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Abstract: As a key component in overhead cables, insulators play an important role. However, in
the process of insulator inspection, due to background interference, small fault area, limitations
of manual detection, and other factors, detection is difficult, has low accuracy, and is prone to
missed detection and false detection. To detect insulator defects more accurately, the insulator defect
detection algorithm based on You Only Look Once version 5 (YOLOv5) is proposed. A backbone
network was built with lightweight modules to reduce network computing overhead. The small-scale
network detection layer was increased to improve the network for small target detection accuracy. A
receptive field module was designed to replace the original spatial pyramid pooling (SPP) module
so that the network can obtain feature information and improve network performance. Finally,
experiments were carried out on the insulator image dataset. The experimental results show that
the average accuracy of the algorithm is 97.4%, which is 7% higher than that of the original YOLOv5
network, and the detection speed is increased by 10 fps, which improves the accuracy and speed of
insulator detection.

Keywords: insulator detection; YOLOv5; small target detection; multi-scale edge detection; receptive
field module

1. Introduction

In order to ensure the safe and reliable work of high-voltage transmission lines,
the power business department needs to regularly patrol and maintain the substation
system of transmission lines to ensure and reduce faults and hidden dangers. With the
rapid development of China’s market economy, higher technical requirements are put
forward for the proper and safe operation of major facilities such as power transmission
network equipment. In the reality of China’s vast territory, the network lines in the power
transmission system are widely distributed and the layout of the equipment is complicated.
Insulators, as special insulating devices in the transmission lines, are required to withstand
the power load and mechanical loads brought by the transmission lines when they work [1].
As a result of long-term exposure to the natural environment, but also subject to dirt,
lightning, strong winds, and bird damage, as well as other external factors, these factors
will make the insulators on the transmission line gradually age and break [2]. In the
operation of transmission lines, defects of insulators often include zero value, broken
string, corrosion, etc. The main defect fault studied in this paper is the phenomenon of
broken insulator string. The main reasons for this defect are as follows: the poor quality
of the insulator device itself making it easy to crack during the long-term operation of the
insulator, resulting in broken strings; insulator impulse voltage during lightning—multiple
lightning strikes damaging insulators, resulting in cracks and broken string; rainy and
snowy weather overloading the insulator’s mechanical stress, easily leading to insulator
cracking and broken string. If there is no timely detection and elimination of these potential
hazards, they eventually develop into a variety of serious failures, the safe operation of
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the power system poses a serious threat, ref. [3] and the insulator’s working condition
directly affects the safety and stability of the power grid [4]. The traditional insulator
inspection method is mostly manual inspection, which is labor-intensive and has low
safety [5]. The detection process is susceptible to environmental and human factors. Based
on many factors, Unmanned aerial vehicles (UAVs)are now used to detect insulators and
other electrical equipment in transmission lines [6]. The main methods commonly used
for insulator detection are artificial-based detection methods and machine learning-based
detection methods.

In the artificial detection algorithm, Zheng [7] used ultrasonic technology to detect
the density of basin insulators. Li et al. [8]. proposed a new data augmentation method
to reduce the adverse effect of unbalanced dataset distribution on detection performance
during network model training, and optimized the parameters of the support vector ma-
chine by genetic algorithm. The authors of [9,10] extracted feature information for insulator
detection based on different color models. Zhai et al. [11] combined the spatial characteris-
tics and color characteristics of insulators to segment the insulators and background in the
image and used the morphological algorithm [12] to locate the insulator defect area. The
authors of [13–15] detected insulators according to their texture and shape characteristics.
Yu et al. [16]. extracted the shape and texture information of the insulator as a priori
conditions, combined with the active contour model, to realize the segmentation of the
insulator in a complex background. In the artificial detection algorithm, the color and shape
of the image will change due to the influence of illumination, shooting distance, and angle
when the UAV captures the image. The detection results of this method are susceptible to
interference from the surrounding environment, and the experience of inspectors will also
affect the detection accuracy is limited by specific conditions.

