a process factor (pressing pressure). The experimental results are summarized as follows.

1. In the electrodes with a high active material ratio, the tortuosity values increased in
the order of spherical, plate-shaped, and fibrous active materials. Because the porosity
values of the electrodes using the spherical and plate-shaped active materials were
almost the same, the difference in tortuosity between the two shapes was due to
the difference in the complexity of the solid electrolyte path resulting from a simple
shape difference. The porosity of the electrode using the active fibrous material was
approximately twice that of the others because the solid electrolyte did not sufficiently
fill in the micropores formed by the aggregation of the material particles. In an all-
solid-state battery electrode, when a high proportion of active fibrous material is
used, special attention should be paid to the low filling factor of the solid electrolyte
resulting from particle aggregation.

2. As the particle size of the spherical active material increased, the degree of tortuosity
also increased. When the particle sizes were 10 µm and 70 µm, the electrode porosity
values were similar, suggesting that the 70 µm active material electrode had higher
tortuosity due to the poor connectivity of the solid electrolyte in the large particle gaps.
The electrode with the 100 µm active material showed a significant increase in porosity,
implying that the increase in unfilled pores, along with the low solid electrolyte
connectivity in the large particle gaps, additionally contributed to the increase in
tortuosity. In other words, even if the particle size of the active material increases
and the particle gaps increase under a high active material ratio, the connectivity
between electrolyte particles may deteriorate as a result of the limited amount of
solid electrolyte.

3. Regardless of the material shape, the tortuosity decreased with pressing pressure, and
the fibrous material showed a different porosity change pattern to the others. In the
electrodes containing the spherical and plate-shaped materials, the porosity change
was insignificant as the pressing pressure increased, suggesting that the tortuosity
decrease with the pressing pressure was simply due to the improvement in the contact
characteristics between the electrolyte particles. In the case of the fibrous material,
the porosity considerably changed in the low-pressure region, but there was little
change in the high-pressure region. It was conjectured that the electrolyte penetrated
the fibrous aggregate and filled the micropores at low pressure, while the tortuosity
further decreased at high pressure as the contact characteristics between the electrolyte
particles were improved.
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