In the algorithm based on machine learning, Zhou et al. [17] based on the mask
region convolutional neural network (R-CNN) model, changed the network structure
according to the size of the detected target insulator and used a genetic algorithm to
optimize the hyperparameters in the network. Based on fast R-CNN [18], Hu et al. [19]
replaced the original Visual Geometry Group16 (VGG16) with a more complex feature
extraction network to improve the ability of the network model to obtain image feature
information and reduce information redundancy by adding an attention module. In 2016,
Redmon et al. [19] first proposed a single-stage object detection algorithm, which pioneered
the You Only Look Once (YOLO) [20–23] series. In [24], an end-to-end YOLO network
model is used and a more accurate position of component defects in the transmission line
is obtained by adding a coordinate attention module. In [25], the features of insulators with
different specifications were extracted based on a deep neural network. The INSU-YOLO
detection method was proposed, and the insulator defect dataset was constructed to avoid
the problem of network overfitting caused by insufficient data. During the training process
of the selected target detection network model, the training results are susceptible to the
influence of the dataset, where the one-stage network model improves the detection speed
compared to the two-stage network model, but its detection accuracy needs to be improved.

To solve the problems of insufficient accuracy and lack of robustness in the process
of insulator defect fault detection, this paper proposes a YOLOv5 based on a receptive
field module and multiscale. The main work is as follows: anchor frames are obtained
that match the size of the detected target by k-means clustering to improve the detection
accuracy of the network for target objects with different proportions; the low-level detail
features are extracted from the network and fused with the deepest semantic features to the
small-scale detection layer designed in this paper to improve the detection performance of
the network model for small-area targets; a lightweight backbone network is built using
the GhostNet [26] lightweight network to reduce convolution operations and improve
the real-time performance of the model while ensuring detection accuracy; the channel
receptive field block (CRF) receptive field module that integrates channel information is
designed at the network head to replace the original SPP module [27], integrate channel
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information, fuse multiscale feature information, and use dilated convolution to reduce the
calculation of redundant information.

2. Materials and Methods
2.1. Original YOLOv5 Algorithm

YOLO series is widely used in many fields with its fast speed and strong portability.
The YOLOv5 network model [28] is mainly composed of five parts: Input, Backbone, Neck,
Prediction, and Output. As shown in Figure 1, the image entered into the network is
sliced first, and the downsampling effect is achieved when the complete image information
is saved. The backbone network mainly completes the feature extraction of the image
through the convolution module and the cross-stage partial module with residual structure.
The neck of the network mainly fuses the image feature information extracted from the
backbone network through the spatial pyramid pooling module, retaining rich image
feature information for subsequent target object detection. The detection part of the network
obtains the category of the target object, the category confidence, and the coordinate
information of the object position, and the target area is marked by the anchor frame.
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Figure 1. Original YOLOv5 network model detection block diagram.

As shown in Figure 1, in the original YOLOv5 network, for the image input network
containing insulators to be detected, the image information is obtained through a series of
operations such as slicing, convolution, and sampling, and finally, the detection result map
with a detection frame is output to realize end-to-end insulator region recognition.

2.2. Improved YOLOv5 Algorithm

In this paper, based on the YOLOv5 network architecture, we introduce the Ghost
lightweight module to reduce the network parameters, add detection layers to the network,
and increase the detection scale. The CRF perceptual field module is designed to obtain
more detailed feature information and improve detection accuracy.

2.2.1. Backbone Network

The original backbone network is sliced, and three scale feature maps of 128 × 80 × 80,
256 × 40 × 40, and 512 × 20 × 20 are obtained by threefold downsampling. The Ghost
lightweight module is added to the backbone network to replace the cross-stage partial
(CSP) [29] convolution module in the original backbone network and reduce the computa-
tional overhead of the network model. The Ghost module mainly uses the linear operation
method with less computation to replace the original convolution operation while ensuring
the performance of the network detection accuracy. The feature map is obtained through
the 3 × 3 convolution kernel, and the depthwise convolution performs the linear operation
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on each channel of the feature map to expand the channel, which is equivalent to the
hierarchical convolution processing of the input feature map.

The backbone network structure is shown in Figure 2. The network designed in this
paper makes full use of the feature map generated during the sampling process on the
backbone network. Based on the original YOLOv5 three-layer detection layer, the feature
map with a scale of 64× 160× 160 generated by downsampling is combined with the same
scale feature map of the head to form a minimum scale detection layer. Among them, the
internal structure diagram of each module in the backbone network of Figure 2 is further
explained in detail in Figure 3.
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Figure 3. Internal structure diagram of each module in the backbone network. (a) The internal
structure of Ghost1 _ X module in the backbone network; (b) the internal structure of CBL module
in the backbone network; (c) the internal structure of Ghost2 _ X module in the backbone network;
(d) the internal structure of Ghost module in the backbone network; (e) The internal structure of SE
module in the backbone network.
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Figure 3 is the internal structure of each module of the backbone network. As shown
in Figure 3a, 1 in the Ghost1 _ X module is the convolution step size, and X is the number of
times the module is repeated. GM in Ghost1 _ X module represents the Ghost lightweight
module in (d), and BN represents batch normalization to speed up the network proficiency.
RU represents the ReLu activation function to alleviate network overfitting. The add
module combines the output of the previous layer with the output of this layer in the
form of residual edges. As shown in Figure 3b, the CBL module is composed of three
network layers: Conv, batch normalization, and Leaky ReLu. The LRU in the CBL module
refers to the Leaky ReLu. As shown in Figure 3c, in the Ghost2 _ X module, 2 in the
Ghost2 _ X module is the convolution step size, and X is the number of times the module
is repeated. DWConv refers to depthwise separable convolution. As shown in Figure 3d,
in the Ghost module, GConv refers to group convolution. As shown in Figure 3e, in
the squeeze-and-excitation (SE) module, global average pooling is used to obtain global
features, and the sigmoid activation function is used to introduce the nonlinear relationship
between channels; FC refers to fully connected layers.

Among them, the SE attention mechanism finally obtained the weight matrix calcula-
tion process as follows [30]:

The calculation is mainly divided into two parts: the first is to compress the feature
map to obtain a matrix containing only channel information.

zc = Fsq(uc) =
1

H ×W

H

∑
i=1

W

∑
j=1

uc(i, j), (1)

In the formula, H and W are the height and width of the input feature map, respectively,
and uc is the feature map with c input channels.

The second is to weigh each channel.

s = Fex(zc, W) = σ(g(zc, W)) = σ(W2σ(W1z)), (2)

In the formula, zc is the output of 1× 1× c after Fsq operation, W1 and W2 are two fully
connected operations, respectively, and σ refers to the sigmoid function.

2.2.2. CRF Receptive Field Module

Due to the small receptive field in the shallow feature map, it is not conducive to large
target detection, and the large receptive field in the deep feature map is not conducive to
small target detection. In this paper, we design the channel receptive field block receptive
field module to enhance the receptive field of the network while introducing the resid-
ual edges of the channel attention mechanism to achieve deep features in a lightweight
convolutional network by designing the network mechanism.

As shown in Figure 4, for the input feature map, the number of feature map channels
is reduced by the convolution layer of 1 × 1 to reduce the computational overhead. Then,
1 × 1, 3 × 3, and 5 × 5 convolution kernels of different sizes are used to form a convolution
layer of three branches to obtain receptive fields of different sizes, obtain more detailed
feature information, and form receptive fields of different scales. Connect the dilated
convolution corresponding to the expansion rate, and set the expansion rate as 1, 3, and
5, respectively. The convolution kernel is a 3 × 3 dilated convolution. By setting different
expansion rates on different scale receptive fields, the eccentricity of each branch is obtained.
Based on ensuring the resolution, the receptive field is increased, the discrimination ability
of feature information is improved, and all branches are connected by Concat function.

The designed channel attention is embedded into the receptive field module in the
form of residual edges. The designed channel attention mechanism first performs down-
sampling through adaptive pooling to compress the feature map. The embedded channel
attention measures the features captured by the convolution kernel from different channels,
effectively retaining data information and reducing calculation parameters.
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Calculation of receptive field size for each layer:

Ri+1 = Ri + (Ki+1 − 1)× Si, (3)

In the formula, R is the receptive field size of the convolution layer, i represents the
number of different convolution layers, Si is the step size of the convolution kernel of the i
layer, and Ki is the size of the convolution kernel of the i layer.

The CRF receptive field module designed in this paper uses dilated convolution. For
the calculation of the size of the dilated convolution receptive field:

Ri+1 = Ri + (Ki+1 − 1)× Si × Di+1, (4)

In the formula, D is the dilation rate of the hole convolution. The output of the network
model to the input of each network layer is marked as 0~i, and the receptive field of the
highest output layer is recorded as R0. The size of the receptive field of each layer is
obtained by recursion layer by layer. When the R0 value is 1, the convolution kernel size is
3 × 3, the step size is 2, and the void rate is 2; the first layer receptive field R1 value is 9.

2.2.3. Multiscale Detection Layer

In the process of insulator image detection, the large-scale detection target area ac-
counts for a large proportion, the feature information is rich, and it is easy to detect, while
the insulator defect fault area size is small, the feature information contained is small, and
the defect fault accounts for a small proportion in the overall image. To reduce the impact
of the unbalanced proportion of target categories, a small-scale detection layer is designed
to increase the detection scale by increasing the detection layer. The improved overall
network structure is shown in Figure 5.

As shown in Figure 5, by combining the feature map generated during the head
upsampling process of the network with the same scale feature map generated during
the downsampling process of the backbone network, the original three-layer detection is
added to the four-layer detection layer. As shown in Figure 5, the insulator image with
a size of 640 × 640 is input, and the image size of 320 × 320 is obtained by focus slicing.
After fourfold downsampling, the network obtained four scale feature maps, denoted as P2,
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P3, P4, and P5. The P2 scale is 160 × 160, the P2 downsampling is P3, the scale is 80 × 80,
and P4 and P5 are obtained. The network head obtains C5 with a scale of 20 × 20; C5
upsampling obtains C4 with a scale of 40 × 40; and similarly, upsampling obtains C3
and C2. At the same time as upsampling, the four feature maps downsampled by the
backbone network are connected with the feature maps of the same scale as the head.
Through the Concat connection, the texture information extracted from the bottom layer is
combined with the semantic information of the high layer to improve the overall detection
performance of the network.
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3. Experiment and Dataset
3.1. Experiment Setting

This experiment is based on the Window10 operating system; CPU i5/4 core, GPU
RTX3060/12GB, Python3.8, Cuda11.1 experimental platform. Considering that the anchor
frames of the original YOLOv5 were set based on the target data in the public dataset
COCO2017, the anchor frames were reclustered for the insulator dataset to obtain anchor
frames with more accurate dimensions to obtain anchor frames that better match the
detection target. When clustering the size of the anchor frame, the k-means clustering
algorithm based on classification is used to obtain the anchor frame of the new size insulator
dataset. The corresponding number of anchor frames is set for different detection scales. In
this paper, four detection layers are used, and four different sizes of anchor frames are set
accordingly. Each size has three types of aspect ratios. When clustering the sizes of anchor
frames, a classification-based k-means clustering algorithm is used to obtain new sizes of
anchor frames for the insulator dataset. The corresponding number of anchor frames is set
for different detection scales; in this paper, four detection layers are used and four different
sizes of anchor frames are set accordingly, each with three classes of aspect ratio.

3.2. Experimental Datasets

The dataset used in this experiment is based on the open-source Chinese Power Line
Insulator Dataset (CBLID), and the dataset is expanded. The open-source Labellmg data
annotation tool is used to annotate the dataset. The dataset is divided into two categories:
N-insulator (normal insulator) and D-insulator (defective insulator), using YOLO label
format file to save labels. The dataset is divided into a training set and a test set at a ratio
of 8:2. In the network training, the original insulator image size of the input network is
1152 × 864. The insulator data are first scaled to the standard size of 640 × 640, and then
input into the backbone network to process the image.

3.3. Evaluating Indicator

To evaluate the effectiveness of the modified network more objectively, it is mainly
tested from two aspects: detection accuracy and detection speed. In this paper, precision (P),
recall (R), mean precision (mAP), and the number of frames per second (FPS) are selected as
evaluation indicators to detect network performance. P is used to determine the probability
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of correct detection, R is used to determine whether the target in the full dataset can be
found, and mAP is the average accuracy of all categories. The calculation formula is as
follows [31]:

P =
TP

TP + FP
, (5)

R =
TP

TP + FN
, (6)

AP =
∫ 1

0
P(r)dr, (7)

mAP =
∑K

i=1 APi

K
, (8)

There are two types of positive samples set in this paper, which are normal insulators
and defective insulators. In Formulas (5) and (6), taking the normal insulator as an example,
TP is the correct prediction of the normal insulator in the actual prediction, and FP is the
detection of the abnormal insulator as the normal insulator, that is, the wrong prediction.
FN is predicted as a defective insulator or undetected insulator for normal insulators, which
is also an error prediction. Formula (7) is the average precision (AP), which means that the
precision value obtained by the recall rate in the range of 0 to 1 is averaged. APi represents
the average accuracy of the i category of samples. In Formula (8), K is the number of
categories of samples in the dataset, and K = 2 is set in this paper. Where mAP @ 0.5
indicates that when the intersection–union ratio is set to 0.5, for the average accuracy of
the set two types of samples, the sum of the two is averaged to obtain the overall average
accuracy mean. The above evaluation metrics provide an objective description of the test
results of the insulator dataset on various models.

4. Discussion

To evaluate the performance of the algorithm more objectively and reasonably, two
kinds of experiments are designed to judge the effectiveness of the algorithm in this paper
from the aspects of improving the effectiveness of each module of the algorithm itself on
the network and comparing it with the same detection algorithm. Firstly, different feature
extraction modules are compared. At the same position of the backbone network, the CSP
module and Ghost module are used, respectively. Comparing the parameters of the two,
the parameter size of the CSP module is 0.567 MB, while the parameter size of the Ghost
module is 0.033 MB. The data show that the Ghost module is used to build the backbone
network of the detection model. Compared to the convolution module in the original
network, the number of parameters is significantly reduced, the memory footprint is lower,
and the resource usage is reduced.

4.1. Comparison of Different Receptive Field Modules

At the end of the model backbone network, the receptive field module is added to
fuse the feature information of each scale. The CRF receptive field module designed in
this paper is compared with SPP and the receptive field block (RFB) [32] to verify the
effectiveness of the CRF module. The results are shown in Table 1:

Table 1. Comparison of different receptive field modules.

Receptive Field
Module

N-Insulator D-Insulator
mAP@50

P R P R

SPP 0.877 0.739 0.937 0.956 0.913
RBF 0.874 0.919 1 0.967 0.966
CRF 0.915 0.908 0.988 1 0.974
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Three kinds of receptive field modules were compared by detecting the accuracy
rate, recall rate of normal and defective insulators, and the average accuracy of the two
categories when the confidence level was 50. As can be seen from the data in the table, for
the CRF module of normal insulators, the accuracy rate is 0.915, while the RBF module
shows a better recall rate. In the detection of defective insulator areas, the detection
accuracy of the RBF module is the highest, the recall rate of the CRF module is 1, and the
overall detection accuracy of the CRF module is the highest. In summary, the designed
CRF module compares the first two receptive field modules, combines the proportion
information of the target in the graph, sets convolution kernels of different sizes, better
obtains global and local feature information, and enhances the network’s fusion of semantic
and texture information.

4.2. Ablation Experiment

In order to verify the effectiveness of the improved algorithm proposed in this pa-
per, different experimental groups are set up, and different experimental modules are
replaced and added for experimental verification. The experimental results are shown in
Table 2 below:

Table 2. Performance index comparison of ablation experiment.

Method Ghost
Module

Increase of
Detection Layer

CRF Receptive
Field Module

N-Insulator D-Insulator
mAP@0.5

P R P R

1 × × × 0.845 0.805 0.933 1 0.901
2

√
× × 0.814 0.771 0.976 1 0.896

3
√ √

× 0.909 0.879 0.99 0.979 0.955
4

√ √ √
0.915 0.908 0.988 1 0.974

Based on the original network, the Ghost lightweight module is set in turn, the network
detection layer is increased, and the CRF receptive field module is designed. Comparing
the modules added in this paper with the original network, comparing method 1 with
method 2, the accuracy of model detection decreases by 0.5% on average with the Ghost
lightweight module, but improves the speed of model detection and reduces the amount of
network computation with the Ghost module. Comparing method 3 with method 2, the
addition of detection layers reduces the recall for the category D-insulator but increases
the accuracy due to the increased detection scale for the small area target of the defective
insulator. The detection layer set up to constitute the new model architecture improves
accuracy for both categories of detection, and the overall performance of the network
improves. Comparing method 4 with method 3, replacing the SPP module with the CRF
receptive field module improves the detection accuracy of the model by 1.9%. By analyzing
the experimental results, we can see the effectiveness of the module designed in this paper.

As shown in Figure 6, the light blue curve is the P-R curve of the N-insulator category,
the orange curve is the P-R curve of the D-insulator category, and the dark blue curve is the
P-R curve of the overall average accuracy of the network. In the P-R graph, the abscissa is
the recall rate, and the ordinate is the precision rate. The larger the area enclosed by the
curve and the abscissa and ordinate axes, the closer the curve is to the upper right corner,
and the better the network performance. The four experimental groups combined with
the ablation experiment produced their corresponding P-R curves, arranged in order, as
shown in Figure 6. By comparing the four graphs, it can be seen that the area enclosed by
the curve and the horizontal and vertical axes in image (d) is larger, the accuracy and recall
rate is higher, and the network model performance is better than the first four.
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4.3. Contrast Experiment

The algorithm in this paper is compared with Faster R-CNN [33], which is the typical
representative of the two-stage detection algorithm in the current target detection algorithm,
CenterNet [34] based on anchor-free, and the original YOLOv5 algorithm.

As can be seen from Table 3, Faster R-CNN has a higher recall rate for normal insula-
tors, but a lower detection accuracy and slower detection speed for defective insulators
in small areas. The performance of CenterNet is significantly lower than that of other
algorithms, and its detection accuracy of defective insulators is high. However, CenterNet
cannot detect the number of defective insulator images in the dataset well. In the above
network model, the detection of the category D-insulator is poor. Compared with the
two-stage detection model, the detection accuracy is improved by 14.2%, and the detection
speed is also improved by 50 FPS. Compared with the detection model without an anchor
frame, the detection accuracy is improved by 19.8%, and the detection speed is also im-
proved. Compared with the original model, the detection accuracy is improved by 7.3%,
and the detection speed is also improved by 9FPS. At the same time, the improved network
has the best detection accuracy for normal insulators, and the network running speed is
also improved.

The image in Figure 7 is the detection result map under different network models,
where (a), (b) and (c) columns are three different insulator images to be detected. The
detection results of the four network models are in turn. Through the picture, it is more
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clear and more intuitive to see that Faster-RCNN in column (a) misdetects the defective
insulator as a normal insulator. The CenterNet network model misdetects the enclosure in
the background as a normal insulator and the CenterNet in column (b) does not detect the
defective insulator, resulting in a missed detection. The original YOLOv5 model also shows
false detection of the wall in the defective insulators in column (a) and false detection of
defective insulators. For defective insulators listed in (a), the method presented in this
paper has more advantages. For normal insulators listed in (c) for detection, it can be
seen that the results of the four models are better for the detection of normal insulators.
Combined with network detection indicators and intuitive picture results, it can be seen that
this method has higher detection accuracy and faster detection speed. From the detection
accuracy and speed, this algorithm has more advantages.

Table 3. Performance comparison of different models.

Module
N-Insulator D-Insulator

mAP@0.5 FPS
P R P R

Faster-RCNN 0.7541 0.9459 0.4375 0.913 0.832 12
CenterNet 0.825 0.5766 1 0.1304 0.776 56
YOLOv5 0.845 0.805 0.933 1 0.901 53

Ours 0.915 0.908 0.988 1 0.974 62
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5. Conclusions

Based on the YOLOv5 model architecture, this paper designs an algorithm for in-
sulator defect detection of overhead transmission lines. First, according to the label file
corresponding to the image in the training set, the anchor frame size is obtained by k-means
clustering, so that the network can obtain more accurate positioning. The lightweight Ghost
module is used to replace the original convolution operation to construct a lightweight
backbone network, which reduces the computational complexity, reduces the network
computation, and improves the detection speed of the network to 62 FPS. The small-scale
detection layer is added to reduce the loss of small-scale target features. At the same time,
the CRF receptive field module is introduced to extract more effective feature information,
which improves the detection accuracy of the network by 7.3%, and the average detection
accuracy reaches 97.4%. It realizes a more intelligent detection of insulator defects, which
reduces the manual input and improves the detection accuracy of defective insulators. In
order to verify the effectiveness of the improved algorithm proposed in this paper, different
experimental groups are set up, and different experimental modules are replaced and
added for experimental verification.
